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Abstract
In this study, by a parametric representation of interval numbers, two parametric
representations for interval-valued functions are presented. Then, using these
representations, the calculus of interval-valued functions and interval differential
equations are investigated with two different approaches. In the first approach, the
interval differential is transformed into a crisp problem. In the second approach, two
solutions are obtained with the characterization of the solutions of two ordinary
differential equation systems.
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1 Introduction
The interval-valued analysis and interval differential equations are specific cases of set-
valued analysis and set differential equations, respectively [–]. Interval analysis is intro-
duced as an attempt to handle interval uncertainty, while interval differential equations
are natural models for describing dynamic systems under uncertainty, and this approach
is useful in many applications areas, such as physics and engineering [, ]. As in classical
real analysis, the importance of the derivative of an interval-valued function in the study
of interval differential equations is well known. On the other hand, the inversions of addi-
tion and multiplication are fundamental in interval arithmetic, interval analysis, and the
concept of interval differentiability.

In interval arithmetic, standard Minkowski addition and multiplication are not invert-
ible operations, and the idea of finding some inverse operations has been a field that has
long been of interest [–]. The Hukuhara difference, which was introduced by Hukuhara
in [], has been a starting point for this purpose, which exists under restrictive condi-
tions; for more details, see []. To overcome this shortcoming, Stefanini and Bede [] pro-
posed the generalized Hukuhara difference of two interval numbers, which has a large
advantage over the peer concept, namely, that it always exists. In a similar discussion, the
concept of Hukuhara derivative is extended to the generalized Hukuhara derivative. The
same remark holds if the concept of differentiability for differential equations in the in-
terval setting is regarded. The diameter of the solution of an interval differential equation
with a Hukuhara derivative is a nondecreasing function with respect to (w.r.t.) time [].
The generalized Hukuhara differentiability for an interval-valued function allows us to
obtain the solutions to interval differential equations with a decreasing diameter [, ].
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Recently, several studies [, ] have been performed on generalized Hukuhara differen-
tiability.

A key point in our investigation is the parametric representations for interval numbers.
By this notation, interval arithmetic operations are defined, and two parametric represen-
tations for interval-valued functions are expressed. The results are applied to introduce
the concepts of the derivative and integral of interval-valued functions. Additionally, sev-
eral properties of the new concepts are investigated and compared with other recently
presented results. Moreover, the relationship between the new interval derivative and the
interval integral is studied, and Newton-Leibniz type formulas are nontrivially extended
to the interval case. Finally, an application to solve interval differential equations is shown
in two different aspects: in the first approach, the interval problem has a unique solution,
which is obtained by solving an ordinary differential equation, and the results in the sec-
ond approach are equivalent to the obtained results using the gH-differentiability concept.
Furthermore, the existence and uniqueness of the solutions are discussed.

This paper is organized in five sections. In Section , the parametric representations
of interval numbers are defined, and interval arithmetic operations are presented. The
interval-valued functions in the parametric form and their properties, derivatives, inte-
grals and the relations between them are studied in Section . Section  describes an ap-
plication of the new results to interval differential equations, and the paper ends with
conclusions in Section .

2 Arithmetic of intervals
In this section, some basic definitions and existing arithmetic operations between inter-
vals in the parametric form are presented. Let Kc be the space of nonempty compact and
convex sets of R, i.e.,

Kc =
{

[a, b] | a, b ∈R and a ≤ b
}

.

Suppose A = [a, a] ∈ Kc, where a and a mean the lower and upper bounds of A, respec-
tively. Obviously, two parametric representations for any A ∈ Kc can be considered:

i. A = {a(t) | a(t) = a + t(a – a), t ∈ [, ]} (increasing representation or IR),
ii. A = {a(t) | a(t) = a + t(a – a), t ∈ [, ]} (decreasing representation or DR).

Definition . Let {a(t) | t ∈ [, ]} and {b(t) | t ∈ [, ]} be the IRs (DRs) of A = [a, a] and
B = [b, b], respectively, and λ be a real number. The parametric arithmetics in Kc can be
defined as

. A ⊕ B = {a(t) + b(t) | t, t ∈ [, ]},
. A ⊗ B = {a(t)b(t) | t, t ∈ [, ]},
. A � B = {a(t)/b(t) | b(t) �= , t, t ∈ [, ]},
. λ � A = {λa(t) | t ∈ [, ]},
. A 	p B = {a(t) – b(t) | t ∈ [, ]},
. A = B ⇔ {a(t) | t ∈ [, ]} = {b(t) | t ∈ [, ]}.

Remark . Note that if A has IR (DR) and λ ≥ , then λ � A has IR (DR), and if A has
IR (DR) and λ ≤ , then λ � A has DR (IR). Moreover, if a(t) – b(t) is an increasing (a de-
creasing) function, then A 	p B has IR (DR).
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Remark . By Definition ., two intervals A and B are equal if and only if a(t) = b(t), for
all t ∈ [, ].

Example . Assume that A = [–, ] and B = [, ]. According to IR

A =
{

– + t | t ∈ [, ]
}

, B =
{

 + t | t ∈ [, ]
}

,

and thus
. A ⊕ B = {(– + t) + ( + t) | t, t ∈ [, ]} = {t + t | t, t ∈ [, ]}, because

t + t is a continuous function w.r.t. t, t,
A ⊕ B = [mint,t t + t, maxt,t t + t] = [, ],

. A ⊗ B = {(– + t)( + t) | t, t ∈ [, ]} = [–, ], because of continuity of the
function – – t + t + tt w.r.t. t, t,

. A � B = {(– + t)/( + t) | t, t ∈ [, ]} = [–, ],
. – � A = {–(– + t) | t ∈ [, ]} = { – t | t ∈ [, ]}, due to the decreasing function

 – t and DR, – � A = [–, ],
. A 	p B = {(– + t) – ( + t) | t ∈ [, ]} = {– – t | t ∈ [, ]} = [–, –], from DR,
. B 	p A = {( + t) – (– + t) | t ∈ [, ]} = { + t | t ∈ [, ]} = [, ], from IR.

If λ = –, then the interval (–)A gives the additive inverse of A, which is denoted by –A,
where –A = {–a(t) | t ∈ [, ]}. Note that, generally, A ⊕ (–)A �= {}. Therefore, another
difference, A – B = A ⊕ (–)B, which is constructed with the following parametric form,
can be defined:

A – B =
{

a(t) – b(t) | a(t) = a + t(a – a), b(t) = b + t(b – b), t, t ∈ [, ]
}

.

Because a(t) – b(t) is a continuous function w.r.t. t and t, we have

A – B =
[

min
t,t∈[,]

(
a(t) – b(t)

)
, max

t,t∈[,]

(
a(t) – b(t)

)]
.

If A = [a, a] and B = [b, b], then a(t) – b(t) = a – b + t(a – a) – t(b – b), thus

min
t,t∈[,]

(
a(t) – b(t)

)
= a – b – (b – b) = a – b

and

max
t,t∈[,]

(
a(t) – b(t)

)
= a – b + (a – a) = a – b.

Hence, A – B = [a – b, a – b], which is the same as the Minkowski difference []. Note that,
in general, (A ⊕ B) – B �= A, while this equality is valid for the parametric difference.

Remark . Obviously, A 	p B = A – B and B 	p A = B – A, whenever A ∈R and B ∈ Kc.

Proposition . The parametric difference 	p has the following properties:
(i) A 	p A = {},

(ii) A 	p B = –(B 	p A),
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(iii) (A ⊕ B) 	p B = A, A 	p (A ⊕ B) = –B, A 	p (A – B) = B,
(iv) A 	p B = B 	p A if and only if C = –C and A 	p B = C, and particulary C = {} if

and only if A = B,
(v) A ⊕ (B 	p A) = B or B – (B 	p A) = A,

(vi) if A 	p B has IR (DR) and A 	p B = C, then A 	p C = B (A – C = B),
(vii) if A – B = C, then A 	p C = B.

Proof Suppose A = [a, a] = {a(t) | a(t) = a + t(a – a)} and B = [b, b] = {b(t) | b(t) = b +
t(b – b)}. Property (i) is an immediate consequence of Definition .. To prove (ii), one
has to show that

{
a(t) – b(t) | t ∈ [, ]

}
=

{
–
(
b(t) – a(t)

) | t ∈ [, ]
}

,

which can be obtained as

{
a(t) – b(t) | t ∈ [, ]

}
=

{
a + t(a – a) – b – t(b – b) | t ∈ [, ]

}

=
{

–
(
b – a – t(a – a) + t(b – b)

) | t ∈ [, ]
}

=
{

–
(
b + t(b – b) –

(
a + t(a – a)

)) | t ∈ [, ]
}

=
{

–
(
b(t) – a(t)

) | t ∈ [, ]
}

.

The first part of (iii) is evidently proved by

(A⊕B)	p B =
{

a+b+t
(
(a+b)–(a+b)

)
–b–t(b–b) | t ∈ [, ]

}
=

{
a(t) | t ∈ [, ]

}
= A.

The second part of (iii) follows from a similar argument. To prove the third part, it is
sufficient to note that A – B = [a – b, a – b]. To denote the first part of (vi), suppose A	p B =
B 	p A; then by Definition .

{
a(t) – b(t) | t ∈ [, ]

}
=

{
b(t) – a(t) | t ∈ [, ]

}
.

On the other hand, A 	p B = C, and thus it follows that {c(t) | t ∈ [, ]} = {–c(t) | t ∈
[, ]}. This gives C = –C, which proves our assertion, and because of property (ii) the
reverse holds true. For the second part of (vi), from C = {} and A 	p B = C, it can be
concluded that {a(t) – b(t) | t ∈ [, ]} = {}, and thus, by Remark ., it can be deduced
that a(t) – b(t) =  and a(t) = b(t), for all t ∈ [, ]. Hence,

{
a(t) | t ∈ [, ]

}
=

{
b(t) | t ∈ [, ]

}
,

which shows A = B. Conversely, let A = B; thus by property , C = A 	p B = {}. To deduce
(v), if B 	p A has IR then A ⊕ (B 	p A) = B, and if it has DR, then B – (B 	p A) = A. Next,
let us to prove (vi). First, consider that A 	p B = C has IR thus C = A 	p B = {c(t) | c(t) =
a(t) – b(t) = a – b + t(a – a – b – b)}, where a – a – b – b is positive. Therefore,

A 	p C =
{

a(t) – c(t) | t ∈ [, ]
}

=
{

a + t(a – a) –
(
a – b + t(a – a – b – b)

) | t ∈ [, ]
}

=
{

b + t(b – b) | t ∈ [, ]
}

= B.
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With a similar argument as above, one can prove the second case. To see (vii), assume that
A – B = C. Thus, C = [a – b, a – b], and by Definition .

A 	p C =
{

a(t) – c(t) | t ∈ [, ]
}

=
{

a + t(a – a) –
(
a – b + t(a – b – a + b)

) | t ∈ [, ]
}

=
{

b + t(b – b) | t ∈ [, ]
}

= B.

The last equality follows from DR of B. �

Stefanini [] proposed a generalization of the Hukuhara difference for interval numbers,
namely gH-difference. In the next preposition, it will be shown that the concepts of gH-
difference and parametric difference are equivalent. So the parametric difference is equiv-
alent with the concept of difference defined by Markov [] and with π-difference [].

Proposition . The parametric difference is equivalent to the gH-difference.

Proof Let A = [a, a], B = [b, b], and C = [c, c] = A 	p B. It is sufficient to show that c =
min{a – b, a – b} and c = max{a – b, a – b}. There are two cases, which are dependent on
whether the function a(t) – b(t) = a – b + t(a – a – b – b) is increasing or decreasing w.r.t. t.

. In the increasing case, we have a – b ≥ a – b and by IR, and thus

c = a – b = min{a – b, a – b},
c – c = a – a – b + b ⇒ c = a – b = max{a – b, a – b}.

. In the decreasing case, we have a – b ≤ a – b and by DR, it can be concluded that

c = a – b = max{a – b, a – b},
c – c = a – a – b + b ⇒ c = a – b = min{a – b, a – b},

which is the desired conclusion. �

Proposition . For any two intervals A, B ∈ Kc, the parametric difference A 	p B = C
always exists and is unique.

Proof Clearly, from the definition of a parametric difference

C =
{

a(t) – b(t) | a(t) – b(t) = a – b + t
(
a – b – (a – b)

)
, t ∈ [, ]

}
.

First, suppose that a(t) – b(t) be an increasing function. Then a – b ≥ a – b and by Re-
mark . the interval number C has IR and C = [a – b, a – b], which is a unique interval
in Kc. Secondly, suppose a(t) – b(t) be a decreasing function then the assertion can be
proved in a similar way. �

For arbitrary intervals A, B ∈ Kc, the metric D : Kc × Kc → R+ ∪ {} is defined as

D(A, B) = max
{

min
t

∣∣a(t) – b(t)
∣∣, max

t

∣∣a(t) – b(t)
∣∣
}

, ()

where A = {a(t) | a(t) = a + t(a – a), t ∈ [, ]} and B = {b(t) | b(t) = b + t(b – b), t ∈ [, ]}.
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Proposition . (Kc, D) is a complete metric space that have following properties:
. D(A ⊕ C, B ⊕ C) = D(A, B),
. D(λA,λB) = |λ|D(A, B),
. D(A ⊕ B, C ⊕ E) ≤ D(A, C) + D(B, E),
. D(A, B) = D(A 	p B, {}).

Proof We prove only the final part; the other parts are trivial. Suppose

D
(
A 	p B, {}) = max

{
min

t

∣∣c(t)
∣∣, max

t

∣∣c(t)
∣∣
}

,

where C = A 	p B and c(t) is IR of C. If a(t) – b(t) is an increasing function, then c(t) =
a(t) – b(t) and D(A 	p B, {}) = D(A, B). If a(t) – b(t) is a decreasing function, then

max
t

∣∣c(t)
∣∣ = min

t

∣∣a(t) – b(t)
∣∣, min

t

∣∣c(t)
∣∣ = max

t

∣∣a(t) – b(t)
∣∣,

and D(A 	p B, {}) = D(A, B). �

The Hausdorff distance between two intervals A = [a, a], B = [b, b] is defined as follows
(see []):

DH (A, B) =
{|a – b|, |a – b|}

Proposition . The Hausdorff distance is equivalent to the metric D in ().

Proof The proof is clearly depending on whether a(t)–b(t) is an increasing or a decreasing
function. �

3 Parametric representation of interval-valued function
Let F : T ⊆ R → Kc be an interval-valued function with lower bound f and upper bound
f , i.e., F(x) = [f (x), f (x)]. Then it is trivial to see that a parametric representation of F(x) is

{
f (x) + t

(
f (x) – f (x)

) | t ∈ [, ]
}

. ()

An interval-valued function with real independent variable and interval coefficients is spe-
cial case of F : T ⊆ R → Kc. Using IRs of coefficients, it is possible to write this function
as a set of classical functions. As an example, consider F(x) = [–, ] � x ⊕ [–, –] � x ⊗
e[,]�x ⊕ sin([, ] � x). If C

ν = ([–, ], [–, –], [, ], [, ])T is a column vector in (Kc),
whose elements are intervals which, respectively, appear in the function F , then by IRs

C
ν =

{
(– + t, – + t,  + t,  + t)T | t = (t, t, t, t) ∈ [, ]}.

Hence, F(x) can be redefined as

FC
ν
(x) =

{
fc(t)(x) | fc(t)(x) = (– + t)x + (– + t)xe(+t)x

+ sin
(
( + t)x

)
; c(t) ∈ C

ν

}
.
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In the light of the concept of this example, if Ck
ν ∈ (Kc)k denotes the intervals that are

presented in an interval-valued function, then another parametric representation for this
class of function, i.e., FCk

ν
: T ⊆R → Kc, can be written as

FCk
ν
(x) =

{
fc(t)(x) | fc(t) : T ⊆ R→R; c(t) ∈ Ck

ν

}
, ()

where Ck
ν = {c(t) | c(t) = (c(t), c(t), . . . , ck(tk))T ; cj(tj) = cj + tj(cj – cj), t = (t, t, . . . , tk) ∈

[, ]k}. Clearly, fc(t)(x) is a continuous function in t for every fixed x.
Note that the parametric variables tj, j = , , . . . , k in () are real numbers in the interval

[, ]; however, the parameter t in () is a function of x, i.e., t : R → [, ]. For more precise
look, consider the interval-valued function FC

ν
(x) = [, ] � x ⊕ [, ] � x,  < x < . By

() and (), two parametric representations can be considered:

FC
ν
(x) =

{
x + x + t

(
x + x) | t ∈ [, ]

}
, ()

FC
ν
(x) =

{
( + t)x + ( + t)x | t = (t, t) ∈ [, ]}, ()

respectively. By putting t =  and t = 
 in (), the function x + x is obtained, while this

function can be acquired by setting t = x

x+x in the representation ().
Next, by the parametric representations () and (), some concepts such as limit, con-

tinuity, derivative, and integral for interval-valued functions will be defined in a para-
metric form. Using these concepts, interval differential equations will be studied by two
approaches. Considering the parametric representation (), the results in [, ] are ob-
tained, as we expected.

Definition . Let F : T ⊆ R → Kc be an interval-valued function and x ∈ T . L ∈ Kc is
the limit of F at x, if for every ε > , there exists δ >  such that D(F(x), L) < ε, whenever
|x – x| < δ and it is denoted by limx→x F(x) = L.

Proposition . For an interval-valued function F : T ⊆R→ Kc,

lim
x→x

F(x) = L ⇔ lim
x→x

(
F(x) 	p L

)
= {}.

Proof It can be proved from Definition . and Proposition .. �

From the definition of limit for interval-valued functions, it is clear that F : T ⊆R → Kc

is continuous at point x ∈ T , if limx→x F(x) = F(x). Furthermore, F is continuous on T
if it is continuous at any point in T .

Proposition . Suppose FCk
ν

: T ⊆R → Kc be an interval-valued function and

FCk
ν
(x) =

{
fc(t)(x) | fc(t) : T ⊆ R→R, c(t) ∈ Ck

ν

}
.

If limx→x fc(t)(x) exists for every c(t) ∈ Ck
ν , then limx→x FCk

ν
(x) exists and

lim
x→x

FCk
ν
(x) =

{
lim

x→x
fc(t)(x)

∣∣ fc(t) : T ⊆R →R, c(t) ∈ Ck
ν

}
.
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Moreover, FCk
ν
(x) is continuous at x, if for every c(t) ∈ Ck

ν the function fc(t) is continuous
at x.

Proof Assume that limx→x fc(t)(x) = a(t) for every c(t) ∈ Ck
ν . Thus, for every t ∈ [, ]k , it

can be concluded that

∀ε > ,∃δ > ,  < |x – x| < δ ⇒ ∣∣fc(t)(x) – a(t)
∣∣ < ε. ()

Because of continuity of fc(t) and a(t) in t, there exist t′, t′′ ∈ [, ]k such that

min
t

∣∣fc(t)(x) – a(t)
∣∣ =

∣∣fc(t′)(x) – a
(
t′)∣∣, max

t

∣∣fc(t)(x) – a(t)
∣∣ =

∣∣fc(t′′)(x) – a
(
t′′)∣∣.

By (), for all ε > , there exist δ, δ > , such that

 < |x – x| < δ ⇒ ∣∣fc(t′)(x) – a
(
t′)∣∣ < ε,

 < |x – x| < δ ⇒ ∣∣fc(t′′)(x) – a
(
t′′)∣∣ < ε.

Next, by choosing δ = min{δ, δ},

D
(
FCk

ν
(x), A

)
= max

{
min

t

∣∣fc(t)(x) – a(t)
∣∣, max

t

∣∣fc(t)(x) – a(t)
∣∣
}

< ε,

whenever  < |x – x| < δ and A = [mint a(t), maxt a(t)]. Because ε is arbitrary, this means
that limx→x FCk

ν
(x) = A, which is due to Definition .. In the same manner, it can be proved

that the interval-valued function FCk
ν

is continuous at x, when for every c(t) ∈ Ck
ν the

function fc(t) is continuous at x. �

Proposition . If FCk
ν
(x) is continuous at x ∈ T and FCk

ν
(x) = {fc(t)(x) | fc(t) : T ⊆ R →

R, c(t) ∈ Ck
ν}, then for all t ∈ [, ]k , fc(t)(x) is continuous at x.

Proof Let FCk
ν
(x) be continuous at x. By the definition of continuity and Proposition .

lim
x→x

FCk
ν
(x) = FCk

ν
(x)

⇔ lim
x→x

(
FCk

ν
(x) 	p FCk

ν
(x)

)
= {}

⇔
{

lim
x→x

(
fc(t)(x) – fc(t)(x)

) ∣∣ fc(t) : T ⊆R →R, c(t) ∈ Ck
ν

}
= {}.

Hence, for every c(t) ∈ Ck
ν ,

lim
x→x

(
fc(t)(x) – fc(t)(x)

)
= ,

and finally

lim
x→x

fc(t)(x) = fc(t)(x),

which is the desired conclusion. �
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Remark . Let F(x) = {f (x) + t(f (x) – f (x)) | t ∈ [, ]} be a continuous function at x.
Then, similar to Proposition ., one can prove that f (x) and f (x) are continuous functions
at x.

Markov defined the differential calculus for interval-valued function F(x) including dif-
ferentiability [, ]. In these forms an interval-valued function is expressed as its bound-
ary function f (x) and f (x). So the existence of its derivative depends upon the existence
of the derivative of the boundary functions. In the following definition, the concept of
p-derivative for an interval-valued function will be defined, which depends upon the ex-
istence of the derivative of fc(t)(x) for every value t.

Definition . The p-derivative of an interval-valued function F : (a, b) → Kc at x ∈
(a, b) is denoted by F ′(x) and is defined as

F ′(x) = lim
h→


h
[
F(x + h) 	p FCk

ν
(x)

]
, ()

where h is such that x + h ∈ (a, b). In this case, F is called p-differentiable at x.

Proposition . The interval-valued function FCk
ν

: (a, b) → Kc with the parametric rep-
resentation FCk

ν
(x) = {fc(t)(x) | fc(t) : (a, b) → R, c(t) ∈ Ck

ν} is p-differentiable at x ∈ (a, b) if
for every t ∈ [, ]k , fc(t) is differentiable at x and additionally

F ′
Ck

ν
(x) =

{
f ′
c(t)(x) | fc(t) : (a, b) →R; c(t) ∈ Ck

ν

}
.

Proof By Definition .

FCk
ν
(x + h) 	p FCk

ν
(x) =

{
fc(t)(x + h) – fc(t)(x) | fc(t) : (a, b) →R; c(t) ∈ Ck

ν

}
.

Because fc(t)(x) is differentiable at x, limh→
fc(t)(x+h)–fc(t)(x)

h exists. Hence, by Proposi-

tion ., limh→
FCk

ν
(x+h)	pFCk

ν
(x)

h exists and using Definition .

F ′
Ck

ν
(x) = lim

h→

FCk
ν
(x + h) 	p FCk

ν
(x)

h

=
{

lim
h→

fc(t)(x + h) – fc(t)(x)
h

∣∣∣ fc(t) : (a, b) →R; c(t) ∈ Ck
ν

}

=
{

f ′
c(t)(x) | fc(t) : (a, b) →R; c(t) ∈ Ck

ν

}
,

which proves the proposition. �

The converse of Proposition . is not true, i.e., it is possible that FCk
ν
(x) is p-differentiable

at given point x whenever for every t ∈ [, ]k , the function fc(t) is not differentiable at x.
For example, assume that FC

ν
(x) = [–, ]�g(x), where g : R →R is a real-valued function

such that

g(x) =

{
x, x ≥ ,
–x, x < .
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Obviously, FC
ν
(x) is p-differentiable at x =  and due to Definition .

F ′
C

ν
() = lim

h→

FC
ν
(h) 	p FC

ν
()

h

=

{

lim
h→

fc(t)(h) – fc(t)()
h

∣∣∣∣ fc(t)(x) =

{
(– + t)(x), x ≥ ,
(– + t)(–x), x < ;

t ∈ [, ]

}

=

{

fc(t)(x)
∣∣∣ fc(t)(x) =

{
– + t, x ≥ ,
 – t, x < ;

t ∈ [, ]

}

= [–, ].

But

fc(t) =

{
(– + t)(x), x ≥ ,
(– + t)(–x), x < ,

is not differentiable at  for every t ∈ [, ].
In the next proposition, the relationship between gH-differentiability concept [] and

p-differentiability is expressed.

Proposition . If functions f and f are differentiable at x, then the interval-valued
function F : (a, b) → Kc with F(x) = {f (x) + t(f (x) – f (x)) | t ∈ [, ]} is p-differentiable at
x, and F ′(x) = {f ′(x) + t(f ′(x) – f ′(x)) | t ∈ [, ]}. Moreover, in this case, the concepts of
p-differentiability and gH-differentiability are equivalent.

Proof It can be deduced that

F ′(x) =
{

lim
h→

f (x + h) + t(f (x + h) – f (x + h)) – f (x) – t(f (x) – f (x))
h

∣∣∣ t ∈ [, ]
}

=
{

lim
h→

f (x + h) – f (x)
h

+ t lim
h→

f (x + h) – f (x)
h

– t lim
h→

f (x + h) – f (x)
h

∣∣∣ t ∈ [, ]
}

=
{

f ′(x) + t
(
f ′(x) – f ′(x)

) | t ∈ [, ]
}

.

Next, if f ′(x) – f ′(x) ≥ , then by IR

F ′(x) =
[
f ′(x), f ′(x)

]
,

that is consistent with (i)-gH-differentiability. If f ′(x) – f ′(x) ≤ , then by DR

F ′(x) =
[
f ′(x), f ′(x)

]
,

which is in accordance with (ii)-gH-differentiability. �

Remark . Due to the definition of the interval derivative () and two parametric rep-
resentations () and () for interval-valued functions, in general, it cannot be expected
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that the derivative of an interval-valued function be equal based on these representa-
tions. This outcome occurs because the derivative for representation () is calculated
regardless of the sign of the independent variable x, while the derivative for represen-
tation () depends on the sign of x. For example, consider the interval-valued function
FC

ν
(x) = [–, ] � x ⊕ [, ]ex, x ∈ [–, ]. By the parametric representation (), FC

ν
(x) can

be written as FC
ν
(x) = {(– + t)x + ( + t)ex | t, t ∈ [, ]}, and it is possible to calculate

its p-derivative from Proposition . as

F ′
C

ν
(x) =

{
(– + t) + ( + t)ex | t, t ∈ [, ]

}

= [–, ] ⊕ [, ] � ex =
[
– + ex,  + ex]. ()

Next, by the parametric representation (), it follows that

FC
ν
(x) =

{
{x + ex + t(ex – x) | t ∈ [, ]}, – ≤ x ≤ ,
{–x + ex + t(ex + x) | t ∈ [, ]},  < x ≤ ,

and its derivative is given by

F ′
C

ν
(x) =

{
{ + ex + t(ex – ) | t ∈ [, ]}, – ≤ x ≤ ,
{– + ex + t(ex + ) | t ∈ [, ]},  < x ≤ 

=

{
[– + ex,  + ex], – ≤ x ≤ ,
[– + ex,  + ex],  < x ≤ ,

which is different from ().

According to Proposition ., two cases corresponding to increasing and decreasing
representations are distinguished for the definition of p-differentiability.

Definition . Suppose that F : (a, b) → Kc is an interval-valued function with paramet-
ric representation F = {f (x) + t(f (x) – f (x)) | t ∈ [, ]}. Then F is (i)-p-differentiable at x

if

F ′(x) =
{

f ′(x) + t
(
f ′(x) – f ′(x)

) | t ∈ [, ]
}

, ()

and it is (d)-p-differentiable at x if

F ′(x) =
{

f ′(x) + t
(
f ′(x) – f ′(x)

) | t ∈ [, ]
}

. ()

The concept of a switching point can be extended by the above definition.

Definition . A point x ∈ (a, b) is said to be a switching point for the differentiability
of interval-valued function F , if in any neighborhood N of x there exist points x < x < x

such that
(type I) at x () holds, while () does not hold and at x () holds and () does not
hold, or
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(type II) at x () holds, while () does not hold and at x () holds and () does not
hold.

Remark . Using Definition . and Proposition ., it is easy to find switching points.
For this purpose, it is sufficient to determine the sign of f ′ – f ′ in the parametric repre-
sentation of F ′. More precisely, if f ′(x) – f ′(x) is positive for x < x and negative for x > x,
then x is a switching point of type I; and x is a switching point of type II, if f ′(x) – f ′(x)
is negative for x < x and positive for x > x.

Example . Let us consider the interval-valued function FC
ν

: (–, ) → Kc defined by
(see Figure (a))

FC
ν
(x) = [, ] �

(
cos(x) –

x



)
.

Clearly,

f (x) =

⎧
⎪⎪⎨

⎪⎪⎩

 cos(x) – x

 , – ≤ x < –.,

 cos(x) – x

 , –. ≤ x < .,

 cos(x) – x

 , . ≤ x < –,

f (x) =

⎧
⎪⎪⎨

⎪⎪⎩

 cos(x) – x

 , – ≤ x < –.,

 cos(x) – x

 , –. ≤ x < .,

 cos(x) – x

 , . ≤ x < –.

By Remark . and determining the sign of

f ′(x) – f ′(x) =

⎧
⎪⎨

⎪⎩

 sin(x) + x
 , – ≤ x < –.,

– sin(x) – x
 , –. ≤ x < .,

 sin(x) + x
 , . ≤ x < –,

which is represented in Figure (b), it can be deduced that x = –., x = ., x =
–., x = . are switching points of type II; and x = , x = –., x = .
are switching points of type I.

Figure 1 The function (a) FC1
ν

(x), (b) f
′
(x) – f ′(x) in Example 3.1.
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Finally, the concept of integral for an interval-valued function in terms of its parameters
is introduced as follows.

Definition . For a given interval-valued function FCk
ν

: T ⊆ R → Kc with FCk
ν
(x) =

{fc(t)(x) | fc(t) : T ⊆ R → R; c(t) ∈ Ck
ν} and an interval [α,β] ⊆ T , the definite integral

∫ β

α
FCk

ν
(x) dx is defined as

∫ β

α

FCk
ν
(x) dx =

{∫ β

α

fc(t)(x) dx
∣∣∣ fc(t)(x) is integrable w.r.t. x for every c(t) ∈ Ck

ν

}
.

The mentioned issue in Remark . holds for the concept of a definite integral for
interval-valued functions. See the following example.

Example . Consider FC
ν
(x) = [–, ] � ( – x) ⊕ [–, ] � ( – x) and the interval of

integration [, ]. Then, by Definition .,

∫ 


[–, ] � ( – x) ⊕ [–, ] � ( – x) dx

=
{∫ 


(– + t)( – x) + (– + t)( – x) dx

∣∣∣ t, t ∈ [, ]
}

=
{

– – t + t | t, t ∈ [, ]
}

= [–, ],

while by considering the parametric representation () for FC
ν
(x), it follows that

∫ 


[–, ] � ( – x) ⊕ [–, ] � ( – x) dx

=
∫ 



(
(x – ) + t( – x)

)
dx +

∫ 



(
– + t( – x)

)
dx

+
∫ 



(
 – x + t(– + x)

)
dx =

{
–


+




t
∣∣∣ t ∈ [, ]

}

=
[

–


,



]
.

Proposition . A continuous interval-valued function F(x) is integrable.

Proof The proof is an immediate consequence of Proposition . and Remark .. �

The concept of definite integral satisfies following properties:

Proposition . Let F(x) and G(x) be two integrable interval-valued functions. Then:
.

∫ β

α
F(x) dx =

∫ γ

α
F(x) dx +

∫ β

γ
F(x) dx; α ≤ γ ≤ β ,

.
∫ β

α
(aF(x) + bG(x)) dx = a

∫ β

α
F(x) dx + b

∫ β

α
G(x) dx; a, b ∈ R.

Proposition . Let FCk
ν

: T ⊆R → Kc be continuous. Then:
. the function GDn

ν
(x) =

∫ x
α

FCk
ν
(z) dz is p-differentiable, and G′

Dn
ν
(x) = FCk

ν
(x),

. the function HEm
ν

(x) =
∫ β

x FCk
ν
(z) dz is p-differentiable, and H ′

Em
ν

(x) = –FCk
ν
(x).
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Proof First, assume that

GDn
ν
(x) =

∫ x

α

FCk
ν
(z) dz =

{∫ x

a
fc(t)(z) dz

∣∣∣ fc(t) : T →R; c(t) ∈ Ck
ν

}
,

because of the continuity of FCk
ν

and Proposition ., the function
∫ x
α

fc(t)(z) dz is differen-
tiable for every t ∈ [, ]k . Hence, according to Proposition ., GDn

ν
(x) is p-differentiable,

and

G′
Dn

ν
(x) =

{
fc(t)(x) | c(t) ∈ Ck

ν

}
= FCk

ν
(x).

The second part is proved in the same way as the first one. �

In addition, Proposition . holds for the interval-valued function F(x) = {f (x) + t(f (x) –
f (x)) | t ∈ [, ]}, by using Remark . and Proposition ..

Proposition . If F(x) = {f (x) + t(f (x) – f (x)) | t ∈ [, ]} is p-differentiable with no
switching point in the interval [α,β], then

∫ β

α

F ′(x) dx = F(β) 	p F(α).

Proof By Definition ., because there is no switching point, F is (i)-p-differentiable or
(d)-p-differentiable in the interval [α,β]. Let F be (i)-p-differentiable (the proof for the
(d)-p-differentiable case being similar), then

∫ β

α

F ′(x) dx =
{∫ β

α

(
f ′(x) + t

(
f ′(x) – f ′(x)

))
dx

∣∣∣ t ∈ [, ]
}

=
{

f (β) – f (α) + t
(
f (β) – f (α) – f (β) + f (α)

) | t ∈ [, ]
}

= F(β) 	p F(α),

which completes the proof. �

Theorem . Let F(x) = {f (x) + t(f (x) – f (x))|t ∈ [, ]} be p-differentiable with n switch-
ing point at γi, i = , , . . . , n, α = γ < γ < γ < · · · < γn < γn+ = β and exactly at these
points. Then

F(β) 	p F(α) =
n∑

i=

[∫ γi

γi–

F ′(x) dx 	p (–)
∫ γi+

γi

F ′(x) dx
]

.

Moreover,

∫ β

α

F ′(x) dx =
n+∑

i=

(
F(γi) 	p F(γi–)

)
,

and if F(γi) is a real number for i = , , . . . , n then
∫ β

α
F ′(x) dx = F(β) – F(α).
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Proof To prove this, consider only one switching point, the case of a finite number
of switching points follows similarly. Let F be (i)-p-differentiable on [α,γ ] and (d)-p-
differentiable on [γ ,β]. Then, by Proposition .,

∫ γ

α

F ′(x) dx 	p (–)
∫ β

γ

F ′(x) dx

=
(
F(γ ) 	p F(α)

) 	p (–)
(
F(β) 	p F(γ )

)

=
(
F(γ ) 	p F(α)

) 	p
(
F(γ ) 	p F(β)

)

=
{(

f (γ ) – f (α) + t
(
f (γ ) – f (α) – f (γ ) + f (α)

))

–
(
f (γ ) – f (β) + t

(
(γ ) – f (β) – f (γ ) + f (β)

)) | t ∈ [, ]
}

=
{(

f (β) + t
(
f (β) – f (β)

))
–

(
f (α) + t

(
f (α) – f (α)

)) | t ∈ [, ]
}

= F(β) 	p F(α).

Additionally, by Proposition . and Proposition .,

∫ β

α

F ′(x) dx =
∫ γ

α

F ′(x) dx +
∫ β

γ

F ′(x) dx

=
(
F(γ ) 	p F(α)

)
+

(
F(β) 	p F(γ )

)
.

If the values F(γi) at all the switching points γi, i = , , . . . , n are real numbers, then by
Remark .

∫ β

α

F ′(x) dx =
n+∑

i=

(
F(γi) 	p F(γi–)

)

=
(
F(β) – F(γn)

)
+

(
F(γn) – F(γn–)

)
+ · · ·

+
(
F(γ) – F(γ)

)
+

(
F(γ) – F(α)

)

= F(β) – F(α). �

4 Interval differential equation
In this section, two approaches are proposed to find the solution of the interval differential
equation. In the first approach, by using the parametric representation () and its corre-
sponding definitions of the p-derivative and integral, the interval differential equation is
converted to a crisp problem. The second follows from the notation of the p-derivative
based on the parametric representation (). It is noteworthy that the solutions obtained
by the two approaches are distinctive.

4.1 The first approach
In this approach, the following interval differential equation is considered:

Y ′
Dn

ν
(x) = FCk

ν

(
x, YDn

ν
(x)

)
, ()

YDn
ν
(x) = Y,

where Y ∈ Kc, FCk
ν

: [a, b] × Kc → Kc and YDn
ν

: [a, b] → Kc.
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Let {yd(t)(x) | yd(t) : [a, b] → R; d(t) ∈ Dn
ν}, {fc(t′)(x, yd(t)(x)) | fc(t′) : [a, b] × R → R; c(t′) ∈

Ck
ν} and {y


+ t′′(y – y


) | t′′ ∈ [, ]} be parametric representations of YDn

ν
: [a, b] → Kc,

FCk
ν
(x, YDn

ν
(x)), and Y, respectively. From definition of equality given in Definition ., the

differential equation () can be considered as

{
y′

d(t)(x) | yd(t) : [a, b] → R; d(t) ∈ Dn
ν

}

=
{

fc(t′)
(
x, yd(t)(x)

) | fc(t′) : [a, b] ×R →R; c
(
t′) ∈ Ck

ν

}
,

{
yd(t)(x) | yd(t) : [a, b] →R; d(t) ∈ Dn

ν

}
=

{
y


+ t′′(y – y


) | t′′ ∈ [, ]

}
.

By Remark ., it follows that

y′
d(t)(x) = fc(t′)

(
x, yd(t)(x)

)
, ()

yd(t)(x) = y


+ t′′(y – y

).

Theorem . Let f : [x, x + p]×B([y

, y], r)×B([, ]k , q) →R be Lipschitz in its second

and third variables; i.e.,

∃L s.t.
∥∥f

(
x, y, t′) – f

(
x, w, t′)∥∥ ≤ L‖y – w‖,

∃L s.t.
∥∥f

(
x, y, t′) – f (x, y, s)

∥∥ ≤ L
∥∥t′ – s

∥∥,

respectively. Then the initial valued problem

y′(x) = f
(
x, y(x), t′),

y(x) = y


+ t′′(y – y

)

has a unique solution. Moreover, if f is continuous in t′ then the solution y(x, t′, t′′) is con-
tinuous in t′ and t′′.

Proof See [], Theorem ., for the first part. The second part follows immediately from
the continuity of f and y(x) w.r.t. t′ and t′′, respectively. �

Let YDn
ν
(x) and FCk

ν
(x, YDn

ν
(x)) be interval-valued functions with parametric represen-

tations {yd(t)(x) | yd(t) : [a, b] → R; d(t) ∈ Dn
ν} and {fc(t′)(x, yd(t)(x)) | fc(t′) : [a, b] × R →

R; c(t′) ∈ Ck
ν}, respectively. Suppose that fc(t′)(x, yd(t)(x)) is Lipschitz in y and t′, because

fc(t′)(x, yd(t)(x)) and yd(t′′)(x) = y


+ t′′(y – y

) are continuous functions in t′ and t′′, respec-

tively, by Theorem ., problem () has a unique solution yd(t)(x) = y(x, t′, t′′), which is a
continuous function in t′ and t′′. Therefore, mint′ ,t′′ y(x, t′, t′′) and maxt′ ,t′′ y(x, t′, t′′) exist,
and

YDn
ν
(x) =

[
min
t′ ,t′′

y
(
x, t′, t′′), max

t′ ,t′′
y
(
x, t′, t′′)

]
. ()

Example . Consider the following interval differential equation:

{
Y ′

Dn
ν
(x) = –YDn

ν
(x) ⊕ [, ] � sin(x),

YDn
ν
() = [, ], x ∈ [, ].

()
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Figure 2 Upper and lower bounds of solution of
the interval equation (14).

Its corresponding ordinary differential equation is

y′
d(t)(x) = –yd(t)(x) +

(
 + t′) sin(x), ()

yd(t)() =  + t′′, t′, t′′ ∈ [, ], x ∈ [, ].

The general solution () is provided by

yd(t)(x) =
(
 + t′)

(
– cos(x) + sin(x)



)
+ ce–x,

and so the particular solution would be

yd(t)(x) =
(
 + t′)

(
– cos(x) + sin(x) + e–x



)
+

(
 + t′′)e–x.

Hence, the unique solution of interval differential equation () is obtained as

YD
ν
(x) = [, ] �

(
– cos(x) + sin(x) + e–x



)
⊕ [, ] � e–x.

Moreover, by (),

YDn
ν
(x) =

{
[ – cos(x)+sin(x)+e–x

 + e–x, – cos(x) + sin(x) + e–x], x ∈ [, .],
[– cos(x) + sin(x) + e–x, – cos(x)+sin(x)+e–x

 + e–x], x ∈ [., ],

which is illustrated in Figure .

4.2 The second approach
Now, consider the interval differential equation

Y ′(x) = F
(
x, Y (x)

)
, ()

Y (x) = Y,

where Y ∈ Kc, F : [a, b] × Kc → Kc, and Y : [a, b] → Kc. By the parametric representation
() and rewriting (), two following systems are obtained from () and ():

I. {y′(x) + t(y′(x) – y′(x)) | t ∈ [, ]} = {f (x, y, y) + t(f (x, y, y) – f (x, y, y)) | t ∈ [, ]},
{y(x) + t(y(x) – y(x)) | t ∈ [, ]} = {y


+ t(y – y


) | t ∈ [, ]},

II. {y′(x) + t(y′(x) – y′(x)) | t ∈ [, ]} = {f (x, y, y) + t(f (x, y, y) – f (x, y, y)) | t ∈ [, ]},
{y(x) + t(y(x) – y(x)) | t ∈ [, ]} = {y


+ t(y – y


) | t ∈ [, ]}.
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Hence, for fixed x, two systems can be deduced as follows:
{

y′(x) = f (x, y(x), y(x)), y(x) = y

,

y′(x) = f (x, y(x), y(x)), y(x) = y,
()

{
y′(x) = f (x, y(x), y(x)), y(x) = y


,

y′(x) = f (x, y(x), y(x)), y(x) = y.
()

Theorem . Let F : [x, x +p]×B(Y, r) → Kc be nontrivial and continuous. If F satisfies
the Lipschitz condition D(F(x, Y ), F(x, Z)) ≤ LD(Y , Z) for all (x, Y ), (x, Z) ∈ [x, x + p] ×
B(Y, r), then the interval differential equation

Y ′(x) = F
(
x, Y (x)

)
, ()

Y (x) = Y,

is equivalent to the union of the systems () and () on some interval [x, x + p]. Here,
the equivalence means that Y = [y, y] : [x, x + p] → Kc is a solution of () if and only if
(y, y) : [x, x + p] → R

 is a solution of one of the problems () or ().

Proof See []. �

Example . Consider interval differential equation (), for x ∈ [, ]. The correspond-
ing systems are

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

y′(x) =

{
–y(x) + sin(x),  ≤ x ≤ π ,
–y(x) +  sin(x), π ≤ x ≤ ,

y′(x) =

{
–y(x) +  sin(x),  ≤ x ≤ π ,
–y(x) + sin(x), π ≤ x ≤ ,

y() = , y() = ,
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

y′(x) =

{
–y(x) + sin(x),  ≤ x ≤ π ,
–y(x) +  sin(x), π ≤ x ≤ ,

y′(x) =

{
–y(x) +  sin(x),  ≤ x ≤ π ,
–y(x) + sin(x), π ≤ x ≤ ,

y() = , y() = .

By considering (i)-p-differentiability the following solution is obtained for the interval dif-
ferential equation ():

Y(x) =

⎧
⎪⎨

⎪⎩

[ 
 e–x – 

 cos(x) – 
 ex + sin(x), 

 e–x – cos(x) + 
 ex + 

 sin(x)],  ≤ x ≤ π ,
[ 

 sin(x) – cos(x) + .eπ–x – .ex–π ,
sin(x) – 

 cos(x) + .eπ–x + .ex–π ], π ≤ x ≤ ,

which has no switching point. The second solution is achieved by starting with (d)-p-
differentiability, which has a switching point at . for x ∈ [,π ] and

Y(x) =

⎧
⎪⎨

⎪⎩

[e–x – cos(x) + sin(x), 
 e–x – 

 cos(x) + 
 sin(x)], x ∈ [, .],

[ 
 e–x + sin(x) – 

 cos(x) + .ex,

 e–x + 

 sin(x) – cos(x) + .ex], x ∈ [.,π ].
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Figure 3 Solutions of interval differential
equation (14).

Furthermore,

Y(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[ 
 sin(x) – 

 cos(x) – .eπ–x,
sin(x) – cos(x) + .eπ–x], x ∈ [π , .],

[ 
 sin(x) – cos(x) + .e–x + .ex,

sin(x) – 
 cos(x) + .e–x + .ex], x ∈ [., ],

for x ∈ [π , ] and has one switching point at .. The solutions are shown in Figure .

The two proposed approaches are applied to the following examples.

Example . Consider the interval differential equation

{
Y ′

Dn
ν
(x) = –YDn

ν
(x) ⊕ [, ] � x,

YDn
ν
() = [, ], x ∈ [, ].

()

By the first approach, the corresponding ordinary differential equation is obtained as

y′
d(t)(x) = –yd(t)(x) +

(
 + t′)x, ()

yd(t)() = t′′, t′, t′′ ∈ [, ], x ∈ [, ].

The particular solution would be

yd(t)(x) =
(
 + t′)x –

(
 + t′) +

(
 + t′ + t′′)e–x =

(
 + t′)(x –  + e–x) + t′′e–x.

Hence, the unique solution of interval equation () is concluded as

YD
ν
(x) = [, ] � (

x –  + e–x) ⊕ [, ] � e–x,

which is represented in Figure (a). Next, let us to use the second approach for the interval
differential equation (). Thus, the systems () and () are

{
y′(x) = –y(x) + x, y() = ,
y′(x) = –y(x) + x, y() = 

()

and
{

y′(x) = –y(x) + x, y() = ,
y′(x) = –y(x) + x, y() = ,

()
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Figure 4 The solutions of (19) in (a) first approach, (b) second approach.

Figure 5 A tank of brine with a mixture.

respectively. As stated previously, () has exactly two solutions; one of them is

Y(x) =
{

y + t(y – y) = x + e–x – ex –  + t
(
ex – x – 

)
, | t ∈ [, ]

}

=
[
x + e–x – ex – , x + ex + e–x – 

]
,

which starts with (i)-p-differentiability and there is no switching point on its trajectory.
The second one starts with (d)-p-differentiability and has a switching point at x =  so it
has to switch to the case (i)-p-differentiability. Therefore

Y(x) =
{

y + t(y – y) = x + e–x –  + t( – x) | t ∈ [, ]
}

=
[
x + e–x – , x + e–x – 

]
,

for  ≤ x ≤  and

Y(x) =
{

y + t(y – y) = x – ex– + e–x –  + t
(
ex– – x – 

) | t ∈ [, ]
}

=
[
x – ex– + e–x – , x + ex– + e–x – 

]
,

when  ≤ x ≤ . The solutions are presented in Figure (b).

Example . As an application in engineering, assume the following problem. A tank
initially contains  gal of brine with c lb of salt. Brine that contains k lb of salt per gallon
enters the tank at the rate of  gal/min, and the well-mixed brine in the tank flows out at
the rate of  gal/min (see Figure ). The problem is the amount of salt that will be present
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in the tank at a time in the future; in other words, we would like to determinate a function
y(x) that gives us the amount of salt in the tank at time x ≥ . We have

{
y′(x) + 

 y(x) = k,
y() = c, x ∈ [, ].

According to uncertainty in measurements, the coefficients c, k are considered as interval
numbers c = [, ], k = [, ]. Then

{
Y ′

Dn
ν
(x) = – 

 YDn
ν
(x) ⊕ [, ],

YDn
ν
() = [, ], x ∈ [, ].

()

Using the first approach and without having to calculate the switching points, we obtain a
solution that is responsive to the nature of the problem. More precisely, the corresponding
ordinary differential equation is obtained as

y′
d(t)(x) =

–


yd(t)(x) +
(
 + t′),

yd(t)() =  + t′′, t′, t′′ ∈ [, ], x ∈ [, ].

Hence, the solution of interval equation () is

YD
ν
(x) = [, ] � (

 – e
–x


) ⊕ [, ] � (
e

–x


)

and its upper bound and lower bounds are shown in Figure (a). In the second approach,
two systems (), () are

{
y′(x) = – 

 y(x) + , y() = ,
y′(x) = – 

 y(x) + , y() = ,
{

y′(x) = – 
 y(x) + , y() = ,

y′(x) = – 
 y(x) + , y() = .

Figure 6 The solutions of (20) in (a) first approach, (b) second approach.
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First, by starting with (i)-p-differentiability the following solution for interval differential
equation () is obtained:

Y(x) =
[
 – e

x
 – e

–x
 , e

x
 – e

–x
 + 

]
,

which has no switching point. The second solution is achieved by considering (d)-p-
differentiability, that has a switching point at . and

Y(x) =

{
[ – e –x

 ,  – e –x
 ], x ∈ [, .],

[ – .e x
 – e –x

 , .e x
 – e –x

 + ], x ∈ [., ].

The solutions are shown in Figure (b).

5 Conclusion
In this study, two different new parametric representations for interval numbers were in-
vestigated. The representations had the advantage of following flexible and easy to control
shapes of the interval numbers, and they were applicable in practice. Additionally, compu-
tational procedures to determine the derivatives and integrals of interval-valued functions
were presented.

An interesting line of work is the study of interval differential equations with two ap-
proaches. In the first approach, a unique solution with a decreasing length of support was
obtained. This interpretation presented an advantage that allowed us to characterize the
main properties of ordinary differential equations in a natural way. In the second approach,
the solution of an interval differential equation might have decreasing length of support,
and more than one solution exists. The existence of several solutions can be an advantage
when a decision-maker search is performed for solutions that have specific properties,
such as periodic, almost periodic, or asymptotically stable.
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