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Abstract
In this paper, a class of virus infection models with CTLs response is considered. We
incorporate an immune delay and two intracellular delays into the virus infection
model. It is found that only incorporating two intracellular delays almost does not
change the dynamics of the system, but incorporating an immune delay changes the
dynamics of the system very greatly, namely, a Hopf bifurcation and oscillations can
appear. Those results show immune delay dominates intracellular delays in some viral
infection models, which indicates the human immune system has a special effect in
virus infection models with CTLs response, and the human immune system itself is
very complicated. In fact, people are aware of the complexity of the human immune
system in medical science, which coincides with our investigating. We also investigate
the global Hopf bifurcation of the system with the immune delay as a bifurcation
parameter.

Keywords: virus infection model; CTLs response; time delay; Lyapunov functionals;
global stability; Hopf bifurcation; global Hopf branch

1 Introduction
People utilize widely mathematical models to investigate viral infections currently, for ex-
ample, HBV (hepatitis B virus), HCV (hepatitis C virus), HIV, and so on [–]. Perelson et
al. proposed a standard and classic model (probably the first) for HIV dynamics in [, ]
as follows:

⎧
⎪⎨

⎪⎩

x′(t) = λ – dx(t) – βx(t)v(t),
y′(t) = βx(t)v(t) – dy(t),
v′(t) = ky(t) – dv(t).

(.)

Here x(t) represents the concentration of uninfected cells at time t, y(t) represents the
concentration of infected cells that can produce a virus at time t, v(t) represents the con-
centration of viruses at time t. λ is the rate at which new healthy cells are generated. d,
d, d are the death rates of uninfected cells, infected cells, and virus cells, respectively.
βx(t)v(t) is the bilinear incidence between infected cells and uninfected cells. Free virus is
produced from infected cells at the rate ky(t).

Many researchers also consider system (.) as a basic virus infection model for various
other viruses, such as HBV [, ]; HCV []. It is well known that an immune response
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exists universally and plays an important role in many viral infections [, , ]. So a typi-
cal extension model for those infections with a cytotoxic T lymphocytes (CTLs) response
is considered in [],

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x′(t) = λ – dx(t) – βx(t)v(t),
y′(t) = βx(t)v(t) – dy(t) – μy(t)z(t),
v′(t) = ky(t) – dv(t),
z′(t) = γ y(t)z(t) – dz(t).

(.)

Here z(t) represents the concentration of the cells of the immune response. d is the death
rate of cells of the immune response. CTLs-driven elimination of infected cells is assumed
to be of the form μy(t)z(t), where μ is the rate of CTLs elimination. The CTLs response
to the infection is modeled by γ y(t)z(t).

In fact, we should note that there are delays in the infection process, including intra-
cellular delay and CTLs immune response delay. We refer readers to [, ] and references
therein. In [], Zhu and Zou studied a HIV infection model with intracellular delay as
follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x′(t) = λ – dx(t) – βx(t)v(t),
y′(t) = βx(t – τ )v(t – τ ) – dy(t) – μy(t)z(t),
v′(t) = ky(t) – dv(t),
z′(t) = γ y(t)z(t) – dz(t).

(.)

In this paper, we incorporate two intracellular delays and immune response delay in sys-
tem (.). Namely, we incorporate a time delay τ to describe the period between healthy
cells’ contacting with viruses and complete production of viral RNA and protein. We in-
corporate the time delay τ to describe the period between complete production of viral
RNA and protein and actually releasing new mature viruses. τ represents the CTLs im-
mune response delay. So we have the following system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x′(t) = λ – dx(t) – βx(t)v(t),
y′(t) = βx(t – τ)v(t – τ) – dy(t) – μy(t)z(t),
v′(t) = ky(t – τ) – dv(t),
z′(t) = γ y(t – τ)z(t – τ) – dz(t).

(.)

A question is how the intracellular delays τ, τ and the immune delay τ affect the dy-
namics of the system (.). That is the main goal of this paper. We find that only incor-
porating two intracellular delays τ and τ almost does not change the dynamics of the
system, but incorporating the immune delay τ changes the dynamics of the system very
greatly, namely, a Hopf bifurcation and oscillations can occur. Those results show that the
immune delay dominates the intracellular delays in this class of viral infection models,
which indicates the human immune system has a special effect in virus infection models
with CTLs response, and the human immune system itself is very complicated. People are
aware of the complexity of the human immune system in medical science, which coincides
with our investigation.

The paper is organized as follows. In the next section, the attractive region and equilibria
for system (.) are discussed and the two threshold parameters R and R are introduced.
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In Section , by combining the linear stability theory and the LaSalle-Lyapunov theorem,
the global stability of P and P when R <  and R <  < R is discussed, respectively.
By analyzing the distribution of the eigenvalues, the dynamics of the system when R > 
is investigated. In Section , we study the global Hopf branch of the system. Numerical
simulations are presented in Section  to illustrate the analysis results. The paper ends
with a brief conclusion.

2 Attractive region and equilibria
Let τ = max{τ, τ, τ}; we denote by C = C([–τ , ],R) the Banach space of continuous
real-valued functions on the interval [–τ , ], with norm

‖φ‖ = sup
–τ≤θ≤

∣
∣φ(θ )

∣
∣ for φ ∈ C.

The nonnegative cone of C is defined as

C+ = C
(
[–τ , ],R

+
)
.

The initial conditions for system (.) are chosen at t =  as

ϕ ∈ C+, ϕ = {ϕ,ϕ,ϕ,ϕ}, ϕi() > , i = , , , . (.)

Proposition . Under the initial condition (.), all solutions of system (.) are positive
and ultimately bounded in C . Furthermore, all solutions eventually enter and remain in
the following bounded region:

	∗ =
{

(x, y, v, z) ∈ C+ : ‖x‖ ≤ λ

d
+ ε,‖x + y‖ ≤ λ

d̃
+ ε,

∥
∥
∥
∥x + y +

d

k
v
∥
∥
∥
∥ ≤ λ

d̂
+ ε,

∥
∥
∥
∥x + y +

d

k
v +

γ

μ
z
∥
∥
∥
∥ ≤ λ

d
+ ε

}

,

where

d̃ = min{d, d}, d̂ = min

{

d,
d


, d

}

, d = min

{

d,
d


, d, d

}

,

and ε is an arbitrarily small positive number.

Proof First, we prove that x(t) is positive for t ≥ . Assuming the contrary and letting t > 
be the first time such that x(t) = , by the first equation of system (.), we have x′(t) =
λ > , and hence x(t) <  for t ∈ (t – η, t) and sufficiently small η > . This contradicts
x(t) >  for t ∈ [, t). It follows that x(t) >  for t > . From the fourth equation of (.),
we use the method of the steps to prove z(t) >  for t > . From the third equation of (.),
we can prove v(t) >  for t > . From the second equation of (.), we can obtain y(t) > 
for t > .

Next we show that positive solutions of (.) are ultimately uniformly bounded for t ≥ .
From the first equation of system (.), we obtain

x′(t) ≤ λ – dx(t),
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and thus

lim sup
t→∞

x(t) ≤ λ

d
.

Adding the first two equations of (.) leads to

(
x(t) + y(t + τ)

)′ ≤ λ – d̃
(
x(t) + y(t + τ)

)
,

where d̃ = min{d, d}. Thus

lim sup
t→∞

(
x(t) + y(t + τ)

) ≤ λ

d̃
.

Adding the first three equations of (.), we have
(

x(t) + y(t + τ) +
d

k
v(t + τ + τ)

)′

= λ – dx(t) –
d


y(t + τ) – μy(t + τ)z(t + τ) –

d

k
dv(t + τ + τ)

≤ λ – d̂
(

x(t) + y(t + τ) +
d

k
v(t + τ + τ)

)

,

where d̂ = min{d, d
 , d}. Thus

lim sup
t→∞

(

x(t) + y(t + τ) +
d

k
v(t + τ + τ)

)

≤ λ

d̂
.

Adding all four equations of (.), we have
[

x(t) + y(t + τ) +
d

k
v(t + τ + τ) +

μ

γ
z(τ + τ)

]′

= λ – dx(t) –
d


y(t + τ) –

d

k
dv(t + τ + τ) – d

μ

γ
z(t + τ + τ)

≤ λ – d
[

x(t) + y(t + τ) +
d

k
v(t + τ + τ) +

μ

γ
z(t + τ + τ)

]

,

where d = min{d, d
 , d, d}. Thus

lim sup
t→∞

(

x(t) + y(t + τ) +
d

k
v(t + τ + τ) +

μ

γ
z(t + τ + τ)

)

≤ λ

d
.

Therefore, x(t), y(t), v(t), and z(t) are ultimately uniformly bounded in C . �

As a consequence of Proposition ., we know that the dynamics of system (.) can be
analyzed in the following bounded region:

	 =
{

(x, y, v, z) ∈ C+ : ‖x‖ ≤ λ

d
,‖x + y‖ ≤ λ

d̃
,

∥
∥
∥
∥x + y +

d

k
v
∥
∥
∥
∥ ≤ λ

d̂
,
∥
∥
∥
∥x + y +

d

k
v +

γ

μ
z
∥
∥
∥
∥ ≤ λ

d

}

.

Furthermore, the region 	 is attractive with respect to system (.).
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The system has two threshold parameters,

R =
λβk

ddd
, R =

λβγ k
dddγ + βkdd

. (.)

They are called the basic reproduction numbers for viral infection and for CTL response
[, ]. We note that R < R always holds.

System (.) always has an infection-free equilibrium P = (x, , , ), x = λ
d

. In addi-
tion to P, the system can have two other equilibria P = (x, y, v, ) and P = (x∗, y∗, v∗, z∗),
where x, y, v, x∗, y∗, v∗, and z∗ are all positive. The equilibrium P = (x, y, v, ) exists if and
only if R >  and

x =
dd

βk
, y =

λβk – ddd

βkd
, v =

λβk – ddd

βdd
. (.)

The equilibrium P exists if and only if R > . The equilibrium P = (x∗, y∗, v∗, z∗) is given
by

x∗ =
λγ d

γ dd + βkd
, y∗ =

d

γ
,

v∗ =
kd

γ d
, z∗ =

γβλk – γ ddd – βkdd

(ddγ + βkd)μ
.

(.)

3 Global stability and Hopf bifurcation
We investigate stability of the equilibria and the Hopf bifurcation in this section. First, P

is considered in the following.

3.1 Global stability of P0

In this subsection, we rigorously show that when R < , the infection-free equilibrium P

is globally asymptotically stable in 	.

Theorem . If R < , the infection-free equilibrium P of system (.) is globally asymp-
totically stable in 	. If R > , P is unstable.

Proof First we prove P is locally asymptotically stable. The characteristic equation asso-
ciated with the linearization of system (.) at P is given by

(ξ + d)(ξ + d)
(

ξ  + (d + d)ξ + dd –
βλk
d

e–ξ (τ+τ)
)

= . (.)

Obviously we have

ξ = –d < , ξ = –d < ,

and we consider the equation

ξ  + (d + d)ξ + dd –
βλk
d

e–ξ (τ+τ) = . (.)
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Notice  is not a root of (.) because of R < . Following the method in [], if ξ = iω
(ω > ) is a purely imaginary root of (.), we have

dd – ω =
βλk
d

cos(τ + τ)ω,

– (d + d)ω =
βλk
d

sin(τ + τ)ω.
(.)

Squaring and adding both equations of (.), it follows that

ω +
(
d

 + d

)
ω + d

d
 –

(
βkλ

d

)

= . (.)

Let u = ω. Then (.) becomes

u +
(
d

 + d

)
u + d

d
 –

(
βkλ

d

)

= . (.)

From R < , we easily see that (.) has no positive root. Therefore, all roots of (.) have
negative real parts. So P is locally asymptotically stable when R < .

Next, we prove P is globally attractive in 	 if R < . To prove this, we consider a
Lyapunov functional L : C →R given by

L(xt , yt , vt , zt) = xt() – x ln xt() + yt() +
d

k
vt() +

μ

γ
zt()

+ β

∫ 

–τ

xt(θ )vt(θ ) dθ + d

∫ 

–τ

yt(θ ) dθ + μ

∫ 

–τ

yt(θ )zt(θ ) dθ . (.)

Here xt(s) = x(t + s), for s ∈ [–τ , ], and thus x(t) = xt() in this notation.
Calculating the time derivative of L along solution of system (.), it follows that

L′|(.) = x′(t) – x
x′(t)
x(t)

+ y′(t) +
d

k
v′(t) +

μ

γ
z′(t) + β

(
x(t)v(t) – x(t – τ)v(t – τ)

)

+ d
(
y(t) – y(t – τ)

)
+ μ

(
y(t)z(t) – y(t – τ)z(t – τ)

)

= λ

(

 –
x
x

–
x

x

)

+ βxv –
dd

k
v –

μd

γ
z

= λ

(

 –
x
x

–
x

x

)

+
dd

k
(R – )v –

μd

γ
z.

R <  ensures that L′|(.) ≤ , and L′ =  if and only if

x(t) = x, y(t) = , v(t) = , z(t) = ,

it can be verified that the maximal invariant set in {L′|(.) = } is the set

M =
{

(x, , , )
}

.

By the LaSalle-Lyapunov theorem, we conclude that M is globally attractive in 	 if R < .
So P is globally attractive in 	.
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Therefore, P is globally asymptotically stable in 	.
We can easily see that (.) has a root with a positive real part when R > . P is unstable

when R > . �

Remark . Obviously P is globally asymptotically stable without any delays when R <
, but after incorporating three delays (a immune delay and two intracellular delays), P is
still globally asymptotically stable. Delays do not destroy the globally asymptotical stability
of P.

3.2 Global stability of P1

Theorem . If R <  < R, then the equilibrium P is globally asymptotically stable. If
R > , P is unstable.

Proof Let

g(u) = u – ln u – , u > .

Define a Lyapunov functional

V : C →R

in the following form:

V (xt , yt , vt , zt) = xg
(

xt()
x

)

+ yg
(

(yt())
y

)

+
d

k
vg

(
vt()

v

)

+
μ

γ
zt()

+βxv
∫ 

–τ

g
(

xt(θ )vt(θ )
xv

)

dθ + βxv
∫ 

–τ

g
(

yt(θ )
y

)

dθ

+ μ

∫ 

–τ

yt(θ )zt(θ ) dθ . (.)

Calculating the time derivative of V along the solution of system (.), we obtain

V ′|(.) = λ – dx(t) – βx(t)v(t) – x
(

λ

x(t)
– d – βv(t)

)

+ βx(t – τ)v(t – τ)

– dy(t) – μy(t)z(t) – y
(

βx(t – τ)v(t – τ)
y(t)

– d – μz(t)
)

+ dy(t – τ)

–
dd

k
v(t) –

dv
k

(
ky(t – τ)

v(t)
– d

)

+ μy(t – τ)z(t – τ) –
μ

γ
dz(t)

+ βxv
(

x(t)v(t) – x(t – τ)v(t – τ)
xv

– ln
x(t)v(t)

xv
+ ln

x(t – τ)v(t – τ)
xv

)

+ βxv
(

y(t) – y(t – τ)
y

– ln
y(t)

y
+ ln

y(t – τ)
y

)

+ μ
(
y(t)z(t) – y(t – τ)z(t – τ)

)
.

Using

βxv = dy, ky = dv, λ = dx + dy,
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we have

V ′|(.) = dx
(

 –
x(t)

x
–

x
x(t)

)

+ βxv
(

 –
x

x(t)
+ ln

x
x(t)

)

– βxv ln
x

x(t)

+ βxv
(

 –
yx(t – τ)v(t – τ)

xvy(t)
+ ln

yx(t – τ)v(t – τ)
xvy(t)

)

– βxv ln
yx(t – τ)v(t – τ)

xvy(t)
+ βxv

(

 –
vy(t – τ)

yv(t)
+ ln

vy(t – τ)
yv(t)

)

– βxv ln
vy(t – τ)

yv(t)
+

(

μy –
μ

γ
d

)

z(t) – βxv ln
x(t)v(t)

xv

+ βxv ln
x(t – τ)v(t – τ)

xv
– βxv ln

y(t)
y

+ βxv ln
y(t – τ)

y

= dx
(

 –
x(t)

x
–

x
x(t)

)

– βxvg
(

x
x(t)

)

– βxvg
(

yx(t – τ)v(t – τ)
xvy(t)

)

– βxvg
(

vy(t – τ)
yv(t)

)

+
dμ(γ dd + βkd)

γβkd
(R – ) ≤ ,

when R < . Furthermore,

V ′|(.) =  ⇔ x(t) = x, y(t) = y, v(t) = v, z(t) = ,

and thus the maximal invariant set in the set {V ′ = } is the singleton {P}. Therefore, P

is globally attractive.
The characteristic equation associated with the linearization of system (.) at P is given

by

(
ξ + d – γ ye–ξτ

)[
(ξ + d + βv)(ξ + d)(ξ + d) – dd(ξ + d)e–ξ (τ+τ)] = . (.)

We first consider

ξ + d – γ ye–ξτ = .

When τ = , we have

ξ = γ y – d =
γ ddd + βkdd

βkd
(R – ) < .

Assuming τ >  and ξ = iω (ω > ) is the purely imaginary root of this equation, then we
obtain

iω + d – γ y cosωτ + iγ y sinωτ = .

So, ω + d
 = (γ y), namely, ω = (γ y) – d

 < . Obviously, this is a contradiction. Note
that  is not the root of the equation. Therefore, all roots of this equation have a negative
real part.

Next, we address the following equation:

(ξ + d + βv)(ξ + d)(ξ + d) – dd(ξ + d)e–ξ (τ+τ) = . (.)
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We rewrite this equation in the following form:

ξ  + (d + d + d + βv)ξ  +
[
(d + βv)(d + d) + dd

]
ξ

+ (d + βv)dd – dd(ξ + d)e–ξ (τ+τ) = .

When τ + τ = , the equation becomes

ξ  + aξ
 + aξ + a = ,

where

a = d + d + d + βv > , a = (d + βv)(d + d) > , a = βvdd > ,

and aa – a > . By the Routh-Hurwitz criteria, all roots of (.) have negative real parts
when τ + τ = .

Assume τ + τ > , and ξ = iω (ω > ) is the purely imaginary root of (.). Substituting
ξ = iω (ω > ) into equation (.), we obtain

–iω – (d + d + d + βv)ω + i
[
(d + βv)(d + d) + dd

]
ω

– (d + βv)dd – dd(iω + d)
(
cosω(τ + τ) – i sinω(τ + τ)

)
= .

Separating the real and imaginary parts, we have

– ω +
[
(d + βv)(d + d) + dd

]
ω

= dd
(
ω cosω(τ + τ) – d sinω(τ + τ)

)
,

– (d + d + d + βv)ω + (d + βv)dd

= dd
(
ω sinω(τ + τ) + d cosω(τ + τ)

)
.

(.)

Squaring and adding both equations lead to

ω + bω
 + bω

 + b = , (.)

where

b = (d + βv) + d
 + d

 > , b = (d + βv)(d
 + d


)

> ,

b =
(
(βv) + dβv

)
d

d
 >  and bb – b > .

By the Routh-Hurwitz criteria,

u + bu + bu + b = 
(
u = ω)

has no positive root. So (.) has no positive root. Equation (.) has no pure imaginary
root. Also  is not root of equation (.), therefore, all roots of equation (.) have negative
real parts for τ + τ ≥ . Hence P is locally asymptotically stable.
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Further, P is globally asymptotically stable.
For R > , we can find the characteristic equation (.) has positive root. Thus P is

unstable when R > . �

Remark . P is globally asymptotically stable without any delays when R <  < R. Al-
though incorporating three delays (a immune delay and two intracellular delays), P is still
globally asymptotically stable. Delays do not destroy the globally asymptotical stability
of P.

3.3 Dynamics when R1 > 1
When R > , there exists an interior equilibrium P = (x∗, y∗, v∗, z∗), where

x∗ =
λγ d

γ dd + βkd
, y∗ =

d

γ
,

v∗ =
kd

γ d
, z∗ =

γβλk – γ ddd – βkdd

(ddγ + βkd)μ
.

The characteristic equation associated with the linearization of system (.) at P is given
by

ξ + aξ
 + aξ

 + aξ –
(
bξ

 + bξ
 + bξ + b

)
e–ξτ

–
(
cξ

 + cξ + c
)
e–ξ (τ+τ) + (eξ + e)e–ξ (τ+τ+τ) = , (.)

where

a = d + d + d + d + βv∗ + μz∗,

a =
(
d + βv∗)(d + d + d + μz∗) +

(
d + μz∗)(d + d) + dd,

a =
(
d + βv∗)(d + μz∗)(d + d) +

(
d + βv∗)dd +

(
d + μz∗)dd,

a =
(
d + βv∗)(d + μz∗)dd,

b = d, b =
(
d + d + d + d + βv∗)d,

b =
(
dd +

(
d + βv∗)(d + d)

)
d, b = ddd

(
d + βv∗),

c = βkx∗, c = βkx∗(d + d), c = βkx∗dd,

e = βkx∗d, e = βkx∗dd = c.

.. When τ ≥ , τ ≥ , τ = 
Theorem . If R > , then the equilibrium P is globally attractive when

τ ≥ , τ ≥  and τ = .

Proof Let

g(u) = u – ln u – , u > .

Define a Lyapunov functional

U : C →R
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in the following form:

U(xt , yt , vt , zt) = x∗g
(

xt()
x∗

)

+ y∗g
(

yt()
y∗

)

+
βx∗(v∗)

ky∗ g
(

vt()
v∗

)

+
μz∗

γ
g
(

zt()
z∗

)

+ βx∗v∗
∫ 

–τ

g
(

xt(θ )vt(θ )
x∗v∗

)

dθ + βx∗v∗
∫ 

–τ

g
(

yt(θ )
y∗

)

dθ . (.)

Calculating the time derivative of V along solution of system (.), we obtain

U ′|(.) = x′ –
x∗

x
x′ + y′ –

y∗

y
y′ +

βx∗v∗

ky∗ v′ –
βx∗v∗v∗

ky∗v
v′ +

μ

γ
z′ –

μz∗

γ z
z′

+ βx∗v∗
(

xv – x(t – τ)v(t – τ)
x∗v∗ – ln

xv
x∗v∗ + ln

x(t – τ)v(t – τ)
x∗v∗

)

+ βx∗v∗
(

y – y(t – τ)
y∗ – ln

y
y∗ – ln

y(t – τ)
y∗

)

.

Using

λ = dx∗ + βx∗v∗,
(
d + μz∗) = βx∗v∗, y∗ =

d

γ
and v∗ =

kd

γ d
,

it follows that

U ′|(.) = dx∗
(

 –
x
x∗ –

x∗

x

)

+ βx∗v∗
(

 –
x∗

x
+ ln

x∗

x

)

– βx∗v∗ ln
x∗

x

+ βx∗v∗
(

 –
y∗x(t – τ)v(t – τ)

x∗v∗y
+ ln

y∗x(t – τ)v(t – τ)
x∗v∗y

)

– βx∗v∗ y∗x(t – τ)v(t – τ)
x∗v∗y

+ βx∗v∗
(

 –
v∗y(t – τ)

y∗v
+ ln

v∗y(t – τ)
y∗v

)

– βx∗v∗ ln
v∗y(t – τ)

y∗v
– βx∗v∗ ln

xv
x∗v∗ + βx∗v∗ ln

x(t – τ)v(t – τ)
x∗v∗

– βx∗v∗ ln
y
y∗ + βx∗v∗ ln

y(t – τ)
y∗

= dx∗
(

 –
x
x∗ –

x∗

x

)

– βx∗v∗g
(

x∗

x

)

– βx∗v∗g
(

y∗x(t – τ)v(t – τ)
x∗v∗y

)

– βx∗v∗g
(

v∗y(t – τ)
y∗v

)

≤ .

This implies that

U ′|(.) =  ⇔ x(t) = x∗, y(t) = y∗, v(t) = v∗, z(t) = z∗,

and thus the maximal invariant set in the set {U ′ = } is the singleton {P}. Therefore, P

is globally attractive. �

Remark . It is very difficult to analyze the characteristic roots of the characteristic
equation (.). But we conjecture that all characteristic roots of the characteristic equa-
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tion (.) have negative real parts when τ > , τ > , τ = . Namely, P is locally asymp-
totically stable, and P is also globally asymptotically stable when τ ≥ , τ ≥ , τ = .
We find the intracellular delays τ and τ do not destroy global attractability of P.

.. When τ = , τ = , τ > 
When τ = , τ = , τ > , system (.) becomes

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x′(t) = λ – dx(t) – βx(t)v(t),
y′(t) = βx(t)v(t) – dy(t) – μy(t)z(t),
v′(t) = ky(t) – dv(t),
z′(t) = γ y(t – τ)z(t – τ) – dz(t).

(.)

The characteristic equation of system (.) at P is given by

ξ + aξ
 + (a – c)ξ  + (a – c)ξ + (a – c)

+
(
–bξ

 – bξ
 + (e – b)ξ + e – b

)
e–ξτ = . (.)

When τ = , (.) becomes

ξ + mξ
 + mξ

 + mξ + m = ,

where

m = a – b > , m = a – b – c, m = a – b – c + e > ,

m = a – b – c + e >  and mmm – m
 – m

m > .

By the Routh-Hurwitz criteria, all roots of this equation have negative real parts. Clearly,
 is not the root of (.).

For τ > , assuming ξ = iω (ω > ) is a purely imaginary root of (.). It satisfies

ω – iaω
 – (a – c)ω + i(a – c)ω + a – c

+
(
ibω

 + bω
 + i(e – b)ω + e – b

)
(cosωτ – i sinωτ) = . (.)

Separating the real and imaginary parts, we get

ω – (a – c)ω + (a – c) = –
(
bω

 + e – b
)

cosωτ –
(
bω

 + (e – b)ω
)

sinωτ,

–aω
 + (a – c)ω =

(
bω

 + e – b
)

sinωτ –
(
bω

 + (e – b)ω
)

cosωτ.

Squaring and adding both above equations lead to

ω + pω + qω + uω + v = , (.)

where

p = a
 – (a – c) – b

,

q = (a – c) + (a – c) – a(a – c) – b
 – b(e – b),
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u = (a – c) – (a – c)(a – c) – b(e – b) – (e – b),

v = (a – c) – (e – b).

Let ω = s, we have

F(s) = s + ps + qs + us + v = . (.)

Then

F ′(s) = s + ps + qs + u.

Set

s + ps + qs + u = . (.)

Let r = s + p
 , then (.) becomes

r + pr + q = ,

where p = q
 – p

 , q = p

 – pq
 + u

 .
Define

� =
(

q



)

+
(

p



)

, δ =
– + i

√



,

r = 

√

–
q


+

√
� + 

√

–
q


–

√
�,

r = 

√

–
q


+

√
�δ + 

√

–
q


–

√
�δ,

r = 

√

–
q


+

√
�δ + 

√

–
q


–

√
�δ,

si = ri –
p


, i = , , .

We cite the results in [] about the existence of positive roots of the fourth-degree poly-
nomial equation, namely, we have the following lemma.

Lemma .
(i) If v < , then (.) has at least one positive root.

(ii) If v ≥  and � ≥ , then (.) has positive roots if and only if s >  and F(s) < .
(iii) If v ≥  and � < , then (.) has positive roots if and only if there exists at least

one s∗ ∈ {s, s, s} such that s∗ >  and F(s∗) < .

Supposing one of the above three cases in Lemma . is satisfied, (.) has finite positive
roots s, s, . . . , sk , k ≤ . Therefore (.) has finite positive roots

ω =
√

s, ω =
√

s, . . . , ωk =
√

sk , k ≤ .
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For every fixed ωi (i = , , . . . , k, k ≤ ), there exists a sequence

τ
j
i

=

ωi

(arccos Ui + jπ ), i = , , . . . , k, k ≤ , j = , , , , . . . , (.)

where

Ui = (ω
i – (a – c)ω

i + a – c)(–bω

i + b – e) + (–aω


i + (a – c)ωi)(–bω


i + (b – e)ωi)

(bω

i + (e – b)ωi) + (bω


i + e – b) ,

such that (.) holds. Let

τ ∗
 = min

{
τ 

i
|i = , , . . . , k, k ≤ 

}
=


ω∗ arccos U∗, ω∗ = ωi for some  ≤ i ≤ .

Then (.) has a pair of purely imaginary roots ±iω∗ when τ = τ ∗
 .

After a long and tedious computation, we get the following lemma.

Lemma .

[
d

dτ
(Re ξ )

]–

τ=τ
j
i

=
F ′(ω

i )
(bω + (e – b)ω) + (bω + e – b) . (.)

Especially, supposing F ′((ω∗)) �= , then

[
d

dτ
(Re ξ )

]–

τ=τ∗


=
F ′((ω∗))

(b(ω∗) + (e – b)ω∗) + (b(ω∗) + e – b) > . (.)

Remark . For the nth degree exponential polynomial

ξn + an–ξ
n– + · · · + aξ + a +

(
bn–ξ

n– + bn–ξ
n– + · · · + bξ + b

)
e–ξτ = ,

we conjecture there are similar equations to (.). To the best of our knowledge, it is
correct for n = , , , .

From Lemma ., we can get the following result.

Theorem . For system (.), there exists

τ ∗
 = min

{
τ 

i
|i = , , . . . , k, k ≤ 

}
,

such that P is asymptotically stable when τ ∈ [, τ ∗
 ). Furthermore, if F ′((ω∗)) �=  holds,

and system (.) undergoes a Hopf bifurcation at P when τ = τ ∗
 .

Remark . We find that incorporating an immune delay can destroy the global at-
tractability of P on proper conditions when R > , and a Hopf bifurcation occurs. That
is, a periodic oscillation appears. Stability switches can appear when k ≥ . Those results
show immune delay dominates intracellular delays in this class of viral infection models.
Those indicate the human immune system has a special effect in virus infection models
with a CTLs response, and the human immune system itself is very complicated.
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4 Global Hopf bifurcation analysis
Many researchers studied global Hopf bifurcations in their research, for example [, ].
In this section, we will investigate the global existence of periodic solutions of system (.)
by using the global Hopf bifurcation theorem given by Wu [] when R > . So we consider
the following system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x′(t) = λ – dx(t) – βx(t)v(t),
y′(t) = βx(t)v(t) – dy(t) – μy(t)z(t),
v′(t) = ky(t) – dv(t),
z′(t) = γ y(t – τ )z(t – τ ) – dz(t).

(.)

Note that we omit the subscript ‘’ of τ for convenience.
Firstly, we suppose (.) has a unique positive root s∗ in this section, therefore, ω∗ =

√
s∗,

and

τ j =


ω∗
(
arccos U∗ + jπ

)
, j = , , , , . . . , (.)

where

U∗ =
((ω∗) – (a – c)(ω∗) + a – c)(–b(ω∗) + b – e)

(b(ω∗) + (e – b)ω∗) + (b(ω∗) + e – b)

+
(–a(ω∗) + (a – c)ω∗)(–b(ω∗) + (b – e)ω∗)

(b(ω∗) + (e – b)ω∗) + (b(ω∗) + e – b) .

τ  = min{τ j, j = , , , . . .}. It is reasonable that we suppose (.) has a unique positive
root s∗. For example, we consider the following case:

F(s) = s + ps + qs + us + v = ,

F ′(s) = s + ps + qs + u,

F ′′(s) = s + ps + q,

when (p) –  × q <  and v < , F(s) =  has only one positive root. Furthermore, in
Section , we can choose proper parameters such that F(s) =  has unique positive root
when we carry out numerical simulations.

From Lemma ., we obtain the following lemma.

Lemma . τ j, ω∗ are defined as above. The following holds:

[
d

dτ
(Re ξ )

]–

τ=τ j
=

F ′((ω∗))
(b(ω∗) + (e – b)ω∗) + (b(ω∗) + e – b) > .

Furthermore, if τ ∈ (, τ ], then all roots of (.) have negative real parts; if τ ∈ (τ j, τ j+],
j = , , , . . . , then (.) has exactly (j + ) roots with positive real parts.

Lemma . System (.) has no nonconstant periodic solution when τ = .



Sun and Wei Advances in Difference Equations  (2015) 2015:332 Page 16 of 22

Proof Theorem . shows P is globally attractive when τ = . This lemma follows from
the fact that P is globally attractive when τ = . �

Lemma . All the nontrivial periodic solutions of (.) are positive and uniformly
bounded.

Proof The proof of this lemma can be obtained from Proposition .. �

Lemma . When R > , system (.) has no nonconstant periodic solution of period τ .
Furthermore, system (.) has no nonconstant periodic solution of period τ

j , j = , , , . . . .

Proof We prove by contradiction. Suppose system (.) has a periodic solution of periodic
τ , W (t) = (x(t), y(t), v(t), z(t))T , and W (t + τ ) = (x(t + τ ), y(t + τ ), v(t + τ ), z(t + τ ))T = W (t).
So W (t) = (x(t), y(t), v(t), z(t))T is also τ -periodic solution of the following system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x′(t) = λ – dx(t) – βx(t)v(t),
y′(t) = βx(t)v(t) – dy(t) – μy(t)z(t),
v′(t) = ky(t) – dv(t),
z′(t) = γ y(t)z(t) – dz(t).

(.)

However, this system has no periodic solutions, which follows from Theorem .. There-
fore, system (.) has no periodic solution of period τ . �

Let W (t) = (x(t), y(t), v(t), z(t))T , we rewrite system (.) as the following functional dif-
ferential equation:

dW (t)
dt

= F(Wt , τ , T), (.)

where Wt(θ ) = (x(t + θ ), y(t + θ ), v(t + θ ), z(t + θ )) ∈ C([–τ , ],R
+), and

F(Wt , τ , T) =

⎛

⎜
⎜
⎜
⎝

λ – dx(t) – βx(t)v(t)
βx(t)v(t) – dy(t) – μy(t)z(t)

ky(t) – dv(t)
γ y(t – τ )z(t – τ ) – dz(t)

⎞

⎟
⎟
⎟
⎠

.

Let

F̂(W , τ , T) =

⎛

⎜
⎜
⎜
⎝

λ – dx – βxv
βxv – dy – μyz

ky – dv
γ yz – dz

⎞

⎟
⎟
⎟
⎠

,

�(P,τ ,T)(ξ ) = ξ + aξ
 + (a – c)ξ  + (a – c)ξ + (a – c)

+
(
–bξ

 – bξ
 + (e – b)ξ + e – b

)
e–ξτ .

It is easy to see the assumptions (A), (A), and (A) in [] are satisfied.
Note that the periodic solutions are all bounded away from zero, which follows from

Lemma ., thus we need not to consider the boundary equilibria P and P.
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It is convenient to introduce the following notations:

X = C
(
[–τ , ],R),

� = Cl
{

(W , τ , T) ∈ X ×R+ ×R+ : W is a T-periodic solution of (.)
}

⊂ X ×R+ ×R+,

N(F) =
{

(Ŵ , τ , T) : F(Ŵ , τ , T) = 
}

.

Let C(P, τ j, π
ω∗ ) denote the connected component of (P, τ j, π

ω∗ ) in �, where τ j, ω∗ are
defined in (.).

Now, we are in a position to state the following global Hopf bifurcation results.

Theorem . When R > , for each τ > τ j, j = , , , . . . , system (.) has at least j + 
positive periodic solutions, where τ j is defined in (.).

Proof It is obvious that (P, τ j, π
ω∗ ) are isolated centers. By Lemma ., there exist ε > ,

δ > , and a smooth curve l : (τ j – δ, τ j + δ) →C, such that

�
(
ξ (τ )

)
= ,

∣
∣ξ (τ ) – iω∗∣∣ < ε

for all τ ∈ [τ j – δ, τ j + δ], where � is defined above, and

ξ
(
τ j) = iω∗,

[
d

dτ
(Re ξ )

]

τ=τ j
> .

Let

�ε =
{

(u, T) :  < u < ε,
∣
∣
∣
∣T –

π

ω∗

∣
∣
∣
∣ < ε

}

.

Clearly, if |τ – τ j| ≤ δ and (u, T) ∈ ∂�ε such that �(P,τ ,T)(u + π i
T ) = , then τ = τ j, u = ,

and T = π
ω∗ . So (A) is satisfied in [] for m = . Moreover, let

H±
(

P, τ j,
π

ω∗

)

(u, T) = �(P,τ j±δ,T)

(

u +
π i
T

)

,

then we see, from Re ξ ′(τ j) > , that the crossing number is

γ

(

P, τ j,
π

ω∗

)

= degB

(

H–
(

P, τ j,
π

ω∗

)

,�ε

)

– degB

(

H+
(

P, τ j,
π

ω∗

)

,�ε

)

= –.

Using the local Hopf bifurcation theorem in [], we conclude that the connected compo-
nent C(P, τ j, π

ω∗ ) through (P, τ j, π
ω∗ ) in � is nonempty. Meanwhile, we have

∑

(Ŵ ,τ ,T)∈C(P,τ j , π
ω∗ )

γ
(
(Ŵ , τ , T)

)
< .

By Theorem . in [], C(P, τ j, π
ω∗ ) is unbounded.
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Lemma . shows the projection of C(P, τ j, π
ω∗ ) onto W -space is bounded. Lemma .

implies the projection of C(P, τ j, π
ω∗ ) onto τ -space is bounded below.

From the definition of τ j in (.), we have

π < ω∗τ j < (j + )π < (j + )π , j ≥ ,

namely,


j + 

<
π

ω∗τ j <

j
, j ≥ .

From Lemma ., we know if

(W , τ , T) ∈ C
(

P, τ ,
π

ω∗

)

,

then




<
π

ω∗τ  < ;

if

(W , τ , T) ∈ C
(

P, τ ,
π

ω∗

)

,

then




<
π

ω∗τ  <



;

and so on. This shows that the projection of C(P, τ j, π
ω∗ ) onto T-space is bounded. There-

fore in order for C(P, τ j, π
ω∗ ) to be unbounded, its projection onto the τ -space must

be unbounded. The projection of C(P, τ j, π
ω∗ ) onto the τ -space includes [τ j, +∞). Note


j+ < π

ω∗τ j < 
j , j ≥ , we can see that the connected components C(P, τ j, π

ω∗ ), j ≥  are dis-
joint. This shows system (.) has at least j positive periodic solutions for each τ > τ j. The
proof is completed. �

5 Numerical simulations
In this section, we shall carry out some numerical simulations for illustrating our theoret-
ical analysis. As regards the selected parameters in this section, we refer to [, ].

First, we consider the following set of parameter values:

λ = , β = ., d = ., d = .,

d = ., d = ., k = , μ = .,

γ = ., τ = , τ = , τ = .

For the above parameter set, R = . < , system (.) has a unique infection-free equi-
librium P = (, , , ). Figure  shows P is globally asymptotically stable when R < .
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Figure 1 P0 is globally asymptotically stable.
Here λ = 10, β = 0.02, d1 = 0.2, d2 = 1.8, d3 = 1.5,
d4 = 0.5, k = 2, μ = 0.2, γ = 0.2, τ1 = 1, τ2 = 2, τ3 = 3,
and R0 = 0.7407 < 1.

Figure 2 P1 is globally asymptotically stable.
Here λ = 14, β = 0.02, d1 = 0.2, d2 = 1.8, d3 = 1.5,
d4 = 0.5, k = 2, μ = 0.2, γ = 0.2, τ1 = 1, τ2 = 2, τ3 = 3,
and R1 = 0.7778 < 1 < R0 = 1.0370.

Next, we use the following parameters: λ = , β = ., d = ., d = ., d =
., d = ., k = , μ = ., γ = ., τ = , τ = , τ = . For those parameters,
R = . <  < R = ., system (.) has a chronic-infection equilibrium P =
(., ., ., ). Figure  demonstrates the equilibrium P is globally asymptot-
ically stable when R <  < R.

In Figures  and , we adopt the following set of parameter values:

λ = , β = ., d = ., d = ., d = .,

d = ., k = , μ = ., γ = ..

Thus R = . > , system (.) has the equilibrium P = (, ., ., ) and
F() = –. < , F(s) =  has only one positive root s∗ ≈ .. τ ∗

 ≈ ., τ 
 ≈

.. Figure  demonstrates that P is asymptotically stable when R >  and τ < τ ∗
 ,

where τ = . < τ ∗
 . Figure  demonstrates that oscillations appear, where τ = . > τ ∗

 .
Using those parameter values, global Hopf branches diagrams are shown in Figures 
and .
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Figure 3 P2 is asymptotically stable. Here λ = 40,
β = 0.02, d1 = 0.2, d2 = 1.8, d3 = 1.5, d4 = 0.5, k = 2,
μ = 0.2, γ = 0.2, τ1 = 0, τ2 = 0, τ3 = 0.7 < τ ∗

3 = 0.7392,
and R1 = 2.2222 > 1.

Figure 4 P2 is not asymptotically stable, and
oscillations appear. Here λ = 40, β = 0.02, d1 = 0.2,
d2 = 1.8, d3 = 1.5, d4 = 0.5, k = 2, μ = 0.2, γ = 0.2,
τ1 = 0, τ2 = 0, τ3 = 0.8 > τ ∗

3 = 0.7392, and
R1 = 2.2222 > 1.

Figure 5 Global Hopf branches diagrams. Here
λ = 40, β = 0.02, d1 = 0.2, d2 = 1.8, d3 = 1.5, d4 = 0.5,
k = 2, μ = 0.2, γ = 0.2, τ1 = 0, τ2 = 0, τ ∗

3 ≈ 0.7392,
and R1 = 2.2222 > 1.
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Figure 6 Global Hopf branches diagrams. Here
λ = 40, β = 0.02, d1 = 0.2, d2 = 1.8, d3 = 1.5, d4 = 0.5,
k = 2, μ = 0.2, γ = 0.2, τ1 = 0, τ2 = 0, τ 1

3 ≈ 12.3529,
and R1 = 2.2222 > 1.

6 Conclusion
In this paper, we considered a class of virus infection models with three time lags, two
intracellular delays and one immune delay. We have carried out a mathematical analysis
of the dynamics of the model. We proved that P is globally asymptotically stable when
R < , and the three delays do not destroy the globally asymptotical stability of P. P is
globally asymptotically stable when R <  < R, and the three delays also do not destroy the
globally asymptotical stability of P. When R > , we found P has still global attractability
under only incorporating two intracellular delays τ and τ. But on only incorporating the
immune delay τ, P can undergo a Hopf bifurcation on proper conditions, furthermore,
oscillations and stability switches can appear. The immune delay can destroy the global
attractability of P. Those results show immune delay dominates intracellular delays in
some viral infection models, which indicates the human immune system has a special ef-
fect in virus infection models with CTLs response, and the human immune system itself is
very complicated. People are aware of the complexity of human immune system in med-
ical science, which coincides with our investigation. Finally, we studied the global Hopf
bifurcation of the system, and we obtained the global existence of periodic solutions.
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