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Abstract
In this paper, the parabolic evolution equation u′(t) + A(t)u(t) = f (t) in a reflexive real
Banach space is considered. Assuming strong monotonicity, pseudo almost
automorphy and other appropriate conditions of the operators A(t) and Stepanov-like
pseudo almost automorphy of the forced term f (t), we obtain the Stepanov-like
pseudo almost automorphy of the solution to the evolution equation by using the
almost automorphic component equation method. This paper extends a known
result in the case where A(·) and f are almost automorphic in certain senses. Finally,
a concrete example is given to illustrate our results.
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1 Introduction
The concept of almost automorphy is a generalization of almost periodicity. It has been
introduced by Bochner in relation to some aspects of differential geometry [–]. Since
then this notion has been generalized in different directions. For example, Veech [] has
studied almost automorphic functions on groups, Zaki [] provided a clear presentation
of the study of (weakly) almost automorphic functions in a Banach space. N’Guérékata
introduce asymptotically almost automorphic functions and presented these topics before
 in his monographs [, ].

Recently, more general types of almost automorphy are developed (see Table  and the
references cited therein). For clarity, the relationship between the various almost automor-
phy is depicted in Figure . It is worth mentioning that Zheng and Ding [] have showed
the completeness of WPAA function space, which is important progress in this area.

With the development of the theory of almost automorphy, its applications have at-
tracted a great deal of attention of many mathematicians due to their significance and
applications in physics, mathematical biology, control theory, and so on. The existence
and uniqueness of (pseudo) almost automorphic type solution has been one of the most
attracting topics in the context of various kinds of abstract differential equations [, ,
], functional differential equations [, ], integro-differential equations [, ] and
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Table 1 Recent development of almost automorphy

Function Original reference

Pseudo almost automorphic (PAA) Xiao et al. [9, 10]
Stepanov-like almost automorphic (SpAA) N’Guérékata and Pankov [11]
Weighted pseudo almost automorphic (WPAA) Blot et al. [12]
Stepanov-like pseudo almost automorphic (SpPAA) Diagana [13]
Weighted Stepanov-like pseudo almost automorphic (SpWPAA) Xia and Fan [14]

Figure 1 Relationship between recently
developed almost automorphy, where
‘→’ denotes subset relation ‘⊂’, AA is short for
almost automorphic functions.

fractional differential equations [–]. For more on these studies, we refer the reader to
the references cited therein.

The abstract parabolic evolution equation can be applied to many self-organized mod-
els in the real world, such as semiconductor model, forest kinematic model, chemotaxis
model, Lotka-Volterra competition model, and so on. The study of fixed point, almost
periodic, and almost automorphic type solution of a parabolic evolution has practical sig-
nificance. Let X be a separable reflexive embedded real Banach space. In this paper, we
consider a Stepanov-like pseudo almost automorphic solution to a parabolic evolution
equation of the form

u′(t) + A(t)u(t) = f (t), t ∈R, ()

where the operator A(t) : X → X∗ is strongly monotone, semicontinuous, A(·) is operator
valued pseudo almost automorphic and the forced term f ∈ Lp

loc(R; X∗) ( ≤ p < ∞) is
Stepanov-like pseudo almost automorphic.

Let B(·) and g(·) be the almost automorphic components of A(·) and f (·), respectively.
We call

v′(t) + B(t)v(t) = g(t), t ∈R ()

the almost automorphic component equation of (). N’Guérékata and Pankov [] have
studied the almost automorphic solution to (). Since Stepanov-like pseudo almost auto-
morphy is more general than almost automorphy (see Figure ), this paper is an extension
of their results.

To show the Stepanov-like pseudo almost automorphy of a bounded solution u to (),
we link up () with (). More explicitly, we first show that B(t) also satisfies the conditions
assumed on A(t) when A(·) is uniformly continuous. Thus () admits an almost automor-
phic solution v by N’Guérékata and Pankov’s results in []. Second, we subtract () from
() and show that u – v is a Stepanov-like ergodic perturbation. We call this method the
almost automorphic component equation method. As auxiliary tools for this method, we
explore some properties of uniformly continuous (Stepanov-like) pseudo almost automor-
phic functions. These properties also play a role when we reduce the solution of () from
Stepanov-like pseudo almost automorphy to pseudo almost automorphy.
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This paper is organized as follows. In Section , we present the preliminaries on almost
automorphic type functions as well as some examples. We explore in Section  some prop-
erties of uniformly continuous (Stepanov-like) pseudo almost automorphic functions,
which are auxiliary for our main results in Section . Finally, an example is given to il-
lustrate our results.

2 Almost automorphic type functions
Let X be a real Banach space with the norm ‖ · ‖. C(R, X) denotes the space of all con-
tinuous functions from R into X, and BC(R; X) consists of the bounded ones in C(R, X).
Equipped with the sup-norm ‖x‖∞ = supt∈R ‖x(t)‖, BC(R; X) is a Banach space. Cu(R; X)
denotes the set of all uniformly continuous functions in C(R; X). Lp

loc(R; X) = {f : R →
X|f is measurable and

∫
K ‖f (t)‖p dt < +∞ for each compact subset K ⊂R}.

2.1 (Pseudo) almost automorphic functions
Definition . [] A function f ∈ C(R, X), is said to be almost automorphic in Bochner’s
sense if for every sequence of real numbers {s′

n}, there exists a subsequence {sn} such that

g(t) := lim
n→∞ f (t + sn)

is well defined for each t ∈R, and

lim
n→∞ g(t – sn) = f (t)

for each t ∈ R. Denote by AA(X) the set of all such (Bochner) almost automorphic func-
tions.

If the convergences in this definition are uniform on R, then f is almost periodic in the
classical Bochner sense.

Theorem . ([], Theorem ..)
(i) If f ∈ AA(X), then the range Rf := {f (t) : t ∈R} is relatively compact in X, thus f is

bounded;
(ii) (translation invariance) If f ∈ AA(X), then ταf ∈ AA(X) where ταf (·) = f (· – α);

(iii) Equipped with the sup-norm ‖ · ‖∞, AA(X) is a Banach space.

Remark . The function g in Definition . is measurable but not necessary continuous.
However, if the convergences above are uniformly on compact intervals, i.e. in the Fréchet
space C(R, X), then g is continuous, which implies that f is uniformly continuous on R

(cf. [], Theorem .). In the sequel, we will denote by AAu(X) the closed subspace of all
functions f ∈ AA(X) with g ∈ C(R, X).

Example . The function

t 
→ cos


 – sin t – sinπ t

is almost automorphic but not in AAu(R), since it is not uniformly continuous.
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Definition . [] A sequence x ∈ l∞(X) is said to be almost automorphic if for any se-
quence of integers {s′

n}, there exists a subsequence {sn} such that

lim
n→∞ lim

m→∞ xp+sm–sn = xp

for each p ∈ Z.

Example . ([], p.) Let θ be an irrational real number. For n ∈ Z, cos πnθ is never
zero, and one can define

f (n) = sgn cos πnθ =

⎧
⎨

⎩

+, cos πnθ > ;

–, cos πnθ < .

The sequence {fn} is almost automorphic but not almost periodic.
Define the function

f (t) = f (n) + (t – n)
(
f (n + ) – f (n)

)
, ∀t ∈ [n, n + ].

Then the function f ∈ AAu(R).

Definition . [] A function φ ∈ BC(R; X) is named an ergodic perturbation if

lim
T→+∞


T

∫ T

–T

∥
∥φ(t)

∥
∥dt = .

We denote the set of all such functions by PAP(X).

Definition . [, ] A function f ∈ C(R; X) is called pseudo almost automorphic if it
has the decomposition

f = g + φ,

where g ∈ AA(X) and φ ∈ PAP(X). Denote by PAA(X) the set of all such pseudo almost
automorphic functions. The functions g and φ are called the almost automorphic compo-
nent and ergodic perturbation of f , respectively.

Obviously, both PAP(X) and PAA(X) are translation invariant. The following theorem
was given by Basit, Zhang and Xiao et al. [, ] independently.

Theorem .
(i) PAA(X) = AA(X) ⊕ PAP(X), i.e. the decomposition in Definition . is unique.

(ii) Let f ∈ PAA(X) and g be its almost automorphic component. Then
{g(t) : t ∈R} ⊂ {f (t) : t ∈ R}.

(iii) PAA(X) is a Banach space equipped with the sup-norm ‖ · ‖∞.

Example . Let α ∈ [,∞) and γ ∈ (,∞). It is not difficult to show that

f (t) = cos


 – sin t – sinπ t
+

e–γ |t|

( + |t|)α , t ∈R

is a pseudo almost automorphic function.
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2.2 Stepanov-like (pseudo) almost automorphic functions
This subsection is devoted to (pseudo) almost automorphic functions in the sense of
Stepanov. We let  ≤ p < ∞ in this subsection.

Definition . [] The Bochner transform f b(t, s), t ∈ R, s ∈ [, ], of a function
f : R→ X, is defined by f b(t, s) = f (t + s).

Definition . [] The space BSp(X) of Stepanov bounded functions, with exponent p,
consists of all measurable functions f : R → X such that f b ∈ L∞(R; Lp(, ; X)). This is a
Banach space with the norm:

‖f ‖Sp =
∥
∥f b∥∥

L∞(R;Lp(,;X)) = sup
t∈R

(∫ t+

t

∥
∥f (τ )

∥
∥p dτ

)/p

.

Definition .
(i) [] The space ASp(X) of Stepanov-like almost automorphic functions consists of

all g ∈ BSp(X) such that gb ∈ AAu(Lp(, ; X)).
(ii) [] The space PAPp

(X) of Stepanov-like ergodic perturbation functions consists of
all φ ∈ BSp(X) such that φb ∈ PAP(Lp(, ; X)).

(iii) [] The space PAAp(X) of Stepanov-like pseudo almost automorphic functions
consists of all f ∈ BSp(X) such that f = g + φ where g ∈ ASp(X), φ ∈ PAPp

(X). We
still call g and φ the almost automorphic component and ergodic perturbation of f ,
respectively.

Theorem . ([], Theorem . and Remark ., and [], Theorems . and .)
(i) ASp(X) and PAAp(X) are Banach spaces with the norm ‖ · ‖Sp ;

(ii) ASp(X) ⊃ AA(X);
(iii) PAAp(X) ⊃ PAA(X).

Example .
(i) [] Let {fn} ⊂R be an almost automorphic sequence, and ε ∈ (, 

 ). Let f (t) = fn if
t ∈ (n – ε, n + ε) and f (t) =  otherwise. Then f ∈ ASp(R) for all p ∈ [,∞) but
f /∈ AA(R).

(ii) For a discontinuous Stepanov-like pseudo almost auromorphic function, we refer
the readers to [], Example ..

3 Uniformly continuous (Stepanov-like) pseudo almost automorphic functions
As the examples in Section  indicated, pseudo almost automorphic functions may be not
uniformly continuous and the ones in the sense of Stepanov may even be not continuous. It
is interesting to investigate these functions under uniform continuity condition. Moreover,
these results turn out to be useful in the next section when we deal with equation ().

Proposition . Let  ≤ p < ∞. Suppose f ∈ PAAp(X) ∩ Cu(R; X) and f = g + φ where
g ∈ ASp(X) and φ ∈ PAPp

(X). Then g and φ are also in Cu(R; X).

Proof Since f ∈ Cu(R; X), for any ε >  there exists a δ = δ(ε) >  such that

∥
∥f (x) – f (x)

∥
∥ < ε, ∀x, x ∈ R, |x – x| ≤ δ.
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For all t ∈ R, by Theorem .(ii), there exists a sequence {tn} ⊂ R such that f b(tn, ·) →
gb(t, ·) in Lp(, ; X) as n → ∞. Then there exists a subsequence {tnk } ⊂ {tn} such that
f b(tnk , ·) → gb(t, ·) almost everywhere in [, ] as k → ∞. So we can choose a finite δ-net
{s, s, . . . , sm} of the interval [, ] such that f b(tnk , sj) converges to gb(t, sj) as n → ∞ for
each j ∈ {, , . . . , m}. Let the integer K = K(ε) >  satisfy

∥
∥f b(tnk+p , sj) – f b(tnk , sj)

∥
∥ < ε, ∀k > K ,∀j = , , . . . , m,∀p ∈N.

For each s ∈ [, ], there exists a j(s) ∈ {, , . . . , m} such that |s – sj(s)| < δ. Then for any
k > K and p ∈N, we have

∥
∥f b(tnk+p , s) – f b(tnk , s)

∥
∥ ≤ ∥

∥f b(tnk+p , s) – f b(tnk+p , sj(s))
∥
∥

+
∥
∥f b(tnk+p , sj(s)) – f b(tnk , sj(s))

∥
∥

+
∥
∥f b(tnk , sj(s)) – f b(tnk , s)

∥
∥

< ε.

This implies that {f b(tnk , ·)} is a Cauchy sequence in C([, ]; X) under the sup-norm.
Obviously, it converges to gb(t, ·).

For arbitrary s, s ∈ [, ] satisfying |s – s| < δ, we have

∥
∥g(t + s) – g(t + s)

∥
∥ = lim

k→∞
∥
∥f (tnk + s) – f (tnk + s)

∥
∥ ≤ ε.

Since the δ is independent of t, it follows that g is uniformly continuous on R. Therefore,
so is φ = f – g . �

In view of Theorem .(iii) that PAAp(X) ⊃ PAA(X), we get the following result.

Corollary . Let f ∈ PAA(X)∩Cu(R; X) and f = g +φ where g ∈ AA(X) and φ ∈ PAP(X).
Then g and φ are also in Cu(R; X)

Under the uniform continuity condition, we find that a Stepanov-like pseudo almost
automorphic function space reduces to a pseudo almost automorphic function space.

Proposition . Let f ∈ Cu(R; X) and  ≤ p < ∞. Then the following statements hold:
(i) f ∈ ASp(X) implies that f ∈ AA(X);

(ii) f ∈ PAPp
(X) implies that f ∈ PAP(X);

(iii) f ∈ PAAp(X) implies that f ∈ PAA(X).

Proof Statement (i) is given by Ding et al. in [].
Now suppose f ∈ PAPp

(X) is uniformly continuous on R. Let fn(t) = n
∫ 

n
 f (t + s) ds for

each t ∈ R, n ∈ N. It is easy to see that fn ∈ BC(R; X) converges uniformly to f on R as
n → ∞. Since PAP(X) is a closed subspace of BC(R; X), we only need to show that fn ∈
PAP(X) for each n ∈ N.
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When  < p < ∞, let /p + /p′ = . For any T > , using the Hölder inequality, we have


T

∫ T

–T

∥
∥fn(t)

∥
∥dt ≤ n


T

∫ T

–T

∫ 
n



∥
∥f (t + s)

∥
∥ds dt

≤ n


T

∫ T

–T

(∫ 
n



∥
∥f (t + s)

∥
∥p ds

) 
p
(


n

) 
p′

dt

≤ n

p


T

∫ T

–T

(∫ 



∥
∥f (t + s)

∥
∥p ds

) 
p

dt.

It follows that

lim
T→+∞


T

∫ T

–T

∥
∥fn(t)

∥
∥dt ≤ n


p lim

T→+∞


T

∫ T

–T

(∫ 



∥
∥f (t + s)

∥
∥p ds

) 
p

dt = ,

i.e., fn ∈ PAP(X).
The argument for the case p =  is simpler in the same way. Thus, statement (ii) has been

proved.
Suppose f ∈ PAAp(X) ∩ Cu(R; X) and f = g + φ where g ∈ ASp(X) and φ ∈ PAPp

(X). It
follows from Proposition . that g and φ are both in Cu(R; X). Then statement (iii) is
implied by statements (i) and (ii). �

Definition . A sequence {xn} ⊂ X is named an ergodic perturbation sequence if

lim
N→∞


N + 

N∑

k=–N

‖xk‖ = .

Denote the set of all such sequences by PAP(Z; X).

Proposition . Let f ∈ PAP(X) ∩ Cu(R; X). Then for arbitrary l >  and a ∈ R, the pos-
itive sequence {fi : fi = maxs∈[a+il,a+(i+)l] ‖f (s)‖} is in PAP(Z;R).

Proof Since PAP(X) is translation invariant, we may assume a = .
Suppose the sequence {fi} is not in PAP(Z;R). Then there exist an ε >  and a strictly

increasing sequence {nk} ⊂N such that

lim
k→∞


nk + 

nk∑

i=–nk

fi > ε.

Because of the uniform continuity of f , there exists a positive δ (< l
 ) such that

∥
∥f (x) – f (x)

∥
∥ <

ε


, ∀x, x ∈R, |x – x| < δ.

For all i ∈ Z, let fi = ‖f (si)‖, si ∈ [il, (i + )l]. If si ≥ (i + 
 )l, then

∫ (i+)l

il

∥
∥f (t)

∥
∥dt ≥

∫ si

si–δ

∥
∥f (t)

∥
∥dt ≥

∫ si

si–δ

(

fi –
ε



)

dt =
(

fi –
ε



)

δ.

The case si ≤ (i + 
 )l can be treated analogously.
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For the mean of ‖f (·)‖ on [–nkl, nkl], we have


nkl

∫ nk l

–nk l

∥
∥f (t)

∥
∥dt =


nkl

nk –∑

i=–nk

∫ (i+)l

il

∥
∥f (t)

∥
∥dt ≥ 

nkl

nk –∑

i=–nk

(

fi –
ε



)

δ

=
δ

l
nk + 

nk


nk + 

nk∑

i=–nk

(

fi –
ε



)

–


nkl

(

fnk –
ε



)

δ.

Letting k → ∞ in the formula above, we get

lim
k→∞


nkl

∫ nk l

–nk l

∥
∥f (t)

∥
∥dt ≥ δ

l
lim

k→∞


nk + 

nk∑

i=–nk

(

fi –
ε



)

>
δε

l
> ,

which contradicts the fact that f ∈ PAP(X). �

4 Pseudo almost automorphic monotone evolution equation
Let X be a separable reflexive embedded real Banach space; this means that there is a
Hilbert space H such that the embedding X ⊂ H ⊂ X∗ is dense and continuous, and that
the bilinear form (y, x) (y ∈ X∗, x ∈ X) coincides with the scalar product on H whenever
x, y ∈ H. We shall use the following notation for the norms: ‖x‖ is an X-norm, ‖y‖∗ is an
X∗-norm, and |x|H is an H-norm.

In this section, we consider the equation

u′(t) + A(t)u(t) = f (t), ()

where A(t) : X → X∗ and f : R→ X∗.
For the existence and uniqueness of solution to () on the whole line R, we refer to the

following conditions:
(H) (compactness condition) the embedding X ⊂ H is compact;
(H) for each t ∈R the operator A(t) : X → X∗ is semicontinuous, i.e., the function

λ 
→ (A(t)(υ + λω), u) is continuous for each υ , ω, and u in X;
(H) (coercivity) there exist α >  and β ∈R such that

(
A(t)v, v

) ≥ α‖v‖p + β

for all t ∈R and v ∈ X, where p ≥  is a constant;
(H) (strong monotonicity) there exist two constants γ and q such that γ > ,

 ≤ q ≤ p, and

(
A(t)v – A(t)w, v – w

) ≥ γ |v – w|qH

for all t ∈R, v and w in X with p from (H);
(H) A(t) = ;
(H) there exist c > , c ∈R such that

∥
∥A(t)v

∥
∥∗ ≤ c‖v‖p– + c

for all t ∈R and v ∈ X with p from (H);
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(H) for any v ∈ X and any bounded set U ⊂ X the family of functions
{(A(·)u, v), u ∈ U} is equicontinuous on any compact subinterval of R.

Condition (H) is imposed for simplicity and estimates of solutions [], p., and we
will see it is not a necessary restriction of (); in the case we will consider (see Corollary .
below).

In what follows p′ stands for the conjugate exponent 
p + 

p′ = .

Suppose that f ∈ Lp′
loc(a, b; X∗). Then a function u : (a, b) → X is a (weak) solution to ()

if u ∈ Lp
loc(a, b; X) and the derivative u′ is to be understood in the weak sense []. From

() and (H), it follows that u′ ∈ Lp′
loc(a, b; X∗). Hence, u ∈ C((a, b); H) (see []). Moreover,

for any such function u:

∫ t

t

(
u′(t), u(t)

)
dt =



(∣
∣u(t)

∣
∣

H –
∣
∣u(t)

∣
∣

H

)
, [t, t] ⊂ [a, b].

The following lemma comes from [], Theorem .. and Remark ...

Lemma . Under the conditions (H)-(H), suppose that f ∈ BSp′ (X∗). Then () has a
unique solution u such that u ∈ BSp(X) ∩ BC(R; H). Moreover, there is a bound of the form

‖u‖∞ ≤ C
(‖f ‖Sp′

)
, ‖u‖Sp ≤ C

(‖f ‖Sp′
)
,

where C and C are increasing functions on [,∞) that depend only on constants involved
in (H).

In [], p., Pankov introduced the space Yp,X ( ≤ p < ∞) of all operators A from X
into X∗ satisfying inequality

‖Ax‖∗ ≤ a‖x‖p– + a,

where a >  and a ∈ R are constants depending on the operator. For any two operators
A and A in Yp,X, we define their sum by (A + A)x = Ax + Ax, ∀x ∈ X and the product
of a scalar λ ∈ R and A ∈ Yp,X by (λA)x = λAx, ∀x ∈ X. Obviously, Yp,X is a vector space.
For all A ∈ Yp,X, we define the norm

‖A‖Yp,X = sup
x∈X

‖Ax‖∗
 + ‖x‖p– .

It is easy to show that equipped with this norm, Yp,X is a Banach space.

Remark . If the function A(·) ∈ BC(R; Yp,X), then the conditions (H) and (H) will be
satisfied. In fact,

∥
∥A(t)v

∥
∥∗ ≤ ∥

∥A(t)
∥
∥

Yp,X

(‖v‖p– + 
)
.

So we can choose c = c = ‖A(·)‖∞ in the condition (H). Given v ∈ X, a bounded set
U ⊂ X and a compact subinterval J of R, for any ε > , there exists a δ >  such that

∥
∥A(t) – A(t)

∥
∥

Yp,X
< ε · 

( + supu∈U ‖u‖p–)‖v‖ + 
, ∀t, t ∈ J , |t – t| < δ.
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It follows that for all u ∈ U and t, t ∈ J , |t – t| < δ,

∣
∣
(
A(t)u, v

)
–

(
A(t)u, v

)∣
∣ ≤ ∥

∥A(t) – A(t)
∥
∥

Yp,X

(
 + ‖u‖p–)‖v‖ < ε.

Thus, the condition (H) is satisfied.

Theorem . (Main result) Under the conditions (H)-(H), suppose that A(·) ∈
PAA(Yp,X) ∩ Cu(R; Yp,X) and f ∈ PAAp′ (X∗). Then () has a unique solution u such
that u ∈ PAAq(H) ∩ BC(R; H) ∩ BSp(X) and its almost automorphic component is in
AAu(H) ∩ BSp(X).

Let A(·) = B(·)+�(·), f = g +φ, where B(·) and g are the almost automorphic components
of A(·) and f respectively. We call the equation

v′(t) + B(t)v(t) = g(t) ()

the almost automorphic component of ().
We claim that under the conditions of Theorem ., conditions (H)-(H) still hold

when A(t) is replaced with B(t).
Firstly, we show that B(t) is semicontinuous, i.e., for each t ∈ R and any v, w, and u

in X the function λ 
→ (B(t)(v + λw), u) is continuous. By Theorem .(ii), there exists a
sequence {tn} ⊂ R such that limn→∞ A(tn) = B(t) in Yp,X. Since A(tn) is semicontinuous,
the function λ 
→ (A(tn)(v + λw), u) is continuous for each n ∈N. We have

∣
∣
(
A(tn)(v + λw), u

)
–

(
B(t)(v + λw), u

)∣
∣

≤ ∥
∥A(tn)(v + λw) – B(t)(v + λw)

∥
∥∗‖u‖

≤ ∥
∥A(tn) – B(t)

∥
∥

Yp,X

(
 +

(‖v‖ + |λ|‖w‖)p–)‖u‖,

which implies that λ 
→ (A(tn)(v + λw), u) converges to λ 
→ (B(t)(v + λw), u) uniformly on
any compact interval of R. So λ 
→ (B(t)(v + λw), u) is continuous on R.

Using the t and {tn} in the paragraph above, we have

∥
∥A(tn)v – B(t)v

∥
∥∗ ≤ ∥

∥A(tn) – B(t)
∥
∥

Yp,X

(
 + ‖v‖p–) → , as n → ∞,∀v ∈ X.

Thus, for any v and w in X,

(
B(t)v – B(t)w, v – w

)

=
(
B(t)v – A(tn)v –

(
B(t)w – A(tn)w

)
, v – w

)
+

(
A(tn)v – A(tn)w, v – w

)

≥ (
B(t)v – A(tn)v, v – w

)
–

(
B(t)w – A(tn)w, v – w

)
+ γ |v – w|qH.

Noting that (B(t)v – B(t)w, v – w) is independent of n above, we get

(
B(t)v – B(t)w, v – w

) ≥ γ |v – w|pH

by letting n → ∞. So condition (H) holds for B(t). The cases for conditions (H) and
(H) can be shown in the same way.
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It follows from Corollary . that B(·) ∈ AAu(Yp,X). By Remark ., conditions (H) and
(H) hold for B(t).

Now, for the almost automorphic component (), we have the following result, which is
due to N’Guérékata and Pankov [], Theorem ..

Lemma . Under the conditions of Theorem ., () has a unique solution v such that
v ∈ AAu(H) ∩ BSp(X).

Remark . For each t ∈R, the operator B(t) is assumed to be continuous from X into X∗

in [], Section . The semicontinuity is weaker than continuity but Lemma . still hold
under this weaker condition. For this, we advise the readers to refer to [], p., and the
proof of [], Theorem ..

To prove Theorem ., a natural idea is that if () has a solution u in PAAP(H), then its
almost automorphic component should be the solution v ∈ AAu(H) of (), i.e., u – v is an
ergodic perturbation in the sense of Stepanov.

Proof of Theorem . It follows from Lemma . and Remark . that () has a unique
solution u such that u ∈ BSp(X) ∩ BC(R; H).

Let z = u – v where v is the one in Lemma .. Then z satisfies

z′(t) + A(t)u(t) – A(t)v(t) = φ(t) – �(t)v(t).

Multiplying it by z(t), we get
(
z′(t), z(t)

)
+

(
A(t)u(t) – A(t)v(t), z(t)

)
=

(
φ(t), z(t)

)
–

(
�(t)v(t), z(t)

)
.

It follows that




d
dt

∣
∣z(t)

∣
∣

H + γ
∣
∣z(t)

∣
∣q

H ≤ ∥
∥φ(t)

∥
∥∗

∥
∥z(t)

∥
∥ +

∥
∥�(t)v(t)

∥
∥∗

∥
∥z(t)

∥
∥.

Integrating the inequality above from t to t +  yields



(∣∣z(t + )

∣
∣

H –
∣
∣z(t)

∣
∣

H

)
+ γ

∫ t+

t

∣
∣z(s)

∣
∣q

H ds

≤
∫ t+

t

∥
∥φ(s)

∥
∥∗

∥
∥z(s)

∥
∥ds +

∫ t+

t

∥
∥�(s)v(s)

∥
∥∗

∥
∥z(s)

∥
∥ds

≤ ‖z‖Sp

(∫ t+

t

∥
∥φ(s)

∥
∥p′

∗ ds
) 

p′
+ ‖z‖Sp

(∫ t+

t

∥
∥�(s)v(s)

∥
∥p′

∗ ds
) 

p′
.

For any T > , integrating the formula above from –T to T and dividing it by T , we
obtain


T

∫ T

–T

(∣∣z(t + )
∣
∣

H –
∣
∣z(t)

∣
∣

H

)
dt + γ


T

∫ T

–T

∫ t+

t

∣
∣z(s)

∣
∣q

H ds dt

≤ ‖z‖Sp


T

∫ T

–T

(∫ t+

t

∥
∥φ(s)

∥
∥p′

∗ ds
) 

p′
dt

+ ‖z‖Sp


T

∫ T

–T

(∫ t+

t

∥
∥�(s)v(s)

∥
∥p′

∗ ds
) 

p′
dt. ()
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From Lemma . we know both u and v are bounded with values in H and also bounded
in BSp(X), then so is z = u – v.

For the first term on the left hand side of inequality (), we have


T

∫ T

–T

(∣
∣z(t + )

∣
∣

H –
∣
∣z(t)

∣
∣

H

)
dt

=


T

∫ T+

T

∣
∣z(t)

∣
∣

H dt –


T

∫ –T+

–T

∣
∣z(t)

∣
∣

H dt

≤ 
T

sup
t∈R

∣
∣z(t)

∣
∣

H → , as T → +∞. ()

Since φ ∈ PAPp′
 (X∗), the first term on the right hand side of inequality () converges to

zero as T → +∞, i.e.,

lim
T→+∞


T

∫ T

–T

(∫ t+

t

∥
∥φ(s)

∥
∥p′

∗ ds
) 

p′
dt = . ()

For the second term on the right hand side of inequality (), we have


T

∫ T

–T

(∫ t+

t

∥
∥�(s)v(s)

∥
∥p′

∗ ds
) 

p′
dt

≤ 
T

∫ T

–T

(∫ t+

t

[∥
∥�(s)

∥
∥

Yp,X

(
 +

∥
∥v(s)

∥
∥p–)]p′

ds
) 

p′
dt

≤ 
T

∫ T

–T
max

λ∈[t,t+]

∥
∥�(λ)

∥
∥

Yp,X

(∫ t+

t

(
 +

∥
∥v(s)

∥
∥p–)p′

ds
) 

p′
dt

≤ (
 + ‖v‖

p
p′
Sp

) 
T

∫ T

–T
max

λ∈[t,t+]

∥
∥�(λ)

∥
∥

Yp,X
dt, ()

where the Minkowski inequality is used in the last inequality.
Let [t] denote the largest integer which is not larger than t for each t ∈R. Then, for T > 

sufficient large,


T

∫ T

–T
max

λ∈[t,t+]

∥
∥�(λ)

∥
∥

Yp,X
dt

≤ 
[T]

∫ [T]+

–[T]–
max

λ∈[t,t+]

∥
∥�(λ)

∥
∥

Yp,X
dt

≤ 
[T]

[T]∑

k=–[T]–

∫ k+

k
max

λ∈[t,t+]

∥
∥�(λ)

∥
∥

Yp,X
dt

≤ 
[T]

[T]∑

k=–[T]–

max
λ∈[k,k+]

∥
∥�(λ)

∥
∥

Yp,X
. ()

It is easy to see that for each k ∈ Z,

max
λ∈[k,k+]

∥
∥�(λ)

∥
∥

Yp,X
≤ max

λ∈[k,k+]

∥
∥�(λ)

∥
∥

Yp,X
+ max

λ∈[k+,k+]

∥
∥�(λ)

∥
∥

Yp,X
. ()



Ji and Lu Advances in Difference Equations  (2015) 2015:341 Page 13 of 17

Combining inequalities () and (), we obtain


T

∫ T

–T
max

λ∈[t,t+]

∥
∥�(λ)

∥
∥

Yp,X
dt

≤ 
[T]

[T]∑

k=–[T]–

max
λ∈[k,k+]

∥
∥�(λ)

∥
∥

Yp,X
+


[T]

[T]+∑

k=–[T]

max
λ∈[k,k+]

∥
∥�(λ)

∥
∥

Yp,X

≤ ([T] + ) + 
[T]


([T] + ) + 

[T]+∑

k=–[T]–

max
λ∈[k,k+]

∥
∥�(λ)

∥
∥

Yp,X
. ()

By Corollary ., we know that � : R → Yp,X is uniformly continuous. Then it follows
from Proposition . that the sequence

{
max

λ∈[k,k+]

∥
∥�(λ)

∥
∥

Yp,X
: k ∈ Z

}
∈ PAP(Z;R).

Thus, inequality () implies that

lim
T→+∞


T

∫ T

–T
max

λ∈[t,t+]

∥
∥�(λ)

∥
∥

Yp,X
dt = . ()

It follows from () and () that

lim
T→+∞


T

∫ T

–T

(∫ t+

t

∥
∥�(s)v(s)

∥
∥p′

∗ ds
) 

p′
dt = . ()

Letting T → +∞ and substituting (), (), and () into inequality (), we obtain

lim
T→+∞


T

∫ T

–T

∫ t+

t

∣
∣z(s)

∣
∣q

H ds dt = . ()

By the Hölder inequality, it is easy to see that


T

∫ T

–T

(∫ t+

t

∣
∣z(s)

∣
∣q

H ds
) 

q
dt ≤

(


T

∫ T

–T

∫ t+

t

∣
∣z(s)

∣
∣q

H ds dt
) 

q
.

Thus we obtain from ()

lim
T→+∞


T

∫ T

–T

(∫ t+

t

∣
∣z(s)

∣
∣q

H ds
) 

q
dt = ,

i.e., z ∈ PAPq
(H). The proof is complete. �

For the general case A(t) �= , we have the following result.

Corollary . Theorem . still holds without condition (H) that A(t) =  for each t ∈R.

Proof We may consider u 
→ A(t)u – A(t) and the function f (t) – A(t) instead of A(t)u
and f (t), respectively, in (). It is easy to show that under the above transformation con-
ditions (H)-(H) still hold. Now, we show that t 
→ [u 
→ A(t)u – A(t)] ∈ PAA(Yp,X) ∩
Cu(R; Yp,X) and t 
→ A(t) ∈ PAA(X∗).
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Since PAA(Yp,X) and Cu(R; Yp,X) are linear spaces and A(·) ∈ PAA(Yp,X) ∩ Cu(R; Yp,X), to
show t 
→ [u 
→ A(t)u – A(t)] ∈ PAA(Yp,X) ∩ Cu(R; Yp,X), we only need to show t 
→ [u 
→
A(t)] ∈ PAA(Yp,X) ∩ Cu(R; Yp,X).

For any A ∈ Yp,X, ‖u 
→ A‖Yp,X = supx∈X
‖A‖∗

+‖u‖p– = ‖A‖∗
+‖‖p– ≤ ‖A‖Yp,X . For any t, t ∈ R,

we have

∥
∥[

u 
→ A(t)
]

–
[
u 
→ A(t)

]∥∥
Yp,X

=
∥
∥u 
→ (

A(t) – A(t)
)

∥
∥

Yp,X

≤ ∥
∥A(t) – A(t)

∥
∥

Yp,X
.

Thus, A(·) ∈ Cu(R; Yp,X) implies that t 
→ [u 
→ A(t)] ∈ Cu(R; Yp,X) also.
We write u 
→ A(t) = [u 
→ B(t)] + [u 
→ �(t)] for each t ∈ R and claim that t 
→

[u 
→ B(t)] ∈ AA(Yp,X) and t 
→ [u 
→ �(t)] ∈ PAP(Yp,X).
Suppose there exist a sequence {tn} ⊂R and a function B̃ : R → Yp,X such that

B(t + tn) → B̃(t) and B̃(t – tn) → B(t)

in Yp,X for each t ∈R as n → ∞. Thus, for each t ∈ R, we have

∥
∥
[
u 
→ B(t + tn)

]
–

[
u 
→ B̃(t)

]∥
∥

Yp,X
=

∥
∥u 
→ (

B(t + tn) – B̃(t)
)

∥
∥

Yp,X

≤ ∥
∥B(t + tn) – B̃(t)

∥
∥

Yp,X
→ ,

as n → ∞.
Similarly, we can show u 
→ B̃(t – tn) converges to u 
→ B(t) in Yp,X for each t ∈ R as

n → ∞. Thus, t 
→ [u 
→ B(t)] ∈ AA(Yp,X).
The function t 
→ [u 
→ �(t)] is bounded, because ‖u 
→ �(t)‖Yp,X ≤ ‖�(t)‖Yp,X ≤

‖�‖∞ < ∞ for any t ∈R. Moreover, since �(·) ∈ PAP(Yp,X),

lim
T→+∞


T

∫ T

–T

∥
∥u 
→ �(t)

∥
∥

Yp,X
dt ≤ lim

T→+∞


T

∫ T

–T

∥
∥�(t)

∥
∥

Yp,X
dt = .

Thus, t 
→ [u 
→ �(t)] ∈ PAP(Yp,X).
So far we have shown t 
→ [u 
→ A(t)] ∈ PAA(Yp,X) ∩ Cu(R; Yp,X).
Noting that ‖u 
→ A‖Yp,X = ‖A‖∗ for each A ∈ Yp,X, one can show t 
→ A(t) ∈

PAA(X∗) ∩ Cu(R; X∗) as in the case of the function t 
→ [u 
→ A(t)] above with only some
adaption of notations. �

From the proof of [], Lemma ., we get the following lemma.

Lemma . Under conditions (H)-(H), suppose further that A(·) : R → Yp,X is bounded
and uniformly continuous and f ∈ BSp′ (X∗) satisfies

lim
δ→

∫ t+δ

t

∥
∥f (s)

∥
∥p′

∗ ds =  ()

uniformly with respect to t ∈ R. Then the solution u of () in Lemma . is uniformly con-
tinuous with values in H.
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Corollary . Under the conditions of Theorem ., suppose further that f satisfies ()
uniformly with respect to t ∈ R. Then the solution u of () in Theorem . is in PAA(H) ∩
Cu(R; H) ∩ BSp(X).

Proof From Theorem ., we know that u ∈ PAAq(H). Lemma . implies that u ∈
Cu(R; H). Then it follows from Proposition .(iii) that u ∈ PAA(H). �

Remark . A sufficient condition for () is that the ergodic perturbation φ of f is es-
sentially bounded. By the Minkowski inequality, we have

(∫ t+δ

t

∥
∥f (s)

∥
∥p′

∗ ds
) 

p′
≤

(∫ t+δ

t

∥
∥g(s)

∥
∥p′

∗ ds
) 

p′
+

(∫ t+δ

t

∥
∥φ(s)

∥
∥p′

∗ ds
) 

p′
. ()

Due to Stepanov-like almost automorphy of g , the range of its Bochner transform is pre-
compact in the space Lp′ (, ; X∗). Hence, the first term on the right hand side of inequality
() converges to  uniformly on R as δ → . Since φ is essentially bounded, the second
term on the right hand side of inequality () also converges to  uniformly on R as δ → .
Thus, () holds uniformly on R.

Because t 
→ A(t) is in PAA(X∗) (and thus bounded, so is its ergodic perturbation),
Corollary . still hold without condition (H) that A(t) = .

5 An example
Let � ⊂ R

n be a bounded domain, and denote X = W ,p
 (�), H = L(�), X∗ = W –,p′ (�).

We consider the operator

A(t)u = –
n∑

i=

ai(t)
∂

∂xi
a
(

∂u
∂xi

)

,

where ai ∈ PAA(R) ∩ Cu(R;R) has a strictly positive infimum, and a : R → R is a contin-
uous monotone increasing function such that

c · (|ξ |p – 
) ≤ a(ξ ) · ξ ≤ c · (|ξ |p + 

)
, ()

where c and c are positive constants. It is not difficult to see that A(t) : X → X∗ is a mono-
tone continuous operator. Moreover, () implies (H) and u 
→ ∂

∂xi
a( ∂u

∂xi
) ∈ Yp,X. Noting

that Yp,X is a Banach space, one can obtain A(·) ∈ PAA(Yp,X) and is uniformly continuous.
If 

p – 
n < 

 , then X ⊂ H, and this embedding is compact []. We assume additionally
that the function a satisfies the inequality

[
a(ξ ) – a(η)

] · (ξ – η) ≥ α|ξ – η|q, α > , p ≥ q ≥ . ()

Then there exists a constant γ >  such that

(
A(t)v – A(t)w, v – w

) ≥ γ ‖v – w‖q
W ,q


≥ γ ‖v – w‖q

Lq(�) ≥ γ ‖v – w‖q
H

for all t ∈ R, v and w in X. Thus (H) holds for A(·).
For such a function a(·) described above, we have a(ξ ) = |ξ |p–ξ as an example with p = q

in (). Applying Theorem . and Corollary ., we obtain
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Corollary . Suppose f ∈ PAAp(X∗) and all the conditions above for A(·) hold. Then the
equation

ut + A(t)u = f (t, x) ()

has a unique solution u such that u ∈ PAAq(H) ∩ BC(R; H) ∩ BSp(X) and its almost auto-
morphic component in AAu(H) ∩ BSp(X) is the solution of the equation

vt –
n∑

i=

ãi(t)
∂

∂xi
a
(

∂v
∂xi

)

= g(t, x),

where ãi and g are the almost automorphic components of ai and f , respectively. Moreover,
if f satisfies

lim
δ→

∫ t+δ

t

∥
∥f (s, ·)∥∥p′

X∗ ds = 

uniformly with respect to t ∈R, then u ∈ PAA(H) ∩ Cu(R; H) ∩ BSp(X).

Remark . In the case ai(t) ≡  and a(ξ ) = |ξ |p–ξ ,

–A(t)u =
n∑

i=

∂

∂xi

(∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

p–
∂u
∂xi

)

is typical in nonlinear elliptic operators.
Moreover, if p = , then () is a standard heat equation.
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