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Abstract
In this paper we investigate the existence and multiplicity of weak quasi-periodic
solutions for the second order Hamiltonian system d[P(t)u̇(t)]

dt +∇F(t,u(t)) = 0, t ∈R,
where P(t) = (pij(t))N×N is a symmetric and continuous N× Nmatrix-value function on
R and F(t, x) is almost periodic in t uniformly for x ∈ R

N . When F has superquadratic
growth, we see that the system has at least one nonconstant weak quasi-periodic
solution and when the assumption F(t, –x) = F(t, x) is also made, we see that the
system has infinitely many weak quasi-periodic solutions by variational method.
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1 Introduction and main results
In this paper, we are concerned with the existence and multiplicity of weak-quasi-periodic
solutions for the second order Hamiltonian system

d[P(t)u̇(t)]
dt

+ ∇F
(
t, u(t)

)
= , t ∈R, (.)

where u(t) = (u(t), . . . , uN (t))τ , N >  is an integer, F ∈ C(R×R
N ,R), ∇F(t, x) = (∂F/∂x,

. . . , ∂F/∂xN )τ , P(t) = (pij(t))N×N is a symmetric and continuous N × N matrix-value func-
tion on R, the symbol (·)τ stands for the transpose of a vector or a matrix.

It is well known that the variational method is a very effective tool for investigating
the existence and multiplicity of various solutions of Hamiltonian system. Lots of mathe-
maticians have constructed many important results on existence and multiplicity of peri-
odic solutions, subharmonic solutions and homoclinic solutions (for example, see [–]).
However, there are less studies on almost periodic solutions of Hamiltonian systems. We
refer the reader to [–] for some known results. Very recently, in [], Kuang investi-
gated the following second order Hamiltonian system:

ü(t) = ∇F
(
t, u(t)

)
, t ∈R, (.)

and obtained two existence results of weak quasi-periodic solutions for system (.) by
making use of the least action principle and the saddle point theorem, respectively.
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Next, we recall some definitions.

Definition . (see []) A function u(t) is said to be Bohr almost periodic, if for any ε > ,
there is a constant lε > , such that in any interval of length lε , there exists τ such that the
inequality |u(t + τ ) – u(t)| < ε is satisfied for all t ∈R.

Definition . (see []) n × m matrix-value function M(t) = (mij(t))n×m is almost peri-
odic on R if mij(t) (i = , , . . . , n, j = , , . . . , m) is Bohr almost periodic on R.

Definition . (see []) u ∈ C(R×R
m,RN ) is so called almost periodic in t uniformly

for x ∈ R
m when, for each compact subset K in R

m, for each ε > , there exists l > , and
for each α ∈R, there exists τ ∈ [α,α + l] such that

sup
t∈R

sup
x∈K

∥∥u(t + τ , x) – u(t, x)
∥∥
RN < ε.

Definition . (see []) u : R → R
n is said to be quasi-periodic with m basic frequen-

cies if there exists a function v → �(v) ∈ R
n which is Lipschitz continuous for v ∈ R

m

and periodic of period  in each of its arguments, and m real numbers ω, . . . ,ωm linearly
independent over the rationals, such that

u(t) = �(ωt, . . . ,ωmt).

Any such choice of ω, . . . ,ωm will be called a set of basic frequencies for u(t).

Remark . If u ∈ C(R,Rn) is a periodic function, then u is quasi-periodic and if u ∈
C(R,Rn) is quasi-periodic, then u is Bohr almost periodic. Moreover, if u(t), w(t) are Bohr
almost periodic and a, b ∈ R, then au(t), u(t + b), u(bt), u(t) + w(t), and u(t)w(t) are Bohr
almost periodic. Furthermore, if inft∈R |w(t)| > , then u(t)

w(t) is also Bohr almost periodic
(see []).

Remark . Let p >  and N >  be positive integers and {Tj}p
j= be rationally indepen-

dent positive real constants. Assume that uj(t) ∈ C(R,RN ) (j = , , . . . , p) is Tj-periodic
and Lipschitz continuous on R. Define

u(t) :=
p∑

j=

uj(t). (.)

Define � : Rp →R
N by �(v) =

∑p
j= uj(Tjvj), where v = (v, . . . , vp)τ . Let ωj = 

Tj
(j = , . . . , p).

Then it is easy to verify that u is quasi-periodic with basic frequencies 
Tj

(j = , . . . , p).
Obviously, u is also Bohr almost periodic by Remark ..

Define

AP(
R

N) =
{

u : R →R
N |u is Bohr almost periodic

}

endowed with the norm ‖u‖∞ = supt∈R |u(t)|. Then (AP(RN ),‖ · ‖∞) is a Banach space.
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Define

AP(
R

N) =
{

u ∈ AP(
R

N)∩ C(
R,RN)|u′(t) ∈ AP(

R
N)},

endowed with the norm

‖u‖AP(RN ) = ‖u‖∞ +
∥∥u′∥∥∞.

Then (AP(RN ),‖ · ‖AP(RN )) is also a Banach space.
Let f ∈ L

loc(R,RN ), that is, f is locally Lebesgue-integrable fromR toR
N . Then the mean

value of f is the limit (when it exists)

lim
T→∞


T

∫ T

–T
f (t) dt.

A fundamental property of almost periodic functions is that such functions have con-
vergent means, that is, the limit

lim
T→∞


T

∫ T

–T
u(t) dt

exists.
Let p ∈ Z

+. Bp(RN ) is the completion of AP(RN ) into L
loc(R,RN ) with respect to the

norm

‖u‖p =
{

lim
T→∞


T

∫ T

–T

∣
∣u(t)

∣
∣p dt

}/p

.

The elements of the space Bp(RN ) are called Besicovitch almost periodic functions.
For u ∈ Bp(RN ), if

lim
r→

u(t + r) – u(t)
r

exists, then define

∇u = lim
r→

u(t + r) – u(t)
r

.

For u, v ∈ Bp(RN ), if ‖u – v‖p = , then we say that u, v belong to a class of equivalence.
We will identify the equivalence class u with its continuous representant

u(t) =
∫ t


∇u(t) dt + c.

When p = , B(RN ) is a Hilbert space with its norm ‖ · ‖ and the inner product

〈u, v〉 = lim
T→∞


T

∫ T

–T

(
u(t), v(t)

)
dt.
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When u ∈ B(RN ), define

a(u,λ) := lim
T→∞


T

∫ T

–T
e–iλtu(t) dt,

which is a complex vector and is called a Fourier-Bohr coefficient of u. Let 	(u) = {λ ∈
R|a(u,λ) �= }.

Define

B,(
R

N) =
{

u ∈ B(
R

N)|∇u exists and ∇u ∈ B(
R

N)}

endowed with the inner product

〈u, v〉B,(RN ) = 〈u, v〉 + 〈∇u,∇v〉

= lim
T→∞


T

∫ T

–T

(
u(t), v(t)

)
dt + lim

T→∞


T

∫ T

–T

(∇u(t),∇v(t)
)

dt (.)

and the corresponding norm

‖u‖B,(RN ) =
(

lim
T→∞


T

∫ T

–T

∣
∣u(t)

∣
∣ dt + lim

T→∞


T

∫ T

–T

∣
∣∇u(t)

∣
∣ dt

)/

(see [, , ] and []).
Let p >  be a positive integer and {Tj}p

j= be rationally independent positive real con-
stants. Define

V =
{

u ∈ B,(
R

N)|	(u) ⊂ 	
}

, (.)

where

	 =
p⋃

j=

	j =
p⋃

j=

{
mπ

Tj

∣
∣∣m ∈ Z

}
, 	j =

{
mπ

Tj

∣
∣∣m ∈ Z

}
, j = , . . . , p.

Then V is a linear subspace of B,(RN ) and (V , 〈·, ·〉B,(RN )) is a Hilbert space.
In [], Kuang made the following assumptions:

(f) F(t, ·) ∈ C(R×R
N ,R) and F(t, ·) is almost periodic in t uniformly for x ∈R

N ;
(f) ∇F(t, ·) is almost periodic in t uniformly for x ∈ R

N ;
(f) for any λ ∈R/	, u ∈ V ,

lim
T→∞


T

∫ T

–T
∇F(t, u)e–iλt dt = ;

(f) there exists g ∈ L
loc(R), for a.e. t ∈R and all x ∈R

N , such that

∣∣∇F(t, x)
∣∣≤ g(t);

(f) limT→∞ 
T
∫ T

–T F(t, x) dt → +∞ as |x| → ∞;
(f) limT→∞ 

T
∫ T

–T F(t, x) dt → –∞ as |x| → ∞.
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Then when (f)-(f) (or (f)-(f) and (f)) hold, system (.) has at least one quasi-periodic
solution.

In [], we generalize and improve Kuang’s results. We first obtain three inequalities
and two of them, in some sense, generalize Sobolev’s inequality and Wirtinger’s inequality
from the periodic case to the quasi-periodic case, respectively. Then by using the least
action principle and the saddle point theorem, we obtain two existence results of weak
quasi-periodic solutions for the second order Hamiltonian system with a forcing term:

d[P(t)u̇(t)]
dt

= ∇F
(
t, u(t)

)
+ e(t),

when (f)-(f) and the following assumptions hold:

(P) pij(t), i, j = , , . . . , N , are Bohr almost periodic and there exists m > 
 such that

(
P(t)x, x

)
> m|x|, for all (t, x) ∈R× {RN /{}};

(E ) e is Bohr almost periodic and

lim
T→∞

∫ T

–T
e(t) dt = ;

(W) there exist constants c > , k > , k > , α ∈ [, ), and a nonnegative function w ∈
C([, +∞), [, +∞)) with the properties:

(i) w(s) ≤ w(t), ∀s ≤ t, s, t ∈ [, +∞),
(ii) w(s + t) ≤ c(w(s) + w(t)), ∀s, t ∈ [, +∞),

(iii)  ≤ w(t) ≤ ktα + k, ∀t ∈ [, +∞),
(iv) w(t) → +∞, as t → ∞;

(f)′ there exist g, h ∈ L
loc(R,R+) such that

∣
∣∇F(t, x)

∣
∣≤ g(t)w

(|x|) + h(t), for a.e. t ∈R;

(f)′


w(|x|) lim

T→∞


T

∫ T

–T
F(t, x) dt

>
c


∑p

j=
T

j


m

(
lim

T→∞


T

∫ T

–T
g(t) dt

)

as |x| → ∞;

(f)′′


w(|x|) lim

T→∞


T

∫ T

–T
F(t, x) dt

< –
c

(‖P‖ + m)
∑p

j=
T

j


(m – )

(
lim

T→∞


T

∫ T

–T
g(t) dt

)

as |x| → ∞,

where

‖P‖ = sup
t∈R

max
|x|=,x∈RN

∣∣P(t)x
∣∣ = sup

t∈R
max

{√
λ(t) : λ(t) is the eigenvalue of Pτ (t)P(t)

}
.
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Moreover, when the assumptions F(t, x) = F(t, –x) and e(t) ≡  are also made, we obtain
two results on infinitely many weak quasi-periodic solutions for the second order Hamil-
tonian system under the subquadratic case.

Inspired by [, , ] and [], in this paper, we investigate the case that F has su-
perquadratic growth and we obtain the following results.

Theorem . Suppose that (f)-(f) and the following conditions hold:

(P)′ pij(t), i, j = , , . . . , N , are Bohr almost periodic and there exists m >  such that

(
P(t)x, x

)
> m|x|, for all (t, x) ∈R× {RN /{}}

and for any λ ∈R/	, u ∈ V ,

lim
T→∞


T

∫ T

–T
P(t)∇u(t)e–iλt dt = ; (.)

(H)

lim sup
|x|→

F(t, x)
|x| <

m

[max{ Tj
π

|j = , . . . , p}]/
uniformly for all t ∈R;

(H)

lim|x|→∞
F(t, x)
|x| > ‖P‖

p∑

j=

π

T
j

uniformly for all t ∈R;

(H) limT→∞ 
T
∫ T

–T F(t, x) dt ≥ ;
(H) there exist constants L > , ζ > , η > , and ν ∈ [, ) such that

(
 +


ζ + η|x|ν

)
F(t, x) ≤ (∇F(t, x), x

)
, for all x ∈R

N , |x| > L, t ∈ R.

Then system (.) has at least one nonconstant weak quasi-periodic solution in V .

Theorem . Suppose that (f)-(f), (P)′, (H), (H), and (H), and the following condi-
tion hold:

(H)′ there exist l >  and α which is Bohr almost periodic and limT→∞ 
T
∫ T

–T α(t) dt <
ml∑p
j= T

j
such that

F(t, x) ≤ α(t), for all x ∈R
N , |x| ≤ l, t ∈ R.

Then system (.) has at least one nonconstant weak quasi-periodic solution in V .

Theorem . Suppose that (f)-(f), (P)′, (H), (H) and the following conditions hold:

(H)′ lim|x|→∞ F(t,x)
|x| = +∞ uniformly for all t ∈R;

(H) F(t, x) is even in x and F(t, ) ≡  for all t ∈R.
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Then system (.) has infinitely many weak quasi-periodic solutions {un} which possesses
high energy in V , that is,

lim
T→∞


T

∫ T

–T

[


(
P(t)∇un(t),∇un(t)

)
– F
(
t, un(t)

)]
dt → +∞ as n → ∞.

Theorem . Suppose that (f)-(f), (P)′, (H)′, (H)′, (H), and (H) hold. Then system
(.) has infinitely many weak quasi-periodic solutions {un} which possesses high energy
in V .

Remark . In [], it is remarkable that we did not require the condition (.). However,
the condition (.) is necessary when we prove that the critical points of variational func-
tional coincide with the solutions of system. Hence, we have to make a correction to our
previous paper []. To be precise, the restriction (.) must be added to (P) in [].

Remark . In order to study the existence of periodic solutions of Hamiltonian systems,
the following well-known (AR)-condition was introduced in []:

(AR) there exist constants μ >  and r >  such that

(∇F(t, x), x
)≥ μF(t, x), ∀|x| ≥ r, a.e. t ∈ [, T].

The (AR)-condition has been extensively used in much of the literature. In , Tao and
Tang [] presented the following new condition:

(H)′ there exist ϑ >  and μ > ϑ –  such that

lim sup
|x|→∞

F(t, x)
|x|ϑ < ∞ uniformly for a.e. t ∈ [, T],

lim inf|x|→∞
(∇F(t, x), x) – F(t, x)

|x|μ >  uniformly for a.e. t ∈ [, T].

In , to investigate subharmonic solutions of a class of second order Hamilton system,
the author and Tang [] presented the following conditions:

(H) there exist constants L > , ζ > , η > , and ν ∈ [, ) such that

(
 +


ζ + η|x|ν

)
F(t, x) ≤ (∇F(t, x), x

)
, for all x ∈ R

N , |x| > L, a.e. t ∈ [, T],

which is motivated by an earlier version due to Ding [].

In [], the author and Tang have proved that the (AR)-condition and (H)′ imply (H)
(see Remark . in []). Similarly, we can prove that the following:

(AR) there exist constants μ >  and r >  such that

(∇F(t, x), x
)≥ μF(t, x), ∀|x| ≥ r, t ∈ R

and
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(H)′ there exist ϑ >  and μ > ϑ –  such that

lim sup
|x|→∞

F(t, x)
|x|ϑ < ∞ uniformly for all t ∈R,

lim inf|x|→∞
(∇F(t, x), x) – F(t, x)

|x|μ >  uniformly for all t ∈R,

combining with (H) (or (H)′), imply (H). Hence, Theorem .-Theorem . still hold
on replacing (H) with (H)′ or replacing (H) and (H) (or (H)′) with (AR).

Remark . When P(t) ≡ IN×N , V only contains a frequency π/T and F(t, x) is periodic
in t with period T , Theorem . and Theorem . reduce to Theorem . and Theorem .
with p =  in [], respectively. In other words, we generalize Theorem . and Theo-
rem . with p =  in [] from the periodic case to the quasi-periodic case.

2 Preliminaries
In [], we presented the following two lemmas.

Lemma . (see [], Lemma .) If u ∈ V , then

u(t) =
p∑

j=

uj(t) ∈ AP(
R

N),

where

uj(t) =
+∞∑

m=–∞
a
(
u,λ(j)

m
)
eiλ(j)

m t , λ(j)
m :=

mπ

Tj
∈ 	j

and

‖u‖∞ ≤
√√√
√p +

p∑

j=

T
j


‖u‖B,(RN ). (.)

Lemma . (see [], Lemma .) If u ∈ V and

lim
T→∞


T

∫ T

–T
u(t) dt = , (.)

then

‖u‖∞ ≤
√√
√√

p∑

j=

T
j


‖∇u‖ (.)

and

‖u‖ ≤ max

{
Tj

π

∣∣
∣j = , . . . , p

}
‖∇u‖. (.)
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Next we denote

C∗ = max

{
Tj

π

∣∣
∣j = , . . . , p

}
, C∗ =

√√
√√

p∑

j=

T
j


, C∗∗ =

√√
√√p +

p∑

j=

T
j


.

Define

Ṽ =
{

u ∈ V
∣
∣∣ lim

T→∞


T

∫ T

–T
u(t) dt = 

}

and

V̄ =
{

u|u ∈ V ∩R
N}.

Then V = Ṽ ⊕ V̄ . For u ∈ V , u can be written as u = ū + ũ, where

ū = lim
T→∞


T

∫ T

–T
u(t) dt ∈ V̄ .

It is easy to verify that

lim
T→∞


T

∫ T

–T
ũ(t) dt = .

Then ũ ∈ Ṽ . On V , we define the norm

‖u‖ :=
(‖ū‖

 + ‖∇u‖

)/ =

(|ū| + ‖∇u‖

)/.

Lemma . On V , the norm ‖u‖B,(RN ) is equivalent to the norm ‖u‖.

Proof Note that

lim
T→∞


T

∫ T

–T

(
ū, ũ(t)

)
dt = .

Then it follows from (.) that

lim
T→∞


T

∫ T

–T

∣
∣u(t)

∣
∣ dt = lim

T→∞


T

∫ T

–T

∣
∣ū + ũ(t)

∣
∣ dt

= |ū| + lim
T→∞


T

∫ T

–T

∣
∣ũ(t)

∣
∣ dt

≤ |ū| +
(
C∗)‖∇u‖

.

Thus by the Hölder inequality, we have

‖u‖B,(RN ) =
{

lim
T→∞


T

∫ T

–T

∣∣u(t)
∣∣ dt + lim

T→∞


T

∫ T

–T

∣∣∇u(t)
∣∣ dt

}/

≤ {|ū| +
(
C∗)‖∇u‖

 + ‖∇u‖

}/
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≤ [(C∗) + 
]/{|ū| + ‖∇u‖


}/

=
[(

C∗) + 
]/‖u‖.

Moreover, by the Hölder inequality, we also have

|ū| =
∣∣
∣∣ lim
T→∞


T

∫ T

–T
u(t) dt

∣∣
∣∣

≤ lim
T→∞


T

∫ T

–T

∣∣u(t)
∣∣dt

≤ lim
T→∞

√
T

(∫ T

–T

∣∣u(t)
∣∣ dt

)/

=
(

lim
T→∞


T

∫ T

–T

∣∣u(t)
∣∣ dt

)/

.

Hence, we have

‖u‖ =
(|ū| + ‖∇u‖


)/ ≤ ‖u‖B,(RN ).

Thus we complete the proof. �

Lemma . (see [], Lemma .) For any {un} ⊂ V , if the sequence {un} converges weakly
to u, then {un} converges uniformly to u on any compact subset of R.

Lemma . (see [], Lemma .) Suppose (P)′ holds and F satisfies (f)-(f). Then the
functional ϕ : V → R, defined by

ϕ(u) = lim
T→∞


T

∫ T

–T

[


(
P(t)∇u(t),∇u(t)

)
– F
(
t, u(t)

)]
dt (.)

is continuously differentiable on V , and ϕ′(u) is defined by

〈
ϕ′(u), v

〉
= lim

T→∞


T

∫ T

–T

[(
P(t)∇u(t),∇v(t)

)
–
(∇F

(
t, u(t)

)
, v(t)

)]
dt, (.)

for v ∈ V . Moreover, if u is a critical point of ϕ in V , then

∇(P(t)∇u(t)
)

+ ∇F
(
t, u(t)

)
= . (.)

Definition . When u satisfies (.), we say that u is a weak solution of system (.).

We shall use one linking method to obtain the critical points of ϕ (the details can be
found in []). Let (E,‖ · ‖) be a Banach space and let � be the set of all continuous maps
� = �(t) from E × [, ] to E such that:

() �() = I , the identity map.
() For each t ∈ [, ), �(t) is a homeomorphism of E onto E and

�–(t) ∈ C(E × [, ), E).
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() �()E is a single point in E and �(t)A converges uniformly to �()E as t →  for
each bounded set A ⊂ E.

() For each t ∈ [, ) and each bounded set A ⊂ E,

sup
≤t≤t,u∈A

{∥∥�(t)u
∥
∥ +
∥
∥�–(t)u

∥
∥} < ∞.

Definition . (see [], Definition .) We say that A links B [hm] if A and B are subsets
of E such that A∩B = ∅, and for each �(t) ∈ �, there is a t′ ∈ (, ] such that �(t′)A∩B �= ∅.

The following lemma will be used to prove our Theorem . and Theorem ..

Lemma . (see [], Theorem . and Theorem .) Let E be a Banach space, ϕ ∈
C(E,R) and A and B two subsets of E such that A links B [hm]. Assume that

sup
A

ϕ ≤ inf
B

ϕ

and

c := inf
�∈�

sup
s∈[,],u∈A

ϕ
(
�(s)u

)
< ∞.

Let ψ(t) be a positive, nonincreasing, locally Lipschitz continuous function on [,∞) sat-
isfying

∫∞
 ψ(r) dr = ∞. Then there exists a sequence {un} ⊂ E such that ϕ(un) → c and

ϕ′(un)/ψ(‖un‖) → , as n → ∞. Moreover, if c = supA ϕ, then there is a sequence {un} ⊂ E
satisfying ϕ(un) → c, ϕ′(un) → , and d(un, B) → , as n → ∞.

Remark . Since A links B [hm], by Definition ., it is easy to know that c ≥ infB ϕ.
By [], if we let ψ(r) ≡ , the sequence {un} coincides with (PS) sequence, that is, {un}
satisfies

ϕ(un) → c, ϕ′(un) →  as n → ∞.

If we let ψ(r) = 
+r , the sequence {un} is the Cerami sequence, that is, {un} satisfies

ϕ(un) → c,
(
 + ‖un‖

)∥∥ϕ′(un)
∥∥→  as n → ∞.

We will use the symmetric mountain pass theorem (see [], Theorem .) to prove
Theorem . and Theorem ..

Remark . As shown in [], a deformation lemma can be proved with replacing the
usual (PS)-condition with the (C)-condition, and it turns out that the symmetric moun-
tain pass theorem in [] is true under the (C)-condition. We say that ϕ satisfies the
(C)-condition, i.e. for every sequence {un} ⊂ E, {un} has a convergent subsequence if ϕ(un)
is bounded and ( + ‖un‖)‖ϕ′(un)‖ →  as n → ∞.

3 Proofs
Lemma . Assume that (P)′ and (H) hold. Then there exist � >  and b >  such that
infu∈B ϕ(u) ≥ b > , where B = Ṽ ∩ ∂B� and ∂B� = {u ∈ V|‖u‖ = �}.
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Proof It follows from (H) that there exist  < ε < m
(C∗) and r >  such that

F(t, x) ≤ ε|x|, for all |x| < r, t ∈ R. (.)

Note that in Ṽ , ‖u‖ = ‖∇u‖. Let � = r/C∗. Then it follows from (.) that, for all u ∈
Ṽ ∩ ∂B� , we have ‖u‖∞ ≤ r. Hence, by (P)′, (.), and (.), we obtain, for all u ∈ Ṽ ∩ ∂B� ,

ϕ(u) = lim
T→∞


T

∫ T

–T

[


(
P(t)∇u(t),∇u(t)

)
– F
(
t, u(t)

)
]

dt

≥ m


lim
T→∞


T

∫ T

–T

∣
∣∇u(t)

∣
∣ dt – ε lim

T→∞


T

∫ T

–T

∣
∣u(t)

∣
∣ dt

≥ m


‖∇u‖
 – ε

(
C∗)‖∇u‖



=
(

m


– ε
(
C∗)

)
� := b > .

The proof is complete. �

Lemma . Assume that (P)′ and (H)′ hold. Then there exist � >  and b >  such that
infu∈B ϕ(u) ≥ b > , where B = Ṽ ∩ ∂B� and ∂B� = {u ∈ V|‖u‖ = �}.

Proof Note that in Ṽ , ‖u‖ = ‖∇u‖. Let � = l/C∗. Then it follows from (.) that, for all
u ∈ Ṽ ∩ ∂B� , we have ‖u‖∞ ≤ l. Hence, by (P)′ and (H)′, we see that, for all u ∈ Ṽ ∩ ∂B� ,

ϕ(u) = lim
T→∞


T

∫ T

–T

[


(
P(t)∇u(t),∇u(t)

)
– F
(
t, u(t)

)
]

dt

≥ m


‖∇u‖
 – lim

T→∞


T

∫ T

–T
α(t) dt

=
ml

C∗
– lim

T→∞


T

∫ T

–T
α(t) dt := b > .

The proof is complete. �

Lemma . Assume that (P)′, (H), and (H) hold. Then there exists a sufficiently large
positive constant � such that supA ϕ ≤ , where

A =
{

x ∈R
N : ‖x‖ ≤ �

}∪ {sw + x : x ∈ R
N , s ≥ , w ∈ Ṽ ,‖sw + x‖ = �

}
.

Proof At first, by (H), it is easy to obtain

ϕ(x) = lim
T→∞


T

∫ T

–T
F(t, x) dt ≤ . (.)

Let

w =

( p∑

j=

sin
π t
Tj

, , . . . , 

)τ

.
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Then ∇w = (
∑p

j=
π
Tj

cos π t
Tj

, , . . . , )τ ,

lim
T→∞


T

∫ T

–T

∣∣w(t)
∣∣ dt

= lim
T→∞


T

∫ T

–T

[ p∑

j=

sin π t
Tj

+
∑

i,j=,...,p,i�=j

sin
π t
Ti

sin
π t
Tj

]

dt

=
p∑

j=

lim
T→∞


T

∫ T

–T
sin π t

Tj
dt +

∑

i,j=,...,p,i�=j

lim
T→∞


T

∫ T

–T
sin

π t
Ti

sin
π t
Tj

dt

=



and

lim
T→∞


T

∫ T

–T

∣
∣∇w(t)

∣
∣ dt

= lim
T→∞


T

∫ T

–T

[ p∑

j=

π

T
j

cos π t
Tj

+
∑

i,j=,...,p,i�=j

π

TiTj
cos

π t
Ti

cos
π t
Tj

]

dt

=
p∑

j=

lim
T→∞


T

∫ T

–T

π

T
j

cos π t
Tj

dt

+
∑

i,j=,...,p,i�=j

lim
T→∞


T

∫ T

–T

π

TiTj
cos

π t
Ti

cos
π t
Tj

dt

=
p∑

j=

π

T
j

.

Obviously, w ∈ B,(RN ). Note that, for all j ∈ {, . . . , p}, we have

lim
T→∞


T

∫ T

–T
cosλt sin

π t
Tj

dt

= lim
T→∞


T

[∫ T

–T
cos

(
λ +

π

Tj

)
t dt –

∫ T

–T
sin

(
λ –

π

Tj

)
t dt
]

=

⎧
⎨

⎩

 as λ �= – π
Tj

,

 as λ = – π

Tj

and

lim
T→∞


T

∫ T

–T
sinλt sin

π t
Tj

dt

= – lim
T→∞


T

[∫ T

–T
cos

(
λ +

π

Tj

)
t dt –

∫ T

–T
cos

(
λ –

π

Tj

)
t dt
]

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

 as λ �= ± π
Tj

,

 as λ = π

Tj
,

– 
 as λ = – π

Tj
.
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Hence, for all j ∈ {, . . . , p}, we have

a(w,λ) = lim
T→∞


T

∫ T

–T
e–iλtw(t) dt

=

(

lim
T→∞


T

∫ T

–T

( p∑

j=

e–iλt sin
π t
Tj

)

dt, , . . . , 

)τ

=

( p∑

j=

lim
T→∞


T

∫ T

–T
(cosλt – i sinλt) sin

π t
Tj

dt, , . . . , 

)τ

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

 as λ �= ± π
Tj

,

(– ip
 , , . . . , )τ as λ = π

Tj
,

( p
 + ip

 , , . . . , )τ as λ = – π
Tj

,

which implies that 	(w) = {± π
Tj

|j = , . . . , p}. Obviously, 	(w) ⊂ 	. So w ∈ V . More-
over, the equality

lim
T→∞


T

∫ T

–T
w(t) dt =

(

lim
T→∞


T

∫ T

–T

( p∑

j=

sin
π t
Tj

)

dt, , . . . , 

)τ

= 

implies that w ∈ Ṽ . By (H), there exist β > ‖P‖∑p
j=

π

T
j

and r >  such that

F(t, x) ≥ β|x|, ∀|x| ≥ r. (.)

Since F(t, ·) is almost periodic in t uniformly for x ∈ R
N , there exists M >  such that

|F(t, x)| ≤ M for all t ∈ R and |x| ≤ r. Then by (.), we have

F(t, x) ≥ β|x| – βr
 – M. (.)

It follows from (.) and (P)′ that

ϕ(x + sw)

= lim
T→∞


T

∫ T

–T

[
s


(
P(t)∇w(t),∇w(t)

)
– F
(
t, x + sw(t)

)]
dt

≤ ‖P‖s


lim

T→∞


T

∫ T

–T

∣∣∇w(t)
∣∣ dt

– β lim
T→∞


T

∫ T

–T

∣∣x + sw(t)
∣∣ dt + βr

 + M

=
‖P‖s


lim

T→∞


T

∫ T

–T

∣∣∇w(t)
∣∣ dt – β lim

T→∞


T

∫ T

–T
|x| dt

– βs lim
T→∞


T

∫ T

–T

∣
∣w(t)

∣
∣ dt + βr

 + M

≤ ‖P‖s



p∑

j=

π

T
j

–
β


s – β|x| + βr

 + M,
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which, together with β > ‖P‖∑p
j=

π

T
j

, implies that

ϕ(x + sw) → –∞ as s + |x| → +∞. (.)

Thus (.) and (.) implies our conclusion. �

Lemma . Assume that (P)′, (H), and (H) hold. Then any Cerami sequence {un} has
a convergent subsequence in V .

Proof Assume that there exists a positive constant C such that

∣
∣ϕ(un)

∣
∣≤ C,

(
 + ‖un‖

)∥∥ϕ′(un)
∥
∥≤ C, for all n ∈ N. (.)

By (H), we have

[(∇F(t, x), x
)

– F(t, x)
](

ζ + η|x|ν)≥ F(t, x), ∀x ∈ R
N , |x| > L, t ∈R. (.)

Then by (f), (f), and (.), there exists a constant C >  such that

[(∇F(t, x), x
)

– F(t, x)
](

ζ + η|x|ν)≥ F(t, x) – C, ∀x ∈ R
N , t ∈R. (.)

It follows from (.) and (.) that there exist C >  and C >  such that

(∇F(t, x), x
)

– F(t, x) ≥ F(t, x) – C

ζ + η|x|ν

≥ β|x| – βr
 – M – C

ζ + η|x|ν
≥ C|x|–ν – C, ∀x ∈R

N . (.)

Hence, by (.), we have

C ≥ ϕ(un) –
〈
ϕ′(un), un

〉

= lim
T→∞


T

∫ T

–T

[(∇F
(
t, un(t)

)
, un(t)

)
– F

(
t, un(t)

)]
dt

≥ C lim
T→∞


T

∫ T

–T

∣∣un(t)
∣∣–ν dt – C. (.)

This shows that limT→∞ 
T
∫ T

–T |un(t)|–ν dt is bounded. It follows from (.) and (.) that

[(∇F(t, x), x
)

– F(t, x)
](

ζ + η|x|ν)≥ F(t, x) ≥ β|x| > , ∀|x| > L + r, t ∈R. (.)

By (P)′, (f), (f), (.), (.), and (.), we have

min{m, }


‖un‖
B,(RN )

≤ lim
T→∞


T

∫ T

–T



(
P(t)∇u(t),∇u(t)

)
dt + lim

T→∞


T

∫ T

–T



∣∣un(t)

∣∣ dt
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= ϕ(un) + lim
T→∞


T

∫ T

–T
F
(
t, un(t)

)
dt + lim

T→∞


T

∫ T

–T



∣∣un(t)

∣∣ dt

≤ C + lim
T→∞


T

∫ T

–T

∣∣un(t)
∣∣ dt + C

+ lim
T→∞


T

∫ T

–T

(
ζ + η

∣∣un(t)
∣∣ν)[(∇F

(
t, un(t)

)
, un(t)

)
– F

(
t, un(t)

)]
dt

≤ C + lim
T→∞


T

∫ T

–T

∣
∣un(t)

∣
∣ dt + C

+ lim
T→∞


T

∫

{t∈[–T ,T]:|un(t)|≤L+r}

(
ζ + η

∣∣un(t)
∣∣ν)

× [(∇F
(
t, un(t)

)
, un(t)

)
– F

(
t, un(t)

)]
dt

+ lim
T→∞


T

∫

{t∈[–T ,T]:|un(t)|>L+r}

(
ζ + η

∣∣un(t)
∣∣ν)

× [(∇F
(
t, un(t)

)
, un(t)

)
– F

(
t, un(t)

)]
dt

≤ C + lim
T→∞


T

∫ T

–T

∣∣un(t)
∣∣ dt + C + C +

(
ζ + η‖un‖ν

∞
)

× lim
T→∞


T

∫

{t∈[–T ,T]:|un(t)|>L+r}

[(∇F
(
t, un(t)

)
, un(t)

)
– F

(
t, un(t)

)]
dt

= C + lim
T→∞


T

∫ T

–T

∣
∣un(t)

∣
∣ dt + C + C +

(
ζ + η‖un‖ν

∞
)

× lim
T→∞


T

∫ T

–T

[(∇F
(
t, un(t)

)
, un(t)

)
– F

(
t, un(t)

)]
dt –

(
ζ + η‖un‖ν

∞
)

× lim
T→∞


T

∫

{t∈[–T ,T]:|un(t)|≤L+r}

[(∇F
(
t, un(t)

)
, un(t)

)
– F

(
t, un(t)

)]
dt

≤ C + ‖un‖ν
∞ lim

T→∞


T

∫ T

–T

∣∣un(t)
∣∣–ν dt + C + C

+ C
(
ζ + η‖un‖ν

∞
)

+ C
(
ζ + η‖un‖ν

∞
)

≤ C +
Cν∗∗


‖un‖ν

B,(RN ) lim
T→∞


T

∫ T

–T

∣
∣un(t)

∣
∣–ν dt + C + C

+ C
(
ζ + ηCν

∗∗‖un‖ν

B,(RN )

)
+ C

(
ζ + ηCν

∗∗‖un‖ν

B,(RN )

)
, (.)

where C and C are positive constants. ν <  and m > , (.), and the boundedness of
limT→∞ 

T
∫ T

–T |un(t)|–ν dt imply that ‖un‖ is bounded. Similar to the argument in []
and [], we see that there exists a subsequence, still denoted by {un}, and u∗ ∈ V such
that ‖un – u∗‖B,(RN ) →  in V . By Lemma ., we have ‖un – u∗‖ →  in V . �

Proof of Theorem . Lemma ., Lemma . and Example  of Section . in [] imply
that A links B [hm]. Lemma . and Remark . imply that there is a Cerami sequence
{un}, that is, there is a sequence {un} satisfying

ϕ(un) → c,
(
 + ‖un‖

)∥∥ϕ′(un)
∥∥→  as n → ∞.
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Then by Lemma ., we know that there exists a subsequence, still denoted by {un},
and u∗ ∈ V such that ‖un – u∗‖ →  in V . Since ‖ϕ′(un)‖ →  and ϕ′(·) is continuous,
ϕ′(u∗) = . Hence u∗ is a solution of system (.) and by the continuity of ϕ(·), Remark .
and Lemma ., we know that ϕ(u∗) = c ≥ infB ϕ > . Obviously, by (H), it is easy to see
that u∗ /∈R

N . Thus we complete the proof. �

Proof of Theorem . The proof is easy to complete by replacing Lemma . with Lem-
ma . in the proof of Theorem .. �

Lemma . Assume that (P)′ and (H)′ hold. Then for each finite dimensional space V̂ ⊂
V , there exists R >  such that ϕ(u) ≤  on V̂/BR.

Proof In fact, since V̂ is finite dimensional, all norms on V̂ are equivalent. Hence, there
exist d, d >  such that

d‖u‖ ≤ lim
T→∞


T

∫ T

–T

∣∣u(t)
∣∣ dt ≤ d‖u‖. (.)

By (H)′, we know that there exist constants β > ‖P‖
d

and r >  such that

F(t, x) ≥ β|x|, ∀|x| ≥ r, t ∈R. (.)

It follows from (f) and (.) that there exists C >  such that

F(t, x) ≥ β|x| – C, ∀x ∈R
N , t ∈R. (.)

Then by (P)′, (.), and (.), we have

ϕ(u) = lim
T→∞


T

∫ T

–T

[


(
P(t)∇u(t),∇u(t)

)
– F
(
t, u(t)

)
]

dt

≤ ‖P‖


lim
T→∞


T

∫ T

–T

∣
∣∇u(t)

∣
∣ dt – β lim

T→∞


T

∫ T

–T

∣
∣u(t)

∣
∣ dt + C

≤ ‖P‖


‖u‖ – βd‖u‖ + C.

Note that β > ‖P‖
d

. So ϕ(u) → –∞, as ‖u‖ → ∞. Thus we complete the proof. �

Proof of Theorem . (and Theorem .) By (H), we know that ϕ is even and ϕ() = .
Since (H)′ implies that (H), Lemma . on replacing (H) with (H)′ still holds. Then
by Lemma . (Lemma . corresponding to Theorem .), Lemma ., Lemma ., Re-
mark ., and the symmetric mountain pass theorem, we see that ϕ possesses an un-
bounded sequence of critical values. Thus we complete the proof. �
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