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Abstract
In this letter, we consider a stochastic generalized logistic equation with Markovian
switching. We obtain a critical value which has the property that if the critical value is
negative, then the trivial solution of the model is stochastically globally asymptotically
stable; if the critical value is positive, then the solution of the model is positive
recurrent and has a unique ergodic stationary distribution. We find out that the
critical value has a close relationship with the stationary probability distribution of the
Markov chain.
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1 Introduction
Logistic equation is one of the most important models in mathematical ecology. A classical
generalized logistic equation (or Gilpin-Ayala model []) can be described by the ordinary
differential equation

dN(t)/dt = N(t)
[
r – aNθ (t)

]
, ()

where N(t) stands for the population size; r, a and θ are positive constants, r represents the
growth rate and r/a is the carrying capacity. It is well known that the positive equilibrium
state N∗ = (r/a)/θ is globally asymptotically stable (see, e.g., []).

However, the natural growth of species is often subject to various types of environmental
noise [–]. It is therefore useful to study how these noises affect the population dynamics.
To begin with, let us consider the white noise. Suppose that r and a are affected by white
noises, with

r → r + σḂ(t), a → a – σḂ(t),

it then follows from () that

dN(t) = N(t)
[
r – aNθ (t)

]
dt + σN(t) dB(t) + σN +θ (t) dB(t), ()

where {B(t)}t≥ and {B(t)}t≥ are two independent standard Brownian motions defined
on the complete probability space (�,F , P) with a filtration {F}t≥, σ 

i stands for the in-
tensity of the white noise, i = , .
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Let us now take another type of environmental noise into account. It has been noted that
[] population models may experience random changes in their structure and parameters
by factors such as nutrition or as rain falls. These random changes cannot be described by
the white noise [, ]. Several authors have suggested that [–] one can use β(t) to model
these random changes, where β(t) is a right-continuous Markov chain taking values in a
finite-state space S = {, . . . , m}. Then model () becomes

dN(t) = N(t)
[
r
(
β(t)

)
– a

(
β(t)

)
Nθ (β(t))(t)

]
dt

+σ
(
β(t)

)
N(t) dB(t) + σ

(
β(t)

)
N +θ (β(t))(t) dB(t). ()

In regime i ∈ S, the system obeys

dN(t) = N(t)
[
r(i) – a(i)Nθ (i)(t)

]
dt + σ(i)N(t) dB(t) + σ(i)N +θ (i)(t) dB(t). ()

System () is operated as follows. Suppose that β() = i ∈ S, then () satisfies

dN(t) = N(t)
[
r(i) – a(i)Nθ (i)(t)

]
dt + σ(i)N(t) dB(t) + σ(i)N +θ (i)(t) dB(t)

for a random amount of time until β(t) jumps to another state, say, i ∈ S. Then system ()
obeys

dN(t) = N(t)
[
r(i) – a(i)Nθ (i)(t)

]
dt + σ(i)N(t) dB(t) + σ(i)N +θ (i)(t) dB(t)

until β(t) jumps to a new state again. Therefore, system () can be regarded as a hybrid
system switching between the m subsystems () from one to another according to the law
of β(t).

In recent years, population systems under Markovian switching have received much
attention. Some nice and interesting properties, for example, stochastic boundedness, ex-
tinction, stochastic permanence, positive recurrent, invariant distribution, have been ob-
tained (see, e.g., [–]). Especially, Takeuchi et al. [] considered a two-dimensional
autonomous Lotka-Volterra predator-prey model with Markovian switching and revealed
a significant effect of Markovian switching on the population dynamics: the subsystems
of the system develop periodically, but switching makes the system become neither per-
manent nor dissipative.

In the study of deterministic population models, people always seek for the equilibria
and then investigate their stability. For example, model () has two equilibria: the triv-
ial equilibrium state  and the positive equilibrium state N∗ = (r/a)/θ . If r < , then  is
globally asymptotically stable; if r > , then N∗ is globally asymptotically stable. Note that
system () does not have positive equilibrium state, then its solution will not tend to a
positive constant. Thus an interesting question arises naturally: whether model () still
has some structured stability? In this letter, we shall investigate this issue. In Section , we
show that there is a critical value which has a close relationship with the stationary proba-
bility distribution of the Markov chain β(t). If the critical value is negative, then the trivial
equilibrium state of system () is stochastically globally asymptotically stable; if the critical
value is positive, then the solution of system () is positive recurrent and has a unique er-
godic stationary distribution. We shall give some numerical simulations and conclusions
in the last section.
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2 Main results
Let the Markov chain β(t) be generated by Q = (qij)m×m, that is,

P
{
β(t + �t) = j|β(t) = i

}
=

{
qij�t + o(�t) if j �= i,
 + qii�t + o(�t) if j = i,

where qij ≥  stands for the transition rate from i to j if j �= i, and qii = –
∑m

j=,j �=i qij for
i = , , . . . , m. As standing hypotheses we assume in this paper that:

(A) β(t) is independent of the Brownian motion.
(A) β(t) is irreducible, which means that system () can switch from any regime to any

other regime. Hence β(t) has a unique stationary distribution π = (π, . . . ,πm)
which can be obtained by solving the equation πQ =  subject to

∑m
i= πi =  and

πi > , i = , . . . , m.
Moreover, we assume that mini∈S a(i) >  and  < mini∈S θ (i) ≤ maxi∈S θ (i) ≤ .

To begin with, let us recall some important definitions and lemmas. Consider the fol-
lowing stochastic differential equation

dX(t) = f
(
X(t),β(t)

)
dt + g

(
X(t),β(t)

)
dB(t), ()

with initial data (X,β()), where f (, i) = g(, i) ≡ ,

f : Rn × S → Rn, g : Rn × S → Rn×m

and {B(t)}t≥ is an m-dimensional Brownian motion. For every i ∈ S, and for any twice
continuously differentiable function V (x, i), define LV (x, i) as follows:

LV (x, i) = Vx(x, i)f (x, i) + . trace
[
gT (x, i)Vxxg(x, i)

]
+

∑

j �=i,j∈S

qij
(
V (x, j) – V (x, i)

)
.

Definition  ([], p.)
(I) The trivial solution of Eq. () is said to be stable in probability if for ε ∈ (, ) and

ς > , there exists δ >  such that if (X,β()) ∈ Sδ × S, where Sδ = {x ∈ Rn : |x| < δ},
then

P
{∣∣X

(
t; X,β()

)∣∣ < ς for all t ≥ 
} ≥  – ε.

(II) The trivial solution of Eq. () is said to be stochastically asymptotically stable if it is
stable in probability and, moreover, for every ε ∈ (, ), there exists δ >  such that
if (X,β()) ∈ Sδ × S, then

P
{

lim
t→+∞ X

(
t; X,β()

)
= 

}
≥  – ε.

(III) The trivial solution of Eq. () is said to be stochastically asymptotically stable in the
large or stochastically globally asymptotically stable (SGAS) if it is stochastically
asymptotically stable and, moreover,

P
{

lim
t→+∞ X

(
t; X,β()

)
= 

}
= , ∀(

X,β()
) ∈ Rn × S.
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Lemma  ([], Theorem .) If there are functions V ∈ C(Rn ×S; (, +∞)), ρ,ρ ∈K∞,
ρ ∈K such that

ρ
(|x|) ≤ V (x, i) ≤ ρ

(|x|), LV (x, i) ≤ –ρ(x) for any (x, i) ∈ R × S,

where K represents the family of all continuous increasing functions κ : (, +∞) → (, +∞)
such that κ() =  while κ(x) >  for x > , K∞ stands for the family of all functions κ ∈ K
with property limx→+∞ κ(x) = +∞, then the trivial solution of Eq. () is SGAS.

Definition  ([]) An Rn × S-valued process Y (t; u) = (X(t),β(t)), satisfying (X,β()) =
u, is said to be recurrent with respect to some bounded set U ⊂ Rn × S if

P(τu < ∞) =  for any u /∈ U ,

where τu = inf{t > , Y (t; u) ∈ U}. If

E(τu) < ∞ for any u /∈ U ,

then Y (t; u) is said to be positive recurrent with respect to U .

Lemma  ([], Theorem .) A necessary and sufficient condition for positive recurrence
of Y (t; u) with respect to a domain U = D × {i} ⊂ Rn × S is that for each i ∈ S, there exists a
nonnegative function V (x, i): Dc → R such that V (x, i) is twice continuously differentiable
and that for some � > ,

LV (x, i) ≤ –�, (x, i) ∈ Dc × S,

where Dc is the complement of D.

Lemma  ([], Theorems . and .) The positive recurrent process Y (t; u) = (X(t),β(t))
has a unique stationary distribution ψ which is ergodic, that is, if h is a function integrable
with respect to the measure ψ , then

P

(

lim
T→+∞ T–

∫ T


h
(
X(t),β(t)

)
dt =

m∑

i=

∫

Rn
h(x, i) dψ(x, i)

)

= .

Lemma  ([], Lemma .) Consider the following linear system of equations:

Qc = η, ()

where c,η ∈ Rm. Suppose that Q = (qij) is irreducible, then Eq. () has a solution if and only
if πη = .

Lemma  For any initial value (N(),β()) ∈ (, +∞)×S, there is a unique global positive
solution N(t) to model () almost surely.

Proof The proof is a slight modification of that in [] by applying Itô’s formula to
√

x –
 – . ln x, x >  and hence is omitted. �
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Now we are in the position to give the main result of this letter.

Theorem  Consider system () with initial data (N(),β()) ∈ (, +∞) × S.
(i) If b̄ < , where b̄ =

∑m
i= πibi, bi = r(i) – .σ 

 (i), then the trivial solution is SGAS.
(ii) If b̄ > , then the solution N(t) is positive recurrent with respect to the domain

U = (, l) × S and has a unique ergodic asymptotically invariant distribution
(UEAID), where l is a positive number to be specified later.

Proof Let b = (b, . . . , bm)T . Note that Q = (qij) is irreducible, and π (–b + (, . . . , )T ×
∑m

i= πibi) = , then by Lemma  the linear equation

Qc = –b + (, . . . , )T
m∑

i=

πibi ()

has a solution. Let (c, c, . . . , cm) be a solution of Eq. (), it then follows from () that for
i = , . . . , m,

m∑

j=,j �=i

qij(cj – ci) =
m∑

j=

qijcj = –bi +
m∑

i=

πibi = –bi + b̄. ()

Now let us prove (i). Define V(N , i) = (α + ci)N /α , N > , where α >  is sufficiently large
satisfying α + mini∈S ci > . Clearly, (α + mini∈S)N /α ≤ V(N , i) ≤ (α + maxi∈S)N /α . Com-
pute that

LV(N , i)

=

α

(α + ci)N /α(
r(i) – a(i)Nθ (i)) +

σ 
 (i)
α

(

α

– 
)

(α + ci)N /α

+
σ 

 (i)
α

(

α

– 
)

(α + ci)N /α+θ (i) + N /α
m∑

j=,j �=i

qij(cj – ci)

=

α

(α + ci)N /α
[(

r(i) – a(i)Nθ (i)) +
σ 

 (i)


(

α

– 
)

+
σ 

 (i)


(

α

– 
)

Nθ (i)
]

+

α

(α + ci)N /α
(

 –
ci

α + ci

) m∑

j=,j �=i

qij(cj – ci)

=

α

(α + ci)N /α

[(

r(i) –
σ 

 (i)


+
m∑

j=,j �=i

qij(cj – ci)

)

– a(i)Nθ (i) +
σ 

 (i)
α

+
σ 

 (i)


(

α

– 
)

Nθ (i) –
ci

α + ci

m∑

j=,j �=i

qij(cj – ci)

]

=

α

(α + ci)N /α
[

b̄ – a(i)Nθ (i) +
σ 

 (i)
α

+
σ 

 (i)


(

α

– 
)

Nθ (i) –
ci

α + ci
(b̄ – bi)

]

≤ 
α

(α + ci)N /α
[

b̄ +
σ 

 (i)
α

–
ci

α + ci
(b̄ – bi)

]

=: N /αF(α, i), ()



Liu and Yu Advances in Difference Equations  (2015) 2015:326 Page 6 of 9

where

F(α, i) =

α

(α + ci)
[

b̄ +
σ 

 (i)
α

–
ci

α + ci
(b̄ – bi)

]
.

In the proof of (), the fourth identity follows from () and the inequality follows from
mini∈s a(i) >  and α > . Since b̄ < , we can choose a sufficiently large α >  such that

α + min
i∈S

ci > , F̄ := max
i∈S

F(α, i) < .

Hence LV (N , i) ≤ F̄N /α . Then the desired assertion (i) follows from Lemma .
We are now in the position to prove (ii). Define V(N , i) = ( –γ ci)N–γ + N , N > , where

γ >  is sufficiently small satisfying  – γ maxi∈S ci > . Therefore

LV(N , i)

= –γ ( – γ ci)N–γ
(
r(i) – a(i)Nθ (i)) +

σ 
 (i)


γ (γ + )( – γ ci)N–γ

+
σ 

 (i)


γ (γ + )( – γ ci)N–γ +θ (i) – γ N–γ

m∑

j=,j �=i

qij(cj – ci) + N
(
r(i) – a(i)Nθ (i))

= –γ ( – γ ci)N–γ

(
r(i) –



σ 

 (i) –
γ


σ 

 (i)
)

– γ ( – γ ci)N–γ

(
 +

γ ci

 – γ ci

) m∑

j=,j �=i

qij(cj – ci)

+ γ ( – γ ci)Nθ (i)–γ

(
a(i) +

σ 
 (i)


(γ + )Nθ (i)
)

+ N
(
r(i) – a(i)Nθ (i))

= –γ ( – γ ci)N–γ

(

b(i) +
m∑

j=,j �=i

qij(cj – ci) –
γ


σ 

 (i) +
γ ci

 – γ ci

m∑

j=,j �=i

qij(cj – ci)

)

+ γ ( – γ ci)Nθ (i)–γ

(
a(i) +

σ 
 (i)


(γ + )Nθ (i)
)

+ N
(
r(i) – a(i)Nθ (i))

= –γ ( – γ ci)N–γ

(
b̄ –

γ


σ 

 (i) +
γ ci

 – γ ci
(b̄ – bi)

)

+ γ ( – γ ci)Nθ (i)–γ

(
a(i) +

σ 
 (i)


(γ + )Nθ (i)
)

+ N
(
r(i) – a(i)Nθ (i)).

Note that b̄ > , we can let γ >  be sufficiently small satisfying

 – γ max
i∈S

ci > , b̄ –
γ


max

i∈S
σ 

 (i) +
γ

 – γ ci
min
i∈S

{
ci(b̄ – bi)

}
> . ()

Since mini∈S θ (i) > , then

lim
N→

LV(N , i)
–γ ( – γ ci)N–γ (b̄ – γ

 σ 
 (i) + γ ci

–γ ci
(b̄ – bi))

= . ()
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On the other hand, it follows from maxi∈S θ (i) ≤  that θ (i) ≤ θ (i) + . Hence

lim
N→+∞

LV(N , i)
–a(i)Nθ (i)+ = . ()

By (), we can see that there is N <  such that if N < N, then LV(N , i) ≤ –. Similarly,
by (), there is N >  such that if N > N, then LV(N , i) ≤ –. Let l = max{/N, N}, then
l > . Let D = (/l, l), then we have

LV (N , i) ≤ – for all (N , i) ∈ Dc × S.

Then the required assertion (ii) follows from Lemmas  and . �

To finish this section, let us consider the subsystem () of system ().

Corollary  For subsystem (),
(i) if bi < , then its trivial solution is SGAS;

(ii) if bi > , then the solution of subsystem () is positive recurrent with respect to the
domain (, l) and has a UEAID.

3 Conclusions and numerical simulations
By Corollary , if bi <  for some i ∈ S, then the trivial solution of subsystem () is SGAS.
Hence Theorem  means that if the trivial solution of every individual subsystem of system
() is SGAS, then, as the result of Markovian switching, the trivial solution of system ()
is still SGAS. On the other hand, if bi >  for some i ∈ S, then the solution of subsystem
() is positive recurrent and has a UEAID. Thus Theorem  shows that if the solution of
every subsystem of system () is positive recurrent and has a UEAID, then, as the result
of Markovian switching, the solution of system () is still positive recurrent and has a
UEAID. However, Theorem  indicates a much more interesting result: If the solution of
some subsystems in system () is positive recurrent and has a UEAID while the trivial
solution of some subsystems is SGAS, then, as the results of Markovian switching, the
solution of system () may be positive recurrent and has a UEAID or tends to its trivial
solution, depending on the sign of b̄ =

∑m
i= πibi. If b̄ > , then the solution of system ()

is positive recurrent and has a UEAID; if b̄ < , then the trivial solution of system () is
SGAS.

Now let us illustrate these results through some numerical figures. Consider the follow-
ing stochastic logistic system under Markovian switching:

dN(t) = N(t)
[
r
(
β(t)

)
– a

(
β(t)

)
N(t)

]
dt

+ σ
(
β(t)

)
N(t) dB(t) + σ

(
β(t)

)
N(t) dB(t), ()

where β(t) is a Markov chain on the state space S = {, }, mini∈S a(i) > . As pointed out
in Section , system () can be regarded as the result of the following two subsystems
switching from one to the other according to the movement of β(t):

dN(t) = N(t)
[
r() – a()N(t)

]
dt + σ()N(t) dB(t) + σ()N(t) dB(t), ()
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(a) (b)

(c) (d)

Figure 1 Characteristics of (13) for r(1) = 0.4, a(1) = 0.2, σ1(1) = 0.96, σ2(1) = 1, r(2) = 0.4, a(2) = 0.32,
σ1(2) = 0.8, σ2(2) = 0.9, initial value N(0) = 0.2. Figure 1(a) is the solution of Eq. (14) using the Milstein
method mentioned in [24]. This figure shows that the trivial solution of subsystem (14) is SGAS. Figure 1(b) is
the density of solution of Eq. (15) using the Monte Carlo simulation method mentioned in [25]. Figure 1(c) is
the solution of Eq. (13) with q12 = 0.3 and q21 = 0.7. These figures demonstrate that the trivial solution of
system (13) is SGAS. Figure 1(d) is the density of solution of Eq. (13) with q12 = q21 = 0.5.

where r() = ., a() = ., σ() = ., σ() = , and

dN(t) = N(t)
[
r() – a()N(t)

]
dt + σ()N(t) dB(t) + σ()N(t) dB(t), ()

where r() = ., a() = ., σ() = ., σ() = .. Clearly, b = r() – .σ 
 () = –. <

 and b = . > . Then, by Corollary , the trivial solution of subsystem () is SGAS
and the solution of subsystem () is positive recurrent and has a UEAID. Figure (a) shows
that the trivial solution of subsystem () is SGAS and Figure (b) is the density of solution
of (). Now let us consider two cases to see the effect of Markovian switching on the
behavior of system ().

Case : To begin with, we let the generator of β(t) be Q =
( –. .

. –.

)
. It is easy to see that

β(t) has a unique stationary distribution π = (., .). Compute that πb + πb < . By
virtue of Theorem , as the result of Markovian switching, the trivial solution of system
() is SGAS, see Figure (c).

Case : Next we choose Q =
( –. .

. –.

)
. Hence π = (π,π) = (., .) and πb +πb > .

It then follows from Theorem  that, as the result of Markovian switching, the solution of
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system () is positive recurrent and has a UEAID, see Figure (d) which is the density of
solution of ().
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