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Abstract
In this paper, we introduce stochasticity into a model of SIR with density dependent
birth rate. We show that the model possesses non-negative solutions as desired in
any population dynamics. We also carry out the globally asymptotical stability of the
equilibrium through the stochastic Lyapunov functional method if R0 ≤ 1.
Furthermore, when R0 > 1, we give the asymptotic behavior of the stochastic system
around the endemic equilibrium of the deterministic model and show that the
solution will oscillate around the endemic equilibrium. We consider that the disease
will prevail when the white noise is small and the death rate due to disease is limited.

Keywords: stochastic SIR model; logistic birth; disease-free equilibrium; endemic
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1 Introduction
From the pioneering work of Kermack and Mckendrick on SIR [], many models for the
transmission of infectious have descended (see [–]). Therefore, the ordinary threshold
principle was for an SIR in a closed population, with no births and deaths. This assump-
tion is just true for certain situations such as when the spread of disease is fast and the
prevalence of the disease is brief. In order to make the model more realistic, more recent
studies consider an epidemic model in a population with varying size (see [–]). In their
paper [], Gao and Hethcote assume that the total population is given by the following
logistic equation:

dN
dt

=
(

b –
arN

K

)
N –

(
μ +

( – a)rN
K

)
N , ()

where  < a <  is a convex combination constant and b and μ are the birth rate and death
rate, r = b – μ is the intrinsic growth rate, and K >  is the carrying capacity of the popu-
lation. According to Zhou and Hethcote [], when a = , () could be called a logistic birth
model, and when a = , () could be called a logistic death model.

Zhang et al. mention an SIR model with logistic birth in []:

⎧⎪⎨
⎪⎩

dS
dt = (b – r N

K )N – βSI – μS,
dI
dt = βSI – δI,
dR
dt = γ I – μR.
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Here N(t) = S(t) + I(t) + R(t) and β >  is the transmission coefficient, δ = α + γ + μ, and
α is a non-negative constant and represents the death rate due to disease. γ >  is the
rate constant for recovery. They use N as a variable in place of S; then the SIR model is
described by the following system of differential equations:

⎧⎪⎨
⎪⎩

dI
dt = βI(N – I – R) – δI,
dR
dt = γ I – μR,
dN
dt = r( – N

K )N – αI.
()

They showed that the region H = {(I, R, N) ∈ R

+ : I + R ≤ N ≤ K} is a positively invariant

set with respect to (). The disease-free E = (, , K) of the system () always exists, and
if R = βK

δ
≤ , the E is globally asymptotically stable in H . If R > , E is unstable and

there is a unique endemic equilibrium E∗(I∗, R∗, N∗), which is locally asymptotically stable
and globally asymptotically stable when α ≤ min{μ, 

 r}.
However, population systems are often subject to environmental noise (see [, ]),

which is ignored by the deterministic models. Hence stochastic model has come to play
an important role in infectious dynamics. Nowadays, the investigations of the epidemic
models perturbed by the white noise have been engaging in a lot of attentions of many
authors, and Beddington and May [] assumed the environmental noise of the systems is
proportional to the variables. Carletti [] investigated stochastic perturbation around the
positive equilibrium. Mao et al. [–] assumed the parameters in models are suffering
stochastic perturbation.

Stochastic SIR models have been investigated in recent work. Tornatore et al. [] pro-
posed a stochastic SIR model with or without distributed time delay, they gave a sufficient
condition for the asymptotic stability of the disease-free equilibrium. They only showed
that the introduction of noise modifies the threshold of system for an epidemic to occur
by numerical simulations. Lin and Jiang [] considered a stochastic SIR model with per-
turbed disease transmission coefficient. They presented sufficient conditions for the dis-
ease to get extinct exponentially. In the case of persistence, they analyzed the long-time
behavior of densities of the distributions of the solution and proved that the densities of
the solution can converge in L to an invariant density under appropriate conditions. Also
they found the support of the invariant density. Specially, when the intensity of white noise
is relatively small, they gave a new threshold for an epidemic to occur. Ji et al. [] discussed
a two-group SIR model with the transmission parameter subject to white noise, while Yu
et al. [] investigated a two-group SIR model with stochastic perturbation around the
positive equilibrium. But until now, few scholars have considered a stochastic SIR model
with logistic growth.

In this paper, we consider the corresponding stochastic problem of a deterministic sys-
tem by introducing noises in system (). Here we assume that the disease transmission
coefficient β is subject to environmental white noise, that is,

β → β + σ dB(t).

Then β dt → β dt + σ dB(t), where B(t) is a standard Brownian motion, σ  >  is the in-
tensity of environment white noise. Then model () becomes
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⎧⎪⎨
⎪⎩

dI = [β(N – I – R)I – δI] dt + σ (N – I – R)I dB(t),
dR = (γ I – μR) dt,
dN = [r( – N

K )N – αI] dt.
()

The aim of this paper is to discuss the dynamics of this stochastic SIR system. We show
the solution of system () is positive and global. When R ≤  we prove the disease-free
equilibrium is stochastically asymptotically stable in the large, which is independent of
the intensity of environmental white noise. When R >  we give the measurement of the
difference between the solution and the endemic equilibrium of the deterministic model
in a time average. The difference decreases with the decrease of the intensity of white
noise. If the white noise is small and the death due to the disease is limited, the solution
of () is going around the endemic equilibrium of the deterministic model for a long time.
In this sense, we consider the disease to prevail.

Throughout this paper, let (Ω , {Ft}t≥, P) be a complete probability space with a filtra-
tion {Ft}t≥ satisfying the usual conditions (i.e. it is right continuous and F) that con-
tains all P-null sets. Denote

R

+ =

{
x ∈R

 : xi >  for all  ≤ i ≤ 
}

.

The remaining parts of this paper are as follows. In the next section we show the exis-
tence and uniqueness of a global positive solution of model (). In Section , we analyze the
stochastically asymptotic stability in the large of the disease-free equilibrium. In Section ,
we study the dynamics of system () around the endemic equilibrium of the deterministic
model. Finally, in Section , numerical simulations are carried out.

2 Non-negative solutions
When we study a dynamical behavior, a global solution is important for the system. In
this section, we show that the solution of () is global and nonnegative. As we know, for a
stochastic differential equation to have a unique global (i.e., no explosion in a finite time)
solution for any given initial value, the coefficients of the equation are generally required to
satisfy the linear growth condition and the local Lipschitz condition is a sufficient condi-
tion (see [, ]). Although the coefficients of system () satisfy local Lipschitz condition,
they do not satisfy the linear growth condition, so the solution of system () may explode
at a finite time. In this section, we will use the Lyapunov analysis method mentioned in
[] to show that the solution of system () is positive and global.

Theorem  There is a unique solution (I(t), R(t), N(t)) of system () on t ≥  for any initial
value (I(), R(), N()) ∈R


+, and the solution will remain in R


+ with probability , namely

(I(t), R(t), N(t)) ∈ R

+ for all t ≥  almost surely.

Proof Since coefficients of the equation are locally Lipschitz continuous for any initial
value (I(), R(), N()) ∈ R


+, there is a unique local solution on t ∈ [, τe), where τe is the

explosion time (see []). To show this solution is global, we need to show that τe = ∞ a.s.
Let k >  be sufficiently large so that I(), R(), N() all lie within the interval [ 

k
, k]. For
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each integer k ≥ k define the stopping time

τk = inf

{
t ∈ [, τe) : I(t) /∈

(

k

, k
)

or R(t) /∈
(


k

, k
)

or N(t) /∈
(


k

, k
)}

,

where throughout this paper, we set inf∅ = ∞ (as usual ∅ denotes the empty set). Clearly,
τk is increasing as k → ∞. Set τ∞ = limk→∞ τk , whence τ∞ ≤ τe a.s. If we can show that
τ∞ = ∞ a.s. then τe = ∞ and (I(t), R(t), N(t)) ∈ R


+ a.s. for all t ≥ . In other words, to

complete the proof all we need to show is that τ∞ = ∞ a.s. For if this statement is false,
then there is a pair of constants T >  and ε ∈ (, ) such that

P{τ∞ ≤ T} > ε.

Hence there is an integer k ≥ k such that

P{τk ≤ T} > ε for all k ≥ k. ()

Besides, for t ≤ τk , we can see

d(S + I + R) = dN =
[

rN
(

 –
N
K

)
– αI

]
dt ≤

[
rN

(
 –

N
K

)]
dt

and

N(t) ≤
{

K if N() ≤ K ,
N() if N() > K ,

()

:= K̄ .

Define a C-function V : R
+ → R̄+ by

V (I, R, N) = I –  – log I + R –  – log R + N –  – log N .

The non-negativity of this function can be seen from u –  + log u ≥  ∀u > . Using Itô’s
formula, we compute

dV := LV dt + σ (I – )(N – I – R) dB(t),

where

LV =
(

 –

I

)[
β(N – I – R)I – δI

]
+



σ (N – I – R)

+
(

 –

R

)
(γ I – μR) +

(
 –


N

)[
rN

(
 –

N
K

)
– αI

]

≤ β(N – I – R)I + δ +


σ (N – I – R) + γ I + μ + rN + α

≤ μ + α + δ + γ K̄ + rK̄ + βK̄ +


σ K̄

:= K̃ .
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Therefore,

∫ τk∧T


dV

(
I(t), R(t), N(t)

) ≤
∫ τk∧T


K̃ dt +

∫ τk∧T


σ (I – )(N – I – R) dB(t).

This implies that

E
[
V

(
I(τk ∧ T), R(τk ∧ T), N(τk ∧ T)

)]

≤ V
(
I(), R(), N()

)
+ E

∫ τk∧T


K̃ dt

≤ V
(
I(), R(), N()

)
+ K̃T . ()

Set Ωk = τk ≤ T for k ≥ k and by (), P(Ωk) ≥ ε. Note that for every ω ∈ Ωk , there is at
least one of I(τk ,ω), R(τk ,ω), N(τk ,ω) that equals k or 

k , and hence V (I(τk ∧ T), R(τk ∧
T), N(τk ∧ T)) is no less than

k –  – log k or

k

–  – log

k

=

k

–  + log k.

Consequently,

V
(
I(τk ∧ T), R(τk ∧ T), N(τk ∧ T)

) ≥ (k –  – log k) ∧
(


k

–  + log k
)

.

Then it follows from () and () that

V
(
I(), R(), N()

)
+ K̃T

≥ E
[
Ωk(ω) V

(
I(τk ∧ T), R(τk ∧ T), N(τk ∧ T)

)]

≥ ε

[
(k –  – log k) ∧

(

k

–  + log k
)]

,

where Ωk(ω) is the indicator function of Ωk . Let k → ∞ lead to the contradiction ∞ >
V (I(), R(), N()) + K̃T = ∞. Therefore we shall have τ∞ = ∞ a.s. �

Remark  Theorem  has shown that for any initial value (I(), R(), N()) ∈ R

+, system

() has a unique global solution (I(t), R(t), N(t)) ∈ R

+ a.s., and by () if N() ≤ K , then

N(t) ≤ K , so the region Ω∗ = {(I, R, N) ∈ R

+, I + R ≤ N ≤ K} is a positively invariant set

with respect to ().
From now on, we always assume that (I(), R(), N()) ∈ Ω∗.

3 Stochastically asymptotical stability in the large of the disease-free
equilibrium

Obviously, E = (, , K) which is called the disease-free equilibrium, is a solution of sys-
tem (). We divide this section into globally asymptotically stability at this point mainly
by a stochastic Lyapunov function. First, we give a lemma (see []).

Consider the stochastic differential equation

dx(t) = f
(
x(t), t

)
dt + g

(
x(t), t

)
dB(t) on t ≥ t. ()
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Assume f (, t) =  and g(, t) =  for all t ≥ t. So x(t) ≡  is a solution to (), called the
trivial solution or equilibrium position.

Lemma  If there exists a positive-definite decrescent radially unbounded function
V (x, t) ∈ C,(Rd × [t,∞); R̄+) such that LV (x, t) is negative-definite, then the trivial solu-
tion of () is stochastically asymptotically stable in the large.

Theorem  Assume R = βK
δ

≤ , then the solution (, , K) of system () is stochastically
asymptotically stable in the large.

Proof Let x = I , y = R, z = N – K . Then x ≥ , y ≤ , z ≤  and system () becomes

⎧⎪⎨
⎪⎩

dx = (β(K + z – x – y)x – δx) dt + σ (K + z – x – y)x dB(t),
dy = (γ x – μy) dt,
dz = (– r

K z(K + z) – αx) dt.
()

Define the stochastic Lyapunov function R
 → R̄+:

V (x, y, z) =

β

x +


γ
y +


α

z.

Obviously, V (x, y, z) is positive-definite, decrescent and radially unbounded. By Itô’s for-
mula, we compute

LV = Kx + xz – x – xy –
δ

β
x + xy –

μ

γ
y –

r
αK

z(K + z) – xz

=
(

K –
δ

β

)
x – x –

μ

γ
y –

r
αK

z(K + z),

according to the fact that R = βK
δ

≤  and K + z ≥ , LV is negative-definite. By Lemma ,
we conclude that under the condition of R = βK

δ
≤ , the trivial solution of system () is

stochastically asymptotically stable in the large, i.e., the solution (, , K) of system () is
stochastically asymptotically stable in the large. �

Theorem  means that when R ≤  the disease will die out after some period of time.
This the phenomenon of interest to us studying an epidemic dynamical system. Another
phenomenon we are interested in is when the disease will prevail and persist in a popula-
tion, which will be discussed in the next section.

4 Asymptotic behavior around the endemic equilibrium of the deterministic
model

Different from the deterministic system, there is no endemic equilibrium in system (), so
we cannot see whether the disease prevails through the endemic equilibrium. But () is
a perturbation system of () which has an endemic equilibrium E∗. We tend to study the
behavior around E∗ to reflect whether the disease will prevail.

Before proving the main theorem we put forward a lemma (see []).
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Lemma  Let M = {Mt}t≥ be a real-valued continuous local martingale vanishing at t = .
Then

lim
t→∞〈M, M〉t = ∞ a.s. ⇒ lim

t→∞
Mt

〈M, M〉t
=  a.s.

and also

lim sup
t→∞

〈M, M〉t

t
< ∞ a.s. ⇒ lim

t→∞
Mt

t
=  a.s.

Theorem  Let (I(t), R(t), N(t)) be the solution of system () with any initial value
(I(), R(), N()) ∈R


+. If R > , α < r

+( 
+ γ

μ
)
, then we have

lim sup
t→∞


t

∫ t



[(
I – I∗) +

μ

γ

(
R – R∗) +

(
–

rN∗

Kα
+ 

)(
N – N∗)

]
ds ≤ K

β
I∗σ  a.s.,

where E∗ = (I∗, R∗, N∗) is the endemic equilibrium of system ().

Proof Since E∗ = (I∗, R∗, N∗) is the endemic equilibrium of system (), we have

β
(
N∗ – I∗ – R∗) = δ, γ I∗ – μR∗ = , r

(
 –

N∗

K

)
– α

I∗

N∗ = . ()

Define

V (I, R, N) =

β

(
I – I∗ – I∗ ln

I
I∗

)
+


γ

(
R – R∗) +

N∗

α

(
N – N∗ – N∗ ln

N
N∗

)

:= V + V + V.

Obviously, V is positive-definite. By Itô’s formula, we compute

dV := (LV + LV + LV) dt + σ
(
I – I∗)(N – I – R) dB(t),

where

LV =

β

(
 –

I∗

I

)(
β(N – I – R)I – δI

)
+


β

σ I∗(N – I – R)

=

β

(
I – I∗)(β(N – I – R) – β

(
N∗ – I∗ – R∗)) +


β

σ I∗(N – I – R)

= –
(
I – I∗) –

(
I – I∗)(R – R∗) +

(
I – I∗)(N – N∗) +


β

σ I∗(N – I – R), ()

LV =

γ

(
R – R∗)(γ I – μR)

=

γ

(
R – R∗)(γ I – μR – γ I∗ + μR∗)

=
(
I – I∗)(R – R∗) –

μ

γ

(
R – R∗), ()
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LV =
N∗

α

(
 –

N∗

N

)[
rN

(
 –

N
K

)
– αI

]

=
N∗

α

(
N – N∗)[r

(
 –

N
K

)
–

αI
N

]

=
N∗

α

(
N – N∗)[r

(
 –

N
K

)
–

αI
N

– r
(

 –
N∗

K

)
+

αI∗

N∗

]

=
N∗

α

(
N – N∗)[–

r
K

(
N – N∗) – α

(
I
N

–
I∗

N∗

)]

=
N∗

α

(
N – N∗)[–

r
K

(
N – N∗) –

α

NN∗
(
IN∗ – IN + IN – I∗N

)]

=
N∗

α

(
–

r
K

+
αI

NN∗

)(
N – N∗) –

(
N – N∗)(I – I∗)

≤ N∗

α

(
–

r
K

+
α

N∗

)(
N – N∗) –

(
N – N∗)(I – I∗), ()

where () is used in the upper equalities. So,

LV ≤ –
(
I – I∗) –

μ

γ

(
R – R∗) –

(
rN∗

αK
– 

)(
N – N∗) +

K

β
I∗σ 

and

dV ≤
[

–
(
I – I∗) –

μ

γ

(
R – R∗) –

(
rN∗

αK
– 

)(
N – N∗) +

K

β
I∗σ 

]
dt

+ σ
(
I – I∗)(N – I – R) dB(t).

Note that E∗ = (I∗, R∗, N∗) is the endemic equilibrium of the system () and according to
[], N∗ is the root of the following equation in the interval (, K):

α –
αδ

βN
– r

(
 +

γ

μ

)(
 –

N
K

)
= ,

i.e.

r
K

(
 +

γ

μ

)
N +

[
α – r

(
 +

γ

μ

)]
N –

αδ

β
= .

Obviously,

N∗ > –
α – r( + γ

μ
)

 r
K ( + γ

μ
)

. ()

If α < r
+( 

+ γ
μ

)
, then

–
α – r( + γ

μ
)

 r
K ( + γ

μ
)

>
α
r
K

. ()
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By () and (), we have

N∗ >
α
r
K

.

So,

rN∗

αK
–  > .

Therefore,

∫ t



[(
I – I∗) +

μ

γ

(
R – R∗) +

(
rN∗

αK
– 

)(
N – N∗)

]
ds

≤ V () +
K

β
I∗σ t +

∫ t


σ
(
I(s) – I∗)(N(s) – I(s) – R(s)

)
dB(s).

Let

Mt =
∫ t


σ
(
I(s) – I∗)(N(s) – I(s) – R(s)

)
dB(s),

which is a real-valued continuous local martingale, M = , and

〈M, M〉t

t
=


t

∫ t


σ (I(s) – I∗)(N(s) – I(s) – R(s)

) ds

≤ [
K + I∗K +

(
I∗)]Kσ  < ∞.

Then by Lemma , we have

lim
t→∞

Mt

t
=  a.s.

Hence,

lim sup
t→∞


t

∫ t



[(
I – I∗) +

μ

γ

(
R – R∗) +

(
–

rN∗

Kα
+ 

)(
N – N∗)

]
ds ≤ K

β
I∗σ  a.s.

The proof is thus complete. �

Remark  Theorem  shows that if R > , α < r
+( 

+ γ
μ

)
, the solution of system () goes

around E∗ for a long time while the intensity of the white noise is weak. Therefore accord-
ing to [], E∗ is globally asymptotically stable when R > , α ≤ min{μ, 

 r}. In this sense,
as long as α is small properly, we consider the disease to prevail.

5 Numerical simulations
In this section, we make numerical simulations to illustrate our results by using Mil-
stein’s higher order method []. We get the simulation figures with the initial value
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(I(), R(), N()) = (., ., .) and time step Δt = 
 , and the parameters in () are given

by

K = , r = ., μ = ., α = ., γ = ..

First, we take β = ., σ = ., σ = .; in this case, R = 
 < , and β = ., such that

R = . We find that these lines in Figure  and Figure  fit very well, which implies that
the disease-free equilibrium E = (, , ) of system () is globally asymptotically stable.

When β = ., it is easy to check that R = 
 > . We choose σ = ., σ = .; the

solution goes around the endemic equilibrium E∗ for a long time, and the fluctuation de-

Figure 1 E0 = (0, 0, 2) of system (3) is globally asymptotically stable, when R0 < 1.

Figure 2 E0 = (0, 0, 2) of system (3) is globally asymptotically stable, when R0 = 1.
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Figure 3 The solution of system (3) is going around the endemic equilibrium of system (2).

creases with the decreasing of white noise (see Figure ). This result is consistent with the
result of Theorem .
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