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1 Introduction
Fractional differential equation is a new and important branch of differential equation
theory. It is a valuable tools in the modeling of many phenomena in various fields of engi-
neering, physics, economics, etc. Actually, it has been an important area of investigation
in recent years; see [–]. Particularly, the existence of solutions to fractional evolution
equations has been studied by many authors, see [–]. In [, ], El-Borai introduced a
concept of mild solutions to fractional evolution equations in terms of probability density
functions. Recently, it was developed by Zhou and Wang et al. in [–]. They introduced
two characteristic solution operators and gave a suitable concept on the mild solution by
applying Laplace transform and probability density functions. But all these papers did not
consider the impulse effects. To study fractional evolution equation with impulsive condi-
tions, many authors made the preparatory works. Particularly, Wang et al. [] presented
the concept of the mild solution of impulsive fractional evolution equations in a Banach
space X,

⎧
⎪⎨

⎪⎩

Dqu(t) + Au(t) = f (t, u(t)), t ∈ J := [, a], t �= tk ,
u(t+

k ) = u(t–
k ) + yk , k = , , . . . , m,

u() = u + g(u),
()

where Dq denotes the Caputo fractional derivative of order q ∈ (, ), –A : D(A) ⊂ X → X
generates a compact C-semigroup in X, f , g are given functions, yk , u are the elements
of X, a >  is a fixed constant,  = t < t < t < · · · < tm < tm+ = a, u(t+

k ) and u(t–
k ) represent
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the right and left limits of u(t) at t = tk , respectively. By using fixed point theorems of
compact operator, they derived many existence and uniqueness results concerning the
mild solutions for system ().

On the other hand, as far as we know that there are few papers studied the fractional
evolution equations with noncompact semigroup. Recently, Wang et al. [] discussed
the local existence of mild solutions for nonlocal problem of fractional evolution equa-
tions under the situation that –A generates a noncompact analytic semigroup. Chen et al.
[] investigated the existence of saturated mild solutions for the initial value problem of
fractional evolution equations under the situation that –A generates an equicontinuous
C-semigroup.

In this paper, in the case of a noncompact semigroup, we consider the following nonlocal
problems of impulsive fractional evolution equations in an ordered Banach space E

⎧
⎪⎨

⎪⎩

Dqu(t) + Au(t) = f (t, u(t), u(t)), t ∈ J , t �= tk ,
�u|t=tk = u(t+

k ) – u(t–
k ) = Ik(u(tk), u(tk)), k = , , . . . , m,

u() = u + g(u, u),
()

where Dq denotes the Caputo fractional derivative of order q ∈ (, ), –A : D(A) ⊂ E → E
generates a C-semigroup S(t) (t ≥ ) in E, f and g are given functions will be specified
later, u ∈ E,  = t < t < t < · · · < tm < tm+ = a, Ik : E × E → E (k = , , . . . , m) are the
impulsive functions. Utilizing a monotone iterative technique in the presence of coupled
lower and upper L-quasi-solutions and using Sadovskii’s fixed point theorem, we obtain
some existence results concerning the coupled mild L-quasi-solutions and mild solutions
for system ().

In present work, we only assume that –A generates a positive C-semigroup in Theo-
rem  and Theorem , which is noncompact and nonanalytic. In Theorem , –A generates
a positive and equicontinuous C-semigroup, but the other conditions on f , g , and Ik are
much weaker than existing results.

The rest of this paper is organized as follows. In Section , some preliminaries are given
on the fractional calculus and the measure of noncompactness. The definition of coupled
lower and upper L-quasi-solutions of the system () is also given in this section. In Sec-
tion , we study the existence of coupled mild L-quasi-solutions and mild solutions for the
system (). Particularly, a uniqueness result is also obtained in this section. An example is
given in Section  to illustrate the effectiveness of our results.

2 Preliminaries
Let X be a Banach space with norm ‖ · ‖, A : D(A) ⊂ X → X be a closed linear operator
and –A generate a C-semigroup S(t) (t ≥ ) in X. It is well known that there exist M > 
and δ ∈R such that

∥
∥S(t)

∥
∥ ≤ Meδt , t ≥ . ()

From (), it is clear that there exists a constant C >  such that ‖S(t)‖ ≤ C for any t ∈ [, a].

Definition  A C-semigroup S(t) (t ≥ ) in X is said to be positive, if the inequality
S(t)x ≥  holds for x ≥  and t ≥ .
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It is clear that for any M ≥ , –(A + MI) also generates a C-semigroup S(t) = e–MtS(t)
(t ≥ ) in X. S(t) (t ≥ ) is a positive C-semigroup if S(t) (t ≥ ) is positive. For more
details about the positive C-semigroup, please see [].

Let us recall the following known definitions in fractional calculus. For more details, see
[, , –] and the references therein.

Definition  The fractional integral of order σ >  with the lower limits zero for a func-
tion f is defined by

Iσ f (t) =


�(σ )

∫ t


(t – s)σ–f (s) ds, t > ,

where � is the gamma function.
The Caputo fractional derivative of order n –  < σ < n with the lower limits zero for a

function f ∈ Cn[,∞) can be written as

Dσ f (t) =


�(n – σ )

∫ t


(t – s)n–σ–f (n)(s) ds, t > , n ∈N.

Remark 
() The Caputo derivative of a constant is equal to zero.
() If f is an abstract function with values in X , then the integrals which appear in

Definition  are taken in Bochner’s sense.

Lemma  [] A measurable function h : [, a] → X is Bochner integrable if ‖h‖ is Lebesgue
integrable.

For x ∈ X, we define two families {U(t)}t≥ and {V (t)}t≥ of the operators by

U(t)x =
∫ ∞


ηq(θ )S

(
tqθ

)
x dθ ,

V (t)x = q
∫ ∞


θηq(θ )S

(
tqθ

)
x dθ ,  < q < ,

where

ηq(θ ) =

q
θ

–– 
q ρq

(
θ

– 
q
)
,

ρq(θ ) =

π

∞∑

n=

(–)n–θ–qn– �(nq + )
n!

sin(nπq), θ ∈ (,∞).

ηq is a probability density function defined on (,∞), which has the properties ηq(θ ) ≥ 
for all θ ∈ (,∞) and

∫ ∞
 ηq(θ ) dθ = . Clearly, if the semigroup S(t) (t ≥ ) is positive, then

the operators U(t) and V (t) are also positive for all t ≥ .

Lemma  The operators U(t) and V (t) have the following properties.
(i) For any fixed t ≥  and any x ∈ X , one has

∥
∥U(t)x

∥
∥ ≤ C‖x‖,

∥
∥V (t)x

∥
∥ ≤ qC

�(q + )
‖x‖ =

C
�(q)

‖x‖.
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(ii) The operators U(t) and V (t) are strongly continuous for all t ≥ .
(iii) If S(t) (t ≥ ) is an equicontinuous semigroup, U(t) and V (t) are equicontinuous in

X for t > .

Proof From [, ], it is easy to prove (i) and (ii). Hence, we only prove (iii). For any  ≤ t <
t ≤ a, we have

∥
∥U(t) – U(t)

∥
∥ =

∫ ∞


ηq(θ )

∥
∥S

(
tq
θ

)
– S

(
tq
 θ

)∥
∥dθ

and

∥
∥V (t) – V (t)

∥
∥ = q

∫ ∞


θηq(θ )

∥
∥S

(
tq
θ

)
– S

(
tq
 θ

)∥
∥dθ .

According to the equicontinuity of S(t) for t > , we see that ‖U(t) – U(t)‖ and ‖V (t) –
V (t)‖ tend to zero as t – t → , which means that the operators U(t) and V (t) are
equicontinuous in X for t > . �

We denote by C(J , X) the Banach space of all continuous X-value functions on interval
J with the norm ‖u‖C = maxt∈J ‖u(t)‖. Let αX(·) and αC(J ,X)(·) denote the Kuratowski mea-
sure of noncompactness of the bounded set in X and C(J , X), respectively. Let B ⊂ X be
a bounded set. It is well known that  ≤ αX(B) < ∞. α(B) ≡  if and only if the set B is
precompact. For more details of the definition and properties of measure of noncompact-
ness, see []. For any B ⊂ C(J , X) and t ∈ J , set B(t) = {u(t) : u ∈ B} ⊂ X. If B is bounded in
C(J , X), B(t) is bounded in X, and αX(B(t)) ≤ αC(J ,X)(B). A mapping Q : B → B is said to be
condensing, if αC(J ,X)(Q(B)) < αC(J ,X)(B). For the measure of noncompactness, the following
lemmas will be used in this paper.

Lemma  [] Let B ⊂ C(J , X) be bounded and equicontinuous. Then αX(B(t)) is continu-
ous on J and

αC(J ,X)(B) = max
t∈J

αX
(
B(t)

)
= αX

(
B(J)

)
,

where B(J) = {u(t) : u ∈ B, t ∈ J}.

Lemma  [] Let B = {un} ⊂ C(J , X) be countable. If there exists ψ ∈ L(J) such that
‖un(t)‖ ≤ ψ(t) a.e. t ∈ J , n = , , . . . , then αX(B(t)) is Lebesgue integrable on J and

αX

({∫

J
un(t) dt : n ∈ N

})

≤ 
∫

J
αX

(
B(t)

)
dt.

Lemma  [] Let B ⊂ C(J , X) be bounded. Then there exists a countable subset B of B
such that αC(J ,X)(B) ≤ αC(J ,X)(B).

Lemma  [] (Sadovskii’s fixed point theorem) Let X be a Banach space and � be a
nonempty bounded convex closed set in X. If Q : � → � is a condensing mapping, then Q
has a fixed point in �.
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Let E be an ordered Banach space with the norm ‖·‖ and the partial order ≤, whose posi-
tive cone K = {x ∈ E : x ≥ } is normal. Let PC(J , E) = {u : J → E : u(t) is continuous at t �= tk

and left continuous at t = tk and u(t+
k ) exists, k = , , . . . , m}. Evidently, PC(J , E) is a Ba-

nach space with the norm ‖u‖PC = supt∈J ‖u(t)‖. PC(J , E) is also an ordered Banach space
with partial order ≤ reduced by the positive cone KPC = {u ∈ PC(J , E) : u(t) ≥ , t ∈ J}.
We use E to denote the Banach space D(A) with the graph norm ‖ · ‖ = ‖ · ‖ + ‖A · ‖.
Let J ′ = J\{t, t, . . . , tm}. An abstract function u ∈ PC(J , E) ∩ C(J ′, E) ∩ C(J ′, E) is called a
solution of the system () if u(t) satisfies all the equalities in ().

Definition  Let L ≥  be a constant. If the functions v, w ∈ PC(J , E) ∩ C(J ′, E) ∩
C(J ′, E) satisfy

⎧
⎪⎨

⎪⎩

Dqv(t) + Av(t) ≤ f (t, v(t), w(t)) + L(v(t) – w(t)), t ∈ J ′,
�v|t=tk ≤ Ik(v(tk), w(tk)), k = , , . . . , m,
v() ≤ u + g(v, w),

()

⎧
⎪⎨

⎪⎩

Dqw(t) + Aw(t) ≥ f (t, w(t), v(t)) + L(w(t) – v(t)), t ∈ J ′,
�w|t=tk ≥ Ik(w(tk), v(tk)), k = , , . . . , m,
w() ≥ u + g(w, v),

()

we call v, w coupled lower and upper L-quasi-solutions of the system (). If we only
choose = in () and (), we call v, w coupled L-quasi-solutions of the system (). Fur-
thermore, if we choose = in () and () and let ũ := v = w, then we call ũ a solution of the
system ().

In this paper we adopt the following definition of mild solutions of the system (), which
comes from [].

Definition  By a mild solution of the system (), we mean that a function u ∈ PC(J , E)
satisfies the following integral equation

u(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

U(t)[u + g(u, u)] +
∫ t

 (t – s)q–V (t – s)f (s, u(s), u(s)) ds, t ∈ [, t],
U(t)[u + g(u, u)] + U(t – t)I(u(t), u(t))

+
∫ t

 (t – s)q–V (t – s)f (s, u(s), u(s)) ds, t ∈ [t, t],
. . . ,
U(t)[u + g(u, u)] +

∑m
i= U(t – ti)Ii(u(ti), u(ti))

+
∫ t

 (t – s)q–V (t – s)f (s, u(s), u(s)) ds, t ∈ [tm, a].

()

In the proof of the main results, we also need the following generalized Gronwall-
Bellman inequality, which can be found in [].

Lemma  Suppose b ≥ , β > , and a(t) is a nonnegative function locally integrable on
 ≤ t < T (some T ≤ ∞), and suppose u(t) is nonnegative and locally integrable on  ≤ t <
T with

u(t) ≤ a(t) + b
∫ t


(t – s)β–u(s) ds
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on this interval, then

u(t) ≤ a(t) +
∫ t



[ ∞∑

n=

(b�(β))n

�(nβ)
(t – s)nβ–a(s)

]

ds,  ≤ t < T .

Remark  In Lemma , if a(t) ≡  for all  ≤ t < T , we easily see that u(t) = .

3 Main results
In this section, we always assume that E is an ordered Banach space, whose positive cone
K is normal with normal constant N , A : D(A) ⊂ E → E is a closed linear operator. Let us
list the following hypotheses:

(H) f ∈ C(J × E × E, E) and there exist M >  and L ≥  such that

f (t, x, y) – f (t, x, y) ≥ –M(x – x) + L(y – y),

for any t ∈ J , v(t) ≤ x ≤ x ≤ w(t) and v(t) ≤ y ≤ y ≤ w(t);
(H) Ik ∈ C(E × E, E) satisfies

Ik(x, y) ≤ Ik(x, y), k = , , . . . , m,

for any t ∈ J , v(t) ≤ x ≤ x ≤ w(t) and v(t) ≤ y ≤ y ≤ w(t);
(H) g : [v, w] × [v, w] → E is continuous and satisfies

g(x, y) ≤ g(x, y),

for any v ≤ x ≤ x ≤ w and v ≤ y ≤ y ≤ w;
(H) there exists a constant L >  such that

αE
({

f (t, xn, yn) + f (t, yn, xn)
}) ≤ LαE

({xn} + {yn}
)
,

for t ∈ J , increasing monotonic sequence {xn} ⊂ [v(t), w(t)] and decreasing se-
quence {yn} ⊂ [v(t), w(t)];

(H) {g(xn, yn)} is precompact for any monotone sequence {xn}, {yn} ⊂ [v, w].

Theorem  Let –A generate a positive C-semigroup S(t) (t ≥ ). Assume that the sys-
tem () has coupled lower and upper L-quasi-solutions v and w with v ≤ w. If the
assumptions (H)-(H) hold, the system () has minimal and maximal coupled mild
L-quasi-solutions between v and w, which can be obtained by a monotone iterative pro-
cedure starting from v and w.

Proof Let u ∈ E be fixed. Define an operator Q : [v, w] × [v, w] → PC(J , E) by

Q(u, v)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U(t)[u + g(u, v)] +
∫ t

 (t – s)q–V(t – s)[f (s, u(s), v(s))
+ (M + L)u(s) – Lv(s)] ds, t ∈ [, t],
× U(t)[u + g(u, v)] + U(t – t)I(u(t), v(t)) +

∫ t
 (t – s)q–

V(t – s)[f (s, u(s), v(s)) + (M + L)u(s) – Lv(s)] ds, t ∈ [t, t],
. . . ,
U(t)[u + g(u, v)] +

∑m
i= U(t – ti)Ii(u(ti), v(ti)) +

∫ t
 (t – s)q–

× V(t – s)[f (s, u(s), v(s)) + (M + L)u(s) – Lv(s)] ds, t ∈ [tm, a],

()
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where

U(t) =
∫ ∞


ηq(θ )S

(
tqθ

)
dθ , V(t) = q

∫ ∞


θηq(θ )S

(
tqθ

)
dθ ,

S(t) = e–MtS(t) (t ≥ ).

It is clear that U(t) and V(t) are positive operators if S(t) (t ≥ ) is a positive C-
semigroup.

For any t ∈ J , v(t) ≤ x(t) ≤ x(t) ≤ w(t) and v(t) ≤ y(t) ≤ y(t) ≤ w(t), from the
assumptions (H)-(H) and the positive property of the operators U(t) and V(t) for t ≥
, it follows that Q(x, y)(t) ≤ Q(x, y)(t) for all t ∈ J , which means that Q is a mixed
monotone operator.

Let h(t) � Dqv(t) + Av(t) + Mv(t). Then h ∈ PC(J , E) and h(t) ≤ f (t, v(t), w(t)) + (M +
L)v(t) – Lw(t). Hence for any t ∈ [, t], from () and (), we have

v(t) = U(t)v() +
∫ t


(t – s)q–V(t – s)h(s) ds

≤ U(t)
[
u + g(v, w)

]
+

∫ t


(t – s)q–V(t – s)

[
f
(
s, v(s), w(s)

)

+ (M + L)v(s) – Lw(s)
]

ds

= Q(v, w)(t).

For any t ∈ (t, t], from () and (), we have

v(t) = U(t)v() + U(t – t)�v|t=t +
∫ t


(t – s)q–V(t – s)h(s) ds

≤ U(t)
[
u + g(v, w)

]
+ U(t – t)I

(
v(t), w(t)

)

+
∫ t


(t – s)q–V(t – s)

[
f
(
s, v(s), w(s)

)
+ (M + L)v(s) – Lw(s)

]
ds

= Q(v, w)(t).

Similarly, we can obtain v(t) ≤ Q(v, w)(t) for any t ∈ (tk , tk+], k = , , . . . , m. That
is, v ≤ Q(v, w). A similar argument can prove that Q(w, v) ≤ w. So, Q : [v, w] ×
[v, w] → [v, w] is a mixed monotone operator. By the continuity of f , we easily prove
that Q : [v, w] × [v, w] → [v, w] is continuous.

Now, we define two sequences {vn} and {wn} in [v, w] by the iterative scheme

vn = Q(vn–, wn–), wn = Q(wn–, vn–), n = , , . . . . ()

Then from the mixed monotonicity of Q, it follows that

v ≤ v ≤ · · · ≤ vn ≤ · · · ≤ wn ≤ · · · ≤ w ≤ w. ()

Next, we prove that the sequences {vn(t)} and {wn(t)} are uniformly convergent on J .
For convenience, let B = {vn : n ∈ N} + {wn : n ∈ N}, B = {vn : n ∈ N}, B = {wn : n ∈

N}, B = {vn– : n ∈ N}, and B = {wn– : n ∈ N}. Then B = B + B, B = Q(B, B), and
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B = Q(B, B). From B = B ∪ {v} and B = B ∪ {w}, it follows that αE(B(t)) =
αE(B(t)) and αE(B(t)) = αE(B(t)) for t ∈ J . Let J = [, t], Jk = (tk , tk+], k = , , . . . , m,
and let ϕ(t) := αE(B(t)) for t ∈ J . Going from J to Jm interval by interval, we show that
ϕ(t) ≡  for t ∈ J .

For t ∈ J, from assumptions (H), (H), and (), we have

ϕ(t) = αE
(
B(t)

)
= αE

(
B(t) + B(t)

)
= αE

(
Q(B, B)(t) + Q(B, B)(t)

)

≤ αE
({

U(t)
[
u + g(vn–, wn–) + g(wn–, vn–)

]})

+ αE

({∫ t


(t – s)q–V(t – s)

[(
f
(
s, vn–(s), wn–(s)

)
+ f

(
s, wn–(s), vn–(s)

))

+ M
(
vn–(s) + wn–(s)

)]
ds

})

≤ C
(
αE

({
g(vn–, wn–)

})
+ αE

({
g(wn–, vn–)

}))

+
C
�(q)

∫ t


(t – s)q–[αE

({
f
(
s, vn–(s), wn–(s)

)
+ f

(
s, wn–(s), vn–(s)

)})

+ MαE
({

vn–(s) + wn–(s)
})]

ds

≤ C(M + L)
�(q)

∫ t


(t – s)q–αE

(
B(s) + B(s)

)
ds

≤ C(M + L)
�(q)

∫ t


(t – s)q–ϕ(s) ds.

Hence by Lemma , αE(B(t)) = ϕ(t) ≡  for t ∈ J, which means that {vn(t)} + {wn(t)} is
precompact in E for t ∈ J. In particular, αE(B(t)) =  and αE(B(t)) = . That is, B(t)
and B(t) are precompact in E. Thus, I(B(t), B(t)), and I(B(t), B(t)) are pre-
compact in E, and αE(I(B(t), B(t))) = , αE(I(B(t), B(t))) = .

For t ∈ J, from above argument, we have

ϕ(t) = αE
(
B(t)

)
= αE

(
B(t) + B(t)

)
= αE

(
Q(B, B)(t) + Q(B, B)(t)

)

≤ αE
({

U(t)
[
u + g(vn–, wn–) + g(wn–, vn–)

]})

+ αE

({∫ t


(t – s)q–V(t – s)

[(
f
(
s, vn–(s), wn–(s)

)
+ f

(
s, wn–(s), vn–(s)

))

+ M
(
vn–(s) + wn–(s)

)]
ds

})

+ CαE
({

I
(
vn–(t), wn–(t)

)
+ I

(
wn–(t), vn–(t)

)})

≤ C(M + L)
�(q)

∫ t


(t – s)q–ϕ(s) ds.

Again by Lemma , αE(B(t)) = ϕ(t) ≡  for t ∈ J, which means that {vn(t)} + {wn(t)} is
precompact in E for t ∈ J. Particularly, we obtain that αE(B(t)) = , αE(B(t)) =  and
αE(I(B(t), B(t))) = , αE(I(B(t), B(t))) = .

Continuing such a process interval by interval up to Jm, we can prove that αE(B(t)) =
ϕ(t) ≡  on every Jk , k = , , , . . . , m. Hence for any t ∈ J , {vn(t)} + {wn(t)} is precompact
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in E. So, {vn(t)} and {wn(t)} are convergent, respectively. Let

u(t) = lim
n→∞ vn(t), u(t) = lim

n→∞ wn(t), t ∈ J . ()

Letting n → ∞ in (), by the continuity of the operator Q, we obtain

u(t) = Q(u, u)(t), u(t) = Q(u, u)(t), t ∈ J . ()

Evidently, {vn(t)}, {wn(t)} ⊂ PC(J , E), so u(t), u(t) are bounded integrable on J and u, u ∈
PC(J , E). Combining this with the monotonicity (), we obtain v(t) ≤ u(t) ≤ u(t) ≤ w(t)
for t ∈ J . By the mixed monotonicity of Q, it is easy to see that u and u are the minimal
and maximal coupled fixed points of Q on [v, w]. and therefore, they are the minimal
and maximal coupled mild L-quasi-solutions of the system () between v and w. �

Let the following condition be satisfied:

(H)′ There exists a constant L >  such that

αE
({

f (t, xn, yn)
}) ≤ L

(
αE

({xn}
)

+ αE
({yn}

))
,

for any t ∈ J and monotone sequences {xn}, {yn} ⊂ [v(t), w(t)].

For any t ∈ J , increasing sequence {xn} ⊂ [v(t), w(t)] and decreasing sequence {yn} ⊂
[v(t), w(t)], by (H)′, we see that

αE
({

f (t, xn, yn) + f (t, yn, xn)
}) ≤ αE

({
f (t, xn, yn)

})
+ αE

({
f (t, yn, xn)

})

≤ L
(
αE

({xn}
)

+ αE
({yn}

))

≤ L
(
αE

({xn} + {yn}
)

+ αE
({yn} + {xn}

))

= LαE
({xn} + {yn}

)
.

Let L = L. Then the assumption (H)′ implies (H). Therefore, by Theorem , we obtain
the following existence result.

Corollary  Let –A generate a positive C-semigroup S(t) (t ≥ ). Assume that the system
() has coupled lower and upper L-quasi-solutions v and w with v ≤ w. If the condi-
tions (H)-(H), (H)′, and (H) hold, the system () has minimal and maximal coupled
mild L-quasi-solutions between v and w, which can be obtained by a monotone iterative
procedure starting from v and w.

Now, we discuss the existence of mild solution for the system () between the minimal
and maximal coupled mild L-quasi-solutions u and u. We assume that:

(H) there exists a constant L >  such that

αE
({

f (t, xn, yn)
}) ≤ L

(
αE

({xn}
)

+ αE
({yn}

))
,

for any t ∈ J and countable subsets {xn}, {yn} ⊂ [v(t), w(t)];
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(H) there exist Mk > , k = , , . . . , m with
∑m

k= Mk < 
C such that

αE
({

Ik
(
xn(tk), yn(tk)

)}) ≤ Mk
[
αE

({
xn(tk)

})
+ αE

({
yn(tk)

})]
, k = , , . . . , m,

for any countable subsets {xn}, {yn} ⊂ [v, w];
(H) {g(xn, yn)} is precompact for any countable subsets {xn}, {yn} ⊂ [v, w].

Then we obtain the following existence result.

Theorem  Let –A generate a positive and equicontinuous C-semigroup S(t) (t ≥ ) in E.
Assume that the system () has coupled lower and upper L-quasi-solutions v and w with
v ≤ w. If the conditions (H)-(H) and (H)-(H) hold, the system () has minimal and
maximal coupled mild L-quasi-solutions u and u between v and w, and has at least one
mild solution between u and u.

Proof It is clear that (H) implies (H)′ and (H) implies (H). Hence, by Corollary , the
system () has minimal and maximal coupled mild L-quasi-solutions u and u between v

and w. Next, we prove the existence of mild solutions of the system () between u and u.
Let Tu = Q(u, u). Then T : [v, w] → [v, w] is continuous. If u ∈ PC(J , E) is a fixed point
of the operator T , then u = Tu = Q(u, u). By Definitions  and  and the definition of the
operator Q, u is the mild solution of the system (). For any D ⊂ [v, w], we see that T(D) ⊂
[v, w] is bounded and equicontinuous. So, by Lemma , there exists a countable set D =
{xn} ⊂ D such that αC(J ,E)(T(D)) ≤ αC(J ,E)(T(D)). For t ∈ J = [, t], by the definition of
T , we have

αE
(
T(D)(t)

)
= αE

(
Q(D, D)(t)

)

≤ αE
({

U(t)
[
u + g(xn, xn)

]})

+ αE

({∫ t


(t – s)q–V(t – s)

[
f
(
s, xn(s), xn(s)

)
+ Mxn(s)

]
ds

})

≤ CαE
({

g(xn, xn)
})

+
qC

�(q + )

∫ t


(t – s)q–αE

({
f
(
s, xn(s), xn(s)

)
+ Mxn(s)

})
ds

≤ qC(M + L)
�(q + )

∫ t


(t – s)q–αE

(
D(s)

)
ds

≤ C(M + L)aq

�(q + )
αC(J ,E)(D).

For t ∈ Jk = (tk , tk+], k = , , . . . , m, by the definition of T , we have

αE
(
T(D)(t)

)
= αE

(
Q(D, D)(t)

)

≤ αE
({

U(t)
[
u + g(xn, xn)

]})
+ αE

({ k∑

i=

U(t – ti)Ii
(
xn(ti), xn(ti)

)
})

+ αE

({∫ t


(t – s)q–V(t – s)

[
f
(
s, xn(s), xn(s)

)
+ Mxn(s)

]
ds

})
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≤ C
k∑

i=

MiαE
(
D(ti)

)
+

qC(M + L)
�(q + )

∫ t


(t – s)q–αE

(
D(s)

)
ds

≤
(

C
m∑

k=

Mk +
C(M + L)aq

�(q + )

)

αC(J ,E)(D).

Hence for any t ∈ J , we have

αE
(
T(D)(t)

) ≤
(

C
m∑

k=

Mk +
C(M + L)aq

�(q + )

)

αC(J ,E)(D).

Since T(D) is bounded and equicontinuous, by Lemma , we have

αC(J ,E)
(
T(D)

) ≤ αC(J ,E)
(
T(D)

)
=  max

t∈J
αE

(
T(D)(t)

)

≤
(

C
m∑

k=

Mk +
C(M + L)

�(q + )
aq

)

αC(J ,E)(D).

(i) If C
∑m

k= Mk + C(M+L)
�(q+) aq < , then the T : [v, w] → [v, w] is a condensing

mapping. By Lemma , T has at least one fixed point u in [v, w].
(ii) If C

∑m
k= Mk + C(M+L)

�(q+) aq ≥ , then divided J = [, a] into n equal parts. Let
�n :  = t′

 < t′
 < · · · < t′

n = a and t′
i (i = , , . . . , n – ) be not the impulsive points

such that

C
m∑

k=

Mk +
C(M + L)

�(q + )
‖�n‖q < . ()

By (i) and (), the system () has a mild solution u in [, t′
]. Again by (i) and (), if

() with u(t′
) = u(t′

) as initial value, then it has a mild solution u(t) in [t′
, t′

], which
satisfies u(t′

) = u(t′
). Thus, the mild solution of () continuously extends from [, t′

] to
[t′

, t′
]. Continuing such a process interval by interval from [, t′

] to [t′
n–, a], we obtain

the mild solution u ∈ PC(J , E) of the system (), which satisfies u(t) = ui(t) for t ∈ [t′
i–, t′

i],
i = , , . . . , n.

Finally, since u = Tu = Q(u, u), v ≤ u ≤ w, by the mixed monotonicity of Q, we have

v = Q(v, w) ≤ Q(u, u) ≤ Q(w, v) = w.

Similarly, v ≤ u ≤ w. In general, vn ≤ u ≤ wn. Letting n → ∞, we get u ≤ u ≤ u. There-
fore, the system () has at least one mild solution between u and u. �

Remark  Analytic semigroup and differentiable semigroup are equicontinuous semi-
group []. In applications of partial differential equations, such as parabolic and strongly
damped wave equations, the corresponding solution semigroup is an analytic semigroup.
So Theorem  has extensive applicability.

Now, we discuss the uniqueness of mild solution for the system () in [v, w]. If we
further assume that the following conditions hold:
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(H) there exist M >  and L >  such that

f (t, x, y) – f (t, x, y) ≤ M(x – x) – L(y – y),

for any t ∈ J , v(t) ≤ x ≤ x ≤ w(t) and v(t) ≤ y ≤ y ≤ w(t);
(H) g : [v, w] × [v, w] → E is continuous and satisfies

g(x, y) ≤ g(x, y),

for any v ≤ x ≤ x ≤ w and v ≤ y ≤ y ≤ w; particularly, for any x, x ∈ [v, w]
with x ≤ x, one has

g(x, x) – g(x, x) = ,

then we obtain the following existence and uniqueness theorem.

Theorem  Let –A generate a positive C-semigroup S(t) (t ≥ ) in E. Assume that the
system () has coupled lower and upper L-quasi-solutions v and w with v ≤ w. If the
conditions (H), (H), (H), (H), and (H) hold, the system () has a unique mild solution
between v and w, which can be obtained by a monotone iterative procedure starting from
v or w.

Proof It is clear that (H) implies (H). we first prove that (H) and (H) imply (H). For
any t ∈ J , let {xn} ⊂ [v(t), w(t)] be an increasing sequence and {yn} ⊂ [v(t), w(t)] be a
decreasing sequence. For m, n ∈N with m > n and t ∈ J , by (H) and (H), we have

 ≤ f (t, xm, ym) – f (t, xn, yn) + M(xm – xn) – L(ym – yn)

≤ (M + M)(xm – xn) – (L + L)(ym – yn).

Combining this with the normality of cone K , we have

∥
∥f (t, xm, ym) – f (t, xn, yn)

∥
∥

≤ N
∥
∥(M + M)(xm – xn) – (L + L)(ym – yn)

∥
∥ + M‖xm – xn‖ + L‖ym – yn‖

≤ [
N(M + M) + M

]‖xm – xn‖ +
[
N(L + L) + L

]‖ym – yn‖.

From this inequality and the definition of the measure of noncompactness, it follows that

α
({

f (t, xn, yn)
}) ≤ [

N(M + M) + M
]
α
({xn}

)
+

[
N(L + L) + L

]
α
({yn}

)

≤ L


(
α
({xn}

)
+ α

({yn}
)) ≤ Lα

({xn} + {yn}
)
,

where L
 = N(M + M) + M + N(L + L) + L. Similarly, we can prove that there exists a

constant L >  such that

αE
({

f (t, yn, xn)
}) ≤ LαE

({xn} + {yn}
)
.
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Thus, for any t ∈ J , increasing monotone sequence {xn} ⊂ [v(t), w(t)] and decreasing
monotone sequence {yn} ⊂ [v(t), w(t)], we have

αE
({

f (t, xn, yn) + f (t, yn, xn)
}) ≤ αE

({
f (t, xn, yn)

})
+ αE

({
f (t, yn, xn)

})

≤ (L + L)αE
({xn} + {yn}

)
.

It implies that the condition (H) holds with L = L + L. Therefore, by Theorem , the
system () has minimal and maximal coupled mild L-quasi-solutions u and u between v

and w. By the proof of Theorem , we know that () and () are valid. Going from J to
Jm interval by interval, we show that u(t) = u(t) on every Jk .

For t ∈ J, we have

 ≤ u(t) – u(t) = Q(u, u)(t) – Q(u, u)(t)

= U(t)
[
u + g(u, u)

]

+
∫ t


(t – s)q–V(t – s)

[
f
(
s, u(s), u(s)

)
+ (M + L)u(s) – Lu(s)

]
ds

– U(t)
[
u + g(u, u)

]

–
∫ t


(t – s)q–V(t – s)

[
f
(
s, u(s), u(s)

)
+ (M + L)u(s) – Lu(s)

]
ds

= U(t)
[
g(u, u) – g(u, u)

]

+
∫ t


(t – s)q–V(t – s)

[
f
(
s, u(s), u(s)

)
– f

(
s, u(s), u(s)

)

+ (M + L)
(
u(s) – u(s)

)]
ds

≤ (M + L + M + L)
∫ t


(t – s)q–V(t – s)

(
u(s) – u(s)

)
ds.

From this and the normality of cone K , it follows that

∥
∥u(t) – u(t)

∥
∥ ≤ NC(M + L + M + L)

�(q)

∫ t


(t – s)q–∥∥u(s) – u(s)

∥
∥ds.

By Lemma , we obtain u(t) ≡ u(t) on J. Particularly, u(t) = u(t), so, I(u(t), u(t)) =
I(u(t), u(t)).

For t ∈ J, we can prove that

∥
∥u(t) – u(t)

∥
∥ ≤ NC(M + L + M + L)

�(q)

∫ t


(t – s)q–∥∥u(s) – u(s)

∥
∥ds

≤ NC(M + L + M + L)
�(q)

∫ t

t

(t – s)q–∥∥u(s) – u(s)
∥
∥ds.

Again by Lemma , we obtain that u(t) ≡ u(t) on J, and I(u(t), u(t)) = I(u(t), u(t)).
Continuing such a process interval by interval up to Jm, we see that u(t) ≡ u(t) over the

whole J . Hence, ũ := u = u is the unique mild solution of the system () on [v, w], which
can be obtained by the monotone iterative procedure starting from v or w. �
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4 An example
Consider the impulsive fractional differential equation with nonlocal conditions of the
form

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Dq
t u(t, y) + ∂

∂y u(t, y)
= f (t, y, u(t, y), u(t, y)), q ∈ (, ), (t, y) ∈ [, ] × [,π ], t �= tk ,

�u|t=tk = Ik(u(tk , y), u(tk , y)), y ∈ [,π ], k = , , . . . , m,
u(t, ) = u(t,π ) = , t ∈ [, ],
u(, y) = u(y) + g(u(t, y), u(t, y)), (t, y) ∈ [, ] × (,π ).

()

Let E = L([,π ]). Define Au = ∂

∂y u for u ∈ D(A), where

D(A) =
{

x ∈ E :
∂x
∂y

,
∂x
∂y ∈ E, x() = x(π ) = 

}

.

Then –A generates a positive C-semigroup S(t) (t ≥ ) in E, which is equicontinuous and
C = .

Let  ≤ w ∈ PC(J , E) satisfy the following conditions:

(P)  ≤ Ik(, w(tk , y)) and Ik(w(tk , y), ) ≤ �w|t=tk , k = , , . . . , m, y ∈ [,π ];
(P)  ≤ u(y) + g(, w(t, y)) and u(y) + g(w(t, y), ) ≤ w(, y), (t, y) ∈ [, ] × (,π );
(P) Lw(t, y) ≤ f (t, y, , w(t, y)) and f (t, y, w(t, y), ) ≤ Dq

t w(t, y) + (A – LI)w(t, y), (t, y) ∈
[, ] × [,π ], t �= tk .

Then  and w are coupled lower and upper L-quasi-solutions of the systems ().
Therefore, if the functions f , g , and Ik (k = , , . . . , m) satisfy the conditions (H)-(H)

on the interval [, w], the system () has minimal and maximal coupled mild L-quasi-
solutions between  and w.

If the functions f , g , and Ik (k = , , . . . , m) satisfy the conditions (H)-(H) and (H)-(H)
on the interval [, w], the system () has at least mild L-quasi-solutions on [, w].

If the functions f , g , and Ik (k = , , . . . , m) satisfy the conditions (H), (H), (H), (H),
and (H) on the interval [, w], the system () has a unique mild solution on [, w].
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