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Abstract
One of the main properties studied in the qualitative theory of differential equations
is the stability of solutions. The stability of fractional order systems is quite recent.
There are several approaches in the literature to study stability, one of which is the
Lyapunov approach. However, the Lyapunov approach to fractional differential
equations causes many difficulties. In this paper a new definition (based on the
Caputo fractional Dini derivative) for the derivative of Lyapunov functions to study a
nonlinear Caputo fractional differential equation is introduced. Comparison results
using this definition and scalar fractional differential equations are presented, and
sufficient conditions for strict stability and uniform strict stability are given. Examples
are presented to illustrate the theory.
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1 Introduction
One of the main problems in the qualitative theory of differential equations is stability of
solutions. However, the usual stability concepts do not give any information concerning
the rate of decay of solutions, and hence are not strict concepts. As a result, strict stability
was defined, and criteria for such notions were discussed (see, for example, [–]).

Fractional differential equations play an important role not only in mathematics but also
in physics, control systems, dynamical systems, engineering and in particular in mathe-
matical modeling of many natural physical phenomena. For example, fractional derivatives
are used in modeling mechanical and electrical properties of real materials, in the descrip-
tion of properties of gases, liquids and rocks, and in many other fields (see, for example,
[, ]).

The stability of fractional order systems is quite recent. The analysis on stability of frac-
tional differential equations is more complicated than classical differential equations since
fractional derivatives are nonlocal and have weakly singular kernels. Recently, in [] an
overview on stability results of fractional differential equations is given. For nonlinear
fractional differential equations, there are several approaches in the literature to study
stability, one of which is the Lyapunov approach. The investigations in the literature via
Lyapunov functions could be divided into two main groups:

© 2015 Agarwal et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13662-015-0674-5
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-015-0674-5&domain=pdf
mailto:snehri@gmail.com


Agarwal et al. Advances in Difference Equations  (2015) 2015:346 Page 2 of 20

- continuously differentiable Lyapunov functions (see, for example, the papers [–]).
Different types of stability are discussed using the Caputo derivative of Lyapunov
functions which depends significantly on the unknown solution of the fractional
equation;

- continuous Lyapunov functions (see, for example, the papers [–]) in which the
authors use the derivative of a Lyapunov function which is similar to the Dini
derivative of Lyapunov functions.

In this paper the strict stability of nonlinear nonautonomous Caputo fractional differ-
ential equations is defined and studied using continuous Lyapunov functions. The Caputo
fractional Dini derivative of a Lyapunov function is defined in an appropriate way. Note
that this type of derivative is introduced in [] and used to study the stability and asymp-
totic stability of Caputo fractional differential equations. Comparison results using this
definition and scalar fractional differential equations are presented, and sufficient condi-
tions for strict stability and uniform strict stability are obtained.

The manuscript is organized as follows. In Section  some preliminaries of fractional
calculus are mentioned. Section  presents basic definitions concerning strict stability and
the new definition of the Caputo fractional Dini derivative of Lyapunov functions among
the nonlinear fractional differential equations. In Section  some comparison results are
given. Section  presents some sufficient conditions for strict stability and uniform strict
stability.

2 Notes on fractional calculus
Fractional calculus generalizes the derivative and the integral of a function to a non-integer
order [, ], and there are several definitions of fractional derivatives and fractional inte-
grals. In engineering, the fractional order q is often less than , so we restrict our attention
to q ∈ (, ).

() The Riemann-Liouville (RL) fractional derivative of order q ∈ (, ) of m(t) is given
by (see, for example, Section ... [], or [])

RL
t Dqm(t) =


�( – q)

d
dt

∫ t

t

(t – s)–qm(s) ds, t ≥ t,

where �(·) denotes the gamma function.
() The Caputo fractional derivative of order q ∈ (, ) is defined by (see, for example,

Section ... [])

c
t Dqm(t) =


�( – q)

∫ t

t

(t – s)–qm′(s) ds, t ≥ t. ()

The Caputo and Riemann-Liouville formulations coincide when m(t) = . The properties
of the Caputo derivative are quite similar to those of ordinary derivatives. Also, the ini-
tial conditions of fractional differential equations with the Caputo derivative have a clear
physical meaning, and, as a result, the Caputo derivative is usually used in real applications.

() The Grunwald-Letnikov fractional derivative is given by (see, for example, Sec-
tion ... [])

GL
t Dqm(t) = lim

h→+


hq

[ t–t
h ]∑

r=

(–)r(qCr)m(t – rh), t ≥ t,
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Figure 1 Graphs of t1–qE2,2–q(–t2) and sin(t + q π
2 ) for q = 0.5.

Figure 2 Graphs of t1–qE2,2–q(–t2) and sin(t + q π
2 ) for q = 0.2.

or

GL
t Dqm(t) = lim

h→+


hq

[ t–t
h ]∑

r=

(–)r �( + q)
r!�( + q – r)

m(t – rh), t ≥ t,

and the Grunwald-Letnikov fractional Dini derivative by

GL
t Dq

+m(t) = lim sup
h→+


hq

[ t–t
h ]∑

r=

(–)r(qCr)m(t – rh), t ≥ t, ()

where qCr are the binomial coefficients and [ t–t
h ] denotes the integer part of the fraction

t–t
h .

Example  The behavior of the derivative depends significantly on its order q. For exam-
ple, consider GL

 Dq sin(t) = t–qE,–q(–t). For q = ., the derivative is not periodic, but it
converges to the periodic function sin(t + q π

 ) (see Figure ). For q = ., the behavior of
the fractional derivative is totally different (see Figure ).

The relation between the two types of fractional derivatives is given by the equality
c
t Dqm(t) = RL

t Dq[m(t) – m(t)].
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Proposition  (Theorem . []) Let m ∈ C[t, b]. Then, for t ∈ (t, b], GL
t Dqm(t) =

RL
t Dqm(t) .

Also, according to Lemma . [], the equality c
t Dq

t m(t) = RL
t Dq

t m(t) – m(t) (t–t)–q

�(–q)
holds.

From the relation between the Caputo fractional derivative and the Grunwald-Letnikov
fractional derivative, using () we define the Caputo fractional Dini derivative as

c
t Dq

+m(t) = GL
t Dq

+
[
m(t) – m(t)

]
,

i.e.,

c
t Dq

+m(t) = lim sup
h→+


hq

[
m(t) – m(t) –

[ t–t
h ]∑

r=

(–)r+(qCr)
(
m(t – rh) – m(t)

)]
. ()

Definition  ([]) We say m ∈ Cq([t, T],Rn) if m(t) is differentiable (i.e., m′(t) exists),
the Caputo derivative c

t Dqm(t) exists and satisfies () for t ∈ [t, T].

Remark  If m ∈ Cq([t, T],Rn), then c
t Dq

+m(t) = c
t Dqm(t).

3 Statement of the problem
Consider the initial value problem (IVP) for the system of fractional differential equations
(FrDE) with a Caputo derivative for  < q < ,

c
t Dqx = f (t, x), x(t) = x, ()

where x, x ∈R
n, f ∈ C[R+ ×R

n,Rn], f (t, ) ≡ , t ≥ .
We will assume in the paper that the function f ∈ C[R+ × R

n,Rn] is such that for any
initial data (t, x) ∈ R+ × R

n, FrDE () has a solution x(t; t, x) ∈ Cq([t,∞),Rn). Note
that some sufficient conditions for global existence of solutions of () are given in [, ,
].

The goal of the paper is to study strict stability of FrDE (). Strict stability for fractional
equations is studied in [], but the definitions and conditions are not clear. Now we will
define strict stability for fractional equations following the idea for ordinary differential
equations (see, for example, []).

Definition  The zero solution of system FrDE () is said to be
- strictly stable if for given ε >  and t ∈R+ there exists δ = δ(t, ε) >  such that for

any initial point x ∈R
n the inequality ‖x‖ < δ implies ‖x(t; t, x)‖ < ε, t ≥ t, and

for any δ = δ(t, ε), δ ∈ (, δ] there exists ε = ε(t, δ), ε ∈ (, δ] such that the
inequality δ < ‖x‖ implies ε < ‖x(t; t, x)‖ for t ≥ t where x(t; t, x) is a solution of
the IVP for FrDE ();

- uniformly strictly stable if for any given ε >  there exists δ = δ(ε) >  such that for
any initial time t ∈R+ and any initial point x ∈R

n the inequality ‖x‖ < δ implies
‖x(t; t, x)‖ < ε, t ≥ t, and for any δ ∈ (, δ] there exists ε ∈ (, δ], ε = ε(δ),
such that the inequality δ < ‖x‖ implies ε < ‖x(t; t, x)‖ for t ≥ t where x(t; t, x)
is a solution of the IVP for FrDE ().



Agarwal et al. Advances in Difference Equations  (2015) 2015:346 Page 5 of 20

Figure 3 Graph of the solution x(t) = x0Eq( 1
t+1 – 1

t0+1 ) for q = 0.3, x0 = 2, t0 = 0.

Figure 4 Graph of the solution x(t) = x0Eq( 1
t+1 – 1

t0+1 ) for q = 0.8, x0 = 1.5, t0 = 2.

Remark  The strict stability immediately implies that the zero solution is not asymptot-
ically stable.

Example  (Strict stability) Consider the ODE x′ = – 
(t+) x, x(t) = x with a solution

x(t) = xe– 
t+ e


t+ . Since  < e


t+ ≤ e for t ∈ R+, it follows that for any ε if |x| < ε

e = δ

then x(t) < ε, and for any δ ∈ (, δ) the inequality |x| > δ implies x(t) > ε = δe– 
t+ .

Therefore, the zero solution of the considered ODE is strictly stable.
Now consider a Caputo fractional differential equation with a solution given by x(t) =

xEq( 
t+ – 

t+ ) where the Mittag-Leffler function (with one parameter) is defined by
Eq(z) =

∑∞
k=

zk

�(qk+) . Since Eq(– 
t+ ) < Eq( 

t+ – 
t+ ) ≤ Eq() = , t ≥ t, it follows that for

any ε if |x| < δ = ε then x(t) < ε, and for any δ ∈ (, δ) for |x| > δ the inequality
x(t) > ε = δEq(– 

t+ ) holds. Therefore, the zero solution of the FrDE is strictly stable (see
Figure  for q = ., t =  and Figure  for q = ., t = ).

In this paper we will use the followings sets:

K =
{

a ∈ C[R+,R+] : a(u) is strictly increasing and a() = 
}

,

B(λ) =
{

x ∈R
n : ‖x‖ ≤ λ

}
, λ = const > .
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We will use comparison results for scalar Caputo fractional differential equations of the
type

c
t Dqu = g(t, u) for t ≥ t, ()

where u ∈ R, g : R+ ×R → R, g(t, ) ≡ . Note that () with u(t) = u is called the initial
value problem (). Some existence results for () are given in [, , ].

Also, we will discuss a couple of Caputo fractional differential equations of the type

c
t Dqu = g(t, u) for t ≥ t, u(t) = u,
c
t Dqv = g(t, v) for t ≥ t, v(t) = v,

()

where u, v ∈ R, g, g : R+ × R → R, gi(t, ) ≡ , i = , . We will assume in the paper that
the functions gi : R+ × R → R, i = , , are such that for any initial time t ∈ R+ and any
initial values u, v ∈R the couple of scalar FrDE () has a solution (u(t; t, u), v(t; t, u)),
u(t; t, u), v(t; t, u) ∈ Cq([t,∞),R). In the case of nonuniqueness, we will assume that
the first equation of () has a maximal solution and the second one has a minimal solution.

Fix i ∈ {, }. We say that gi satisfies condition (H) if:
(H) For any compact interval [t, T] ⊂R+, there exists a small enough number Lt > 

such that for any |η| < Lt the IVP for FrDE c
t Dqu = gi(t, u) + η, u(t) = u has a

solution u(t; t, u,η) ∈ Cq([t, T],R) where u ∈R.
We now introduce the strict stability of the couple of Caputo fractional differential equa-

tions as follows.

Definition  The zero solution of the couple of FrDE () is said to be
- strictly stable in couple if for given ε >  and t ∈R+ there exists δ = δ(t, ε) >  and

for any δ = δ(t, ε), δ ∈ (, δ] there exists ε = ε(t, δ), ε ∈ (, δ] such that the
inequalities |u| < δ and δ < |v| imply |u(t; t, u)| < ε and ε < |v(t; t, v)| for t ≥ t,
where the couple of functions (u(t; t, u), v(t; t, u)) is a solution of the IVP for
FrDE ();

- uniformly strictly stable in couple if for any given ε >  there exists δ = δ(ε) >  and
for any δ ∈ (, δ] there exists ε ∈ (, δ], ε = ε(δ), such that for any initial time
t ∈R+ the inequalities |u| < δ and δ < |v| imply |u(t; t, u)| < ε and
ε < |v(t; t, v)| for t ≥ t, where the couple of functions (u(t; t, u), v(t; t, u)) is a
solution of the IVP for FrDE ().

Example  (Uniform strict stability in couple) Consider the couple of Caputo fractional
differential equations

c
t Dqu = Au for t ≥ t, u(t) = u,
c
t Dqv = Bv for t ≥ t, v(t) = v,

()

where u, v ∈R, A, B are given constants.
The solution of () is (uEq(A(t –t)q), vEq(B(t –t)q)), where the Mittag-Leffler function

(with one parameter) is defined by Eq(z) =
∑∞

k=
zk

�(qk+) .
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Figure 5 Graph of the function h(t, t0), t ≥ t0 for t0 = 0.

Figure 6 Graph of the function h(t, t0), t ≥ t0 for t0 = 10.

Case . Let A < , B > . From the inequalities  < Eq(z) ≤  for z ≤  and Eq(z) ≥  for
z ≥  it follows that |uEq(A(t – t)q)| ≤ |u| and |vEq(B(t – t)q)| ≥ |v|, i.e., the zero
solution of the couple of FrDE () is uniformly strictly stable in couple.

Case . Let A, B = . Then the solution of () is (u, v) which shows that the zero solution
of the couple of FrDE () is uniformly strictly stable in couple.

Example  (Strict stability in couple) Consider the couple of Caputo fractional differential
equations

c
t D.u =

t
t + 

for t ≥ t, u(t) = u,

c
t D.v =  for t ≥ t, v(t) = v,

()

where u, v ∈R.
The first component of the solution of () satisfies the integral equation

u(t) = u +
∫ t

t


+s – s

(+s)

(t – s). ds.

The function h(t, t) =
∫ t

t


+s – s

(+s)

(t–s). ds has a maximum depending on t which decreas-
ingly approaches  (see Figures , , , ). Then, for any ε > , there exists δ = δ(ε, t) > 
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Figure 7 Graph of the function h(t, t0), t ≥ t0 for t0 = 100.

Figure 8 Graph of the function h(t, t0), t ≥ t0 for t0 = 1,000.

such that |u| < δ implies |u(t)| < ε. Now v(t) ≡ v, so we see the strict stability in couple
of ().

We now introduce the class 	 of Lyapunov-like functions which will be used to investi-
gate the strict stability of the system of FrDE ().

Definition  Let t, T ∈ R+ : T > t, and 
 ⊂ R
n,  ∈ 
. We will say that the function

V (t, x) : [t, T) × 
 → R+ belongs to the class 	([t, T),
) if V (t, x) ∈ C[[t, T) × 
,R+],
and it is locally Lipschitzian with respect to its second argument.

Remark  In the case when the Lyapunov function does not depend on the time t, i.e.,
V (t, x) = V (x), V ∈ C[
,R+] and it is locally Lipschitzian, we denote the class introduced
in Definition  by 	(
).

Lyapunov-like functions used to discuss stability for differential equations require an
appropriate definition of the derivative of the Lyapunov function V (t, x) along the studied
differential equations. For fractional differential equations, some authors (see, for exam-
ple, []) defined and used the so-called Caputo fractional derivative of Lyapunov func-
tion c

t DqV (t, x(t)) where x(t) is the unknown solution of the studied fractional differential
equation. This approach requires the function to be smooth enough (at least continuously
differentiable), and also some conditions involved are quite restrictive. Other authors used
the so-called Dini fractional derivative of Lyapunov function [, ]. This is based on the
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Dini derivative of the Lyapunov function V (t, x) among the ordinary differential equation
x′ = f (t, x) given by

D+V (t, x) = lim sup
h→


h+

[
V (t, x) – V

(
t – h, x – hf (t, x)

)]
. ()

The authors generalized () to the fractional Dini derivative along FrDE () by

cDq
+V (t, x) = lim sup

h→+


hq

[
V (t, x) – V

(
t – h, x – hqf (t, x)

)]
. ()

This definition requires only the continuity of the Lyapunov function. However, it can be
quite restrictive (see Example ), and it can present some problems (see Example ).

In this paper we introduce the derivative of the Lyapunov function based on the Caputo
fractional Dini derivative of a function m(t) given by (). We define the generalized Ca-
puto fractional Dini derivative of the function V (t, x) ∈ 	([t, T),
) along trajectories of
solutions of the system FrDE () as follows:

c
()D

q
+V (t, x; t, x)

= lim sup
h→+


hq

{
V (t, x) – V (t, x)

–
[ t–t

h ]∑
r=

(–)r+qCr
[
V

(
t – rh, x – hqf (t, x)

)
– V (t, x)

]}
for t ≥ t, ()

where t ∈ (t, T), x, x ∈ 
, and there exists h >  such that t – h ∈ [t, T), x – hqf (t, x) ∈ 


for  < h ≤ h.
Using the relation lim suph→+


hq

∑[ t–t
h ]

r= (–)rqCr = Dq
() = (t–t)–q

�(–q) , formula () could
be reduced to

c
()D

q
+V (t, x; t, x)

= lim sup
h→+


hq

{
V (t, x) –

[ t–t
h ]∑

r=

(–)r+qCrV
(
t – rh, x – hqf (t, x)

)}

– V (t, x)
(t – t)–q

�( – q)
for t ≥ t. ()

Proposition  Let the function V ∈ 	(
), i.e., V (t, x) = V (x). Then

c
()D

q
+V (t, x; t, x) = cDq

+V (x) +
(
V (x) – V (x)

) (t – t)–q

�( – q)
.

Proof In the case of the Lyapunov function V (t, x) = V (x), formula () reduces to

c
()D

q
+V (t, x; t, x)

= lim sup
h→+


hq

(
V (x) – V

(
x – hqf (t, x)

))
+

(
V (x) – V (x)

) (t – t)–q

�( – q)
. ()

�
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Figure 9 Graphs of solutions of c
0Dqx + x(t) = 1 for various q.

Example  Let V ∈ 	(R+,R) be such that V (t, x) = m(t)x, where m ∈ C(R+,R) and
x ∈R.

First we apply formula () to obtain the fractional Dini derivative of the considered
Lyapunov function. We obtain

cDq
+V (t, x) = lim

h→+
sup


hq

[
m(t)x – m(t – h)

(
x – hqf (t, x)

)]

= lim
h→+

sup

[(
m(t) – m(t – h)

h
xh–q + m(t – h)f (t, x)

)

× ((
m(t) + m(t – h)

)
x – m(t – h)hqf (t, x)

)]

= xm(t)f (t, x) for t ≥ t. ()

Note that the fractional Dini derivative cDq
+V (t, x) does not depend on the order q of the

fractional differential equation. However, as shown in Example , the behavior of the frac-
tional derivative depends significantly on the fractional order q. The same can be said
about the solutions of fractional differential equations. For example, let us consider the
simple Caputo fractional differential equation c

Dqx + x(t) = , x() =  whose solution is
given by x(t) = tqEq,+q(–tq). From Figure  it can be seen that limt→∞ x(t) = a, where a is
different for different values of the order q of the fractional differential equation.

Next we use () to obtain the Caputo fractional Dini derivative of V (t, x). Let t ≥ t.
Then

c
()D

q
+V (t, x; t, x)

= lim
h→+

sup


hq

[
m(t)x –

[ t–t
h ]∑

r=

(–)r+qCr m(t – rh)
(
x – hqf (t, x)

)
]

– m(t)x


(t – t)–q

�( – q)

= x lim
h→+

sup


hq

[ t–t
h ]∑

r=

(–)rqCrm(t – rh) – m(t)x


(t – t)–q

�( – q)
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– xf (t, x) lim
h→+

sup

[ t–t
h ]∑

r=

(–)rqCrm(t – rh)

+
(
f (t, x)

)
lim

h→+
sup hq

[ t–t
h ]∑

r=

(–)rqCr m(t – rh). ()

Now using (), the relation between G-L and R-L fractional derivatives

GL
t Dq

+
[
m(t)

]
= lim

h→+
sup


hq

[ t–t
h ]∑

r=

(–)rqCrm(t – rh) = RL
t Dq(m(t)

)
,

we obtain from () the following formula for the Caputo fractional Dini derivative:

c
()D

q
+V (t, x; t, x)

= xm(t)f (t, x) + xRL
t Dq(m(t)

)
– (x)m(t)

(t – t)–q

�( – q)
for t ≥ t, ()

or

c
()D

q
+V (t, x; t, x)

= xm(t)f (t, x) + xC
t Dq(m(t)

)
+

(
x – x


)
m(t)

(t – t)–q

�( – q)
for t ≥ t. ()

Note that the Caputo fractional Dini derivative c
()D

q
+V (t, x; t, x) depends significantly

not only on the order q of the fractional differential equation but also on the initial data.
The Dini derivative of the Lyapunov function (q = ) given by () is

D+V (t, x) = xm(t)f (t, x) + x d
dt

[
m(t)

]
, t ≥ t. ()

Let m(t) ≡  (i.e., we consider the quadratic Lyapunov function V (x) = x). Note that
for q →  the limit c

()D
q
+V (t, x; t, x) = xf (t, x) in () coincides with the corresponding

derivative D+V (x) = xf (t, x) in the ordinary case ().
Let m(t) �≡ . For q → , the limit c

()D
q
+V (t, x; t, x) = xm(t)f (t, x) + xC

t Dq(m(t)) in
() is similar to D+V (t, x) in the ordinary case () where the ordinary derivative of m(t)
is replaced by the fractional one.

The Caputo fractional Dini derivative given by formula () seems to be the natural gen-
eralization of the Dini derivative () for ordinary differential equations.

4 Fractional differential inequalities and comparison results for the scalar FrDE
Again in this section we assume  < q < . Now we will give some comparison results. Note
that similar results were obtained by the authors in paper [].

Lemma  ([]) Let m ∈ C[[t, T],R] and suppose that there exists t∗ ∈ (t, T] such that
m(t∗) =  and m(t) <  for t ≤ t < t∗. Then, if the Caputo fractional Dini derivative () of
m exists at t∗, then the inequality c

t Dq
+m(t∗) >  holds.
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We will use the following comparison result, which generalizes the result in [].

Lemma  (Comparison result by Caputo fractional Dini derivative) Assume that the fol-
lowing conditions are satisfied:

() The function x∗(t) = x(t; t, x), x∗ ∈ Cq([t, T],
), is a solution of FrDE (), where

 ⊂R

n,  ∈ 
, t, T ∈R+ : t < T are given constants, x ∈ 
.
() The function g ∈ C[[t, T] ×R,R] and satisfies condition (H).
() The function V ∈ 	([t, T],
) and, for any t ∈ [t, T], the inequality

c
()D

q
+V

(
t, x∗(t); t, x

) ≤ (≥)g
(
t, V

(
t, x∗(t)

))

holds.
() The function u∗(t) = u(t; t, u), u∗ ∈ Cq([t, T],R), is the maximal solution (minimal

solution) of the initial value problem ().
Then the inequality V (t, x) ≤ (≥)u implies V (t, x∗(t)) ≤ (≥)u∗(t) for t ∈ [t, T].

Proof Case . Suppose that all inequalities are ≤. This case is proved in [].
Case . Suppose that all inequalities are ≥. Let the function u∗(t) = u(t; t, u), u∗ ∈

Cq([t, T],R), be the minimal solution of the initial value problem () such that V (t, x) ≥
u.

Let η ∈ (, Lt ] be an arbitrary number where the number Lt >  exists according to
condition () of Lemma . Consider the initial value problem for the scalar FrDE

c
t Dqu = g(t, u) – η for t ∈ [t, T], u(t) = u – η. ()

The function u(t,η) is a solution of the scalar fractional differential equation () iff it
satisfies the Volterra fractional integral equation (Lemma . [])

u(t,η) = u – η +


�(q)

∫ t

t

(t – s)q–(g
(
s, u(s,η)

)
– η

)
ds for t ∈ [t, T]. ()

Let the function m(t) ∈ C[[t, T],R–] be m(t) = –V (t, x∗(t)). We now prove that

m(t) < –u(t,η) for t ∈ [t, T]. ()

Note that inequality () holds for t = t since m(t) = –V (t, x) ≤ –u < –u + η =
–u(t,η). Assume that inequality () is not true. Then there exists a point t∗ such that
m(t∗) = –u(t∗,η), m(t) < –u(t,η) for t ∈ [t, t∗). Now Lemma  (applied to m(t) + u(t,η))
yields cDq

+(m(t∗) + u(t∗,η)) > , i.e.,

cDq
+m

(
t∗) > –cDq

+
(
u
(
t∗,η

))
= –cDqu

(
t∗,η

)
= –g

(
t∗, u

(
t∗,η

))
+ η

> –g
(
t∗, –m

(
t∗)). ()

From condition () of Lemma  the function x∗(t) satisfies the following initial value prob-
lem for the system FrDE:

c
t Dq

+x = f (t, x), x(t) = x, t ∈ [t, T]. ()
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Then, for t ∈ (t, T], the equality

lim sup
h→+


hq

[
x∗(t) – x – S

(
x∗(t), h

)]
= f

(
t, x∗(t)

)

holds, where

S
(
x∗(t), h

)
=

[ t–t
h ]∑

r=

(–)r+qCr
[
x∗(t – rh) – x

]
.

Therefore,

S
(
x∗(t), h

)
= x∗(t) – x – hqf

(
t, x∗(t)

)
– �

(
hq)

or

x∗(t) – hqf
(
t, x∗(t)

)
= S

(
x∗(t), h

)
+ x + �

(
hq) ()

with �(hq)
hq →  as h → . Then, for any t ∈ (t, T], we obtain

m(t) – m(t) –
[ t–t

h ]∑
r=

(–)r+qCr
[
m(t – rh) – m(t)

]

= –

{
V

(
t, x∗(t)

)
– V (t, x)

–
[ t–t

h ]∑
r=

(–)r+qCr
[
V

(
t – rh, x∗(t) – hqf

(
t, x∗(t)

))
– V (t, x)

]}

+
[ t–t

h ]∑
r=

(–)rqCr
{[

V
(
t – rh, S

(
x∗(t), h

)
+ x + �

(
hq)) – V (t, x)

]

–
[
V

(
t – rh, x∗(t – rh)

)
– V (t, x)

]}
. ()

Since V is locally Lipschitzian in its second argument with a Lipschitz constant L > , we
obtain

[ t–t
h ]∑

r=

(–)rqCr
{

V
(
t – rh, S

(
x∗(t), h

)
+ x + �

(
hq))

– V
(
t – rh, x∗(t – rh)

)}

≤ L

∥∥∥∥∥
[ t–t

h ]∑
r=

qCr
(
S
(
x∗(t), h

)
+ �

(
hq) –

(
x∗(t – rh) – x

))∥∥∥∥∥

≤ L

∥∥∥∥∥
[ t–t

h ]∑
r=

(–)rqCr
[ t–t

h ]∑
j=

qCj
(
x∗(t – jh) – x

)
–

[ t–t
h ]∑

r=

qCr
((

x∗(t – rh) – x
))∥∥∥∥∥
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+ L�
(
hq) [ t–t

h ]∑
r=

qCr

= L

∥∥∥∥∥
([ t–t

h ]∑
r=

(–)rqCr

)([ t–t
h ]∑

j=

qCj
(
x∗(t – jh) – x

))∥∥∥∥∥ + L�
(
hq) [ t–t

h ]∑
r=

qCr. ()

Substitute () in (), divide both sides by hq, take the limit as h → +, use
∑∞

r= qCrzr =
( + z)q if |z| ≤ , and we obtain for any t ∈ (t, T] the inequality (note () and () and
condition () of Lemma )

cDq
+m(t) ≤ – c

()D
q
+V

(
t, x∗(t); t, x

)
+ L lim

h→+

	(hq)
hq lim

h→+

[ t–t
h ]∑

r=

qCr

+ L lim
h→+

sup

∥∥∥∥∥
([ t–t

h ]∑
r=

(–)rqCr

)(


hq

[ t–t
h ]∑

j=

qCj
(
x∗(t – jh) – x

))∥∥∥∥∥
= –c

()D
q
+V

(
t, x∗(t); t, x

) ≤ –g
(
t, V

(
t, x∗(t)

))
= –g

(
t, –m(t)

)
. ()

Now () with t = t∗ contradicts (). Therefore () holds.
We now show if η < η then

u(t,η) > u(t,η) for t ∈ [t, T]. ()

Note that inequality () holds for t = t. Assume that inequality () is not true. Then
there exists a point t∗ such that u(t∗,η) = u(t∗,η) and u(t,η) > u(t,η) for t ∈ [t, t∗).
Now Lemma  (applied to u(t,η) – u(t,η)) yields c

t Dq
+(u(t∗,η) – u(t∗,η)) > . However,

c
t Dq

+
(
u
(
t∗,η

)
– u

(
t∗,η

))
= g

(
t∗, u

(
t∗,η

))
– η –

[
g
(
t∗, u

(
t∗,η

))
– η

]
= η – η < ,

a contradiction. Thus () is true.
Recall η ∈ (, Lt ]. Now () and () guarantee that the family of solutions {u(t,η)},

t ∈ [t, T] of () is uniformly bounded, i.e., there exists K >  with |u(t,η)| ≤ K for
(t,η) ∈ [t, T] × [, Lt ]. Let M = sup{|g(t, x)| : (t, x) ∈ [t, T] × [–K , K]}. Take a decreas-
ing sequence of positive numbers {ηj}∞j=, η ≤ Lt , such that limj→∞ ηj =  and consider
the sequence of functions u(t;ηj). Now, for t, t ∈ [t, T], t < t, we have

∣∣u(t,ηj) – u(t,ηj)
∣∣

≤ 
�(q)

∣∣∣∣
∫ t

t

(
(t – s)q– – (t – s)q–)(g

(
s, u(s,ηj)

)
– ηj

)
ds

–
∫ t

t

(
(t – s)q–)(g

(
s, u(s,ηj)

)
– ηj

)
ds

∣∣∣∣ ≤ 
[M + ]
q�(q)

(t – t)q. ()

Thus the family {u(t;ηj)} is equicontinuous on [t, T]. The Arzela-Ascoli theorem guar-
antees that there exists a subsequence, {u(t;ηjk )} and w ∈ C[t, T] with u(t;ηjk ) → w in
C[t, T] as k → ∞. Take the limit in () as k → ∞, and we see that w(t) satisfies the
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initial value problem () for t ∈ [t, T]. Now from () we have m(t) ≤ –w(t) ≤ –u∗(t) on
[t, T] or –V (t, x∗(t)) ≤ –u∗(t). �

If g(t, x) ≡  in Lemma , we obtain the following result.

Corollary  Assume that the following conditions are satisfied:
() The function x∗(t) = x(t; t, x), x∗ ∈ Cq([t, T],
), is a solution of FrDE () where


 ⊂R
n,  ∈ 
.

() The function V ∈ 	([t, T],
) and for t ∈ [t, T] the inequality

c
()D

q
+V

(
t, x∗(t); t, x

) ≤ (≥)

holds.
Then, for t ∈ [t, T], the inequality V (t, x∗(t)) ≤ (≥)V (t, x) holds.

Note that a similar result to Corollary  for Dini fractional derivatives is proved in []
(Corollary . considers the case when all inequalities are ≤). We note that () could lead
to some problems.

Example  Let V : R+ × R → R+ be given by V (t, x) = sin tx and t = . It is locally
Lipschitz with respect to its second argument x.

First, apply formula () to obtain the derivative of V , namely

cDq
+V (t, x) = x sin(t)f (t, x). ()

From () we obtain the Caputo fractional Dini derivative of V , namely

c
()D

q
+V (t, x; , x) = x sin(t)f (t, x) + xRL

 Dq(sin(t)
).

Use (sin(t)) = . – . cos(t) and RL
 Dq cos(t) = q cos(t + qπ

 ) and obtain

c
()D

q
+V (t, x; , x) = x sin(t)f (t, x) + x

(
.

t–q

�( – q)
+ q– cos

(
t +

qπ



))
. ()

Let f (t, x) ≡ . The solution of () for n =  and t =  is x(t) ≡ x, t ≥  and V (t, x(t)) =
x

 sin t. Note that cDq
+V (t, x) =  and all the conditions of Corollary . [] are satisfied, so

the inequality V (t, x(t)) ≤ V (t, x), t ≥ t, has to hold. However, the inequality x
 sin t ≤

x
 sin  =  is not satisfied for all t ≥ t.
From () we obtain for the Caputo fractional Dini derivative

c
()D

q
+V (t, x; , x) = x

(
.

t–q

�( – q)
+ q– cos

(
t +

qπ



))
≡ xp(t),

where p(t) = . t–q

�(–q) + q– cos(t + qπ

 ). The sign of the Caputo fractional Dini deriva-
tive of V (t, x) changes (see Figure  for the graph of p(t), q = ., ., .). Therefore, the
conditions of Corollary  are not satisfied.

Now let V : R+ ×R →R+ be given by V (t, x) = x. According to () for m(t) ≡ , we get
c
()D

q
+V (t, x; , x) = x–x


tq�(–q) + xf (t, x). Let f (t, x) = – x

tq�(–q) . Then c
()D

q
+V (t, x; , x) ≤ ,
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Figure 10 Example 6: q = 0.2, 0.5 and 0.8.

and according to Corollary  the inequality |x(t; , x)| ≤ |x|, t ≥ , holds for any solution
x(t; , x) of ().

The result of Lemma  is also true on the half line (see [] for the case when all inequal-
ities are ≤).

Corollary  Assume that the following conditions are satisfied:
() The function x∗(t) = x(t; t, x), x∗ ∈ Cq([t,∞),
), is a solution of FrDE () where


 ⊂R
n,  ∈ 
.

() The function g ∈ C[[t,∞) ×R,R] and satisfies condition (H).
() The function V ∈ 	([t,∞),
), and for any points t ≥ t and x ∈ 
 the inequality

c
()D

q
+V

(
t, x∗(t); t, x

) ≤ (≥)g
(
t, V

(
t, x∗(t)

))

holds.
() The function u∗(t) = u(t; t, u), u∗ ∈ Cq([t,∞),R) is the maximal solution

(minimal solution) of the initial value problem ().
Then the inequality V (t, x) ≤ (≥)u implies V (t, x∗(t)) ≤ (≥)u∗(t) for t ≥ t.

5 Main results
We obtain sufficient conditions for strict stability of the system FrDE (). Again we assume
 < q < .

Theorem  Let the following conditions be satisfied:
() The functions gi ∈ C[R+ ×R,R], gi(t, ) ≡ , i = , , and satisfy condition (H).
() There exists a function V ∈ 	(R+,Rn) such that V(t, ) ≡  for t ∈ R+ and

(i) the inequality

c
()D

q
+V(t, x; t, x) ≤ g

(
t, V(t, x)

)

holds for any t, t ∈R+, t ≥ t and x, x ∈ R
n;

(ii) a(‖x‖) ≤ V(t, x) for t ∈R+, x ∈R
n, where a ∈K.

() There exists a function V ∈ 	(R+,Rn) such that
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(iii) the inequality

c
()D

q
+V(t, x; t, x) ≥ g

(
t, V(t, x)

)

holds for any t, t ∈R+, t ≥ t and x, x ∈ R
n;

(iv) c(‖x‖) ≤ V(t, x) ≤ b(‖x‖) for t ∈R+, x ∈R
n, where b, c ∈K.

() The zero solution of FrDE () is strictly stable in couple.
Then the zero solution of the system FrDE () is strictly stable.

Proof Let ε >  be an arbitrary number. From condition () there exists δ = δ(t, ε) ≥ ,
and for any δ ∈ (, δ] there exists ε ∈ (, δ] such that |u| < δ and |v| > δ imply

∣∣u(t; t, u)
∣∣ < a(ε) for t ≥ t, ()

∣∣v(t; t, v)
∣∣ > ε for t ≥ t, ()

where the couple (u(t; t, u), v(t; t, v)) is a solution of ().
Since V(t, ) = , there exists δ = δ(t, ε), δ ∈ (, δ) such that V(t, x) < δ for

‖x‖ < δ. Let δ ∈ (, δ] be an arbitrary number. Then there exists δ ∈ (, δ] such that
c(δ) > δ. According to the above, for δ there exists ε ∈ (, δ] such that |v| > δ im-
plies (). Choose ε ∈ (, δ] such that b(ε) < ε. Choose x ∈R

n with δ < ‖x‖ < δ. Let
x∗(t) = x(t; t, x) be a solution of the IVP for FrDE () for the initial data (t, x).

Let u = V(t, x) and v = V(t, x). Let the couple (u(t; t, u), v(t; t, v)) be the solu-
tion of FrDE () for the initial values (u, v) such that the components are maximal and
minimal solutions of the first and second equation, respectively. From the choice of x it
follows that |u| < δ. Therefore, the component u(t; t, u) satisfies inequality (). From
the choice of x and condition ()(iv) it follows that |v| = V(t, x) ≥ c(‖x‖) > c(δ) > δ.
Therefore, the component v(t; t, v) satisfies inequality ().

According to Corollary  applied to the solution x∗(t) and condition ()(ii), we obtain
a(‖x∗(t)‖) ≤ V (t, x∗(t)) ≤ u(t; t, u) < a(ε), t ≥ t. Therefore ‖x∗(t)‖ < ε for t ≥ t.

According to Corollary  applied to the solution x∗(t) and condition ()(iv), we obtain
b(‖x∗(t)‖) ≥ V (t, x∗(t)) ≥ v(t; t, v) > ε > b(ε), t ≥ t. Therefore ‖x∗(t)‖ > ε for t ≥ t.

�

Theorem  Let the following conditions be satisfied:
() The functions gi ∈ C[R+ ×R,R], gi(t, ) ≡ , i = , , and satisfy condition (H).
() There exists a function V ∈ 	(R+, B(A)) such that

(i) the inequality

c
()D

q
+V(t, x; t, x) ≤ g

(
t, V(t, x)

)

holds for any t, t ∈R+, t ≥ t and x, x ∈ B(A), where A >  is a given number;
(ii) a(‖x‖) ≤ V(t, x) ≤ b(‖x‖) for t ∈R+, x ∈ B(A), where a, b ∈K.

() There exists a function V ∈ 	(R+, B(A)) such that
(iii) the inequality

c
()D

q
+V(t, x; t, x) ≥ g

(
t, V(t, x)

)

holds for any t, t ∈R+, t ≥ t and x, x ∈ B(A);



Agarwal et al. Advances in Difference Equations  (2015) 2015:346 Page 18 of 20

(iv) c(‖x‖) ≤ V(t, x) ≤ d(‖x‖) for t ∈R+, x ∈ B(A), where c, d ∈K.
() The zero solution of the couple of FrDE () is uniformly strictly stable in couple.

Then the zero solution of the system FrDE () is uniformly strictly stable.

Proof Let ε ∈ (, A] be an arbitrary number and t ∈ R+ be an arbitrary initial time. From
condition () there exists δ = δ(ε) > , and for any δ ∈ (, δ] there exists ε ∈ (, δ] such
that the inequalities |u| < δ and δ < |v| imply

∣∣u(t; t, u)
∣∣ < a(ε), t ≥ t ()

and

ε <
∣∣v(t; t, v)

∣∣, t ≥ t, ()

where the couple of functions (u(t; t, u), v(t; t, u)) is a solution of the IVP for FrDE ().
Choose δ ∈ (, A) such that b(δ) < δ. Choose x ∈ R

n with ‖x‖ < δ, and let x∗(t) =
x(t; t, x) be the solution of the IVP for FrDE () for the initial data (t, x).

Let u = V(t, x). Let u(t; t, u) be the maximal solution of the first equation of the
couple of FrDE (). According to condition ()(ii) and the choice of x, we obtain u =
V(t, x) ≤ b(‖x‖) < b(δ) < δ. Therefore the first component u(t; t, u) of the solution
of () satisfied ().

Assume that the inequality

∥∥x∗(t)
∥∥ < A for t ≥ t ()

is not true. Then there exists a point t∗ > t such that ‖x∗(t)‖ < A for t ∈ [t, t∗) and
‖x∗(t∗)‖ = A. From Lemma , for 
 = B(A) and T = t∗, we obtain

V
(
t, x∗(t)

) ≤ u(t; t, u) for t ∈ [
t, t∗]. ()

From inequalities (), () and condition ()(i) we get

a(A) = a
(∥∥x∗(t∗)∥∥) ≤ V

(
t∗, x∗(t∗)) ≤ u

(
t∗; t, u

)
< a(ε) ≤ a(A). ()

The obtained contradiction proves that inequality () is true for t ≥ t. Then Corol-
lary  is applicable on [t,∞) and inequality () is satisfied not only on [t, t∗] but also on
[t,∞). According to condition ()(ii) and inequality (), we get a(‖x∗(t)‖) ≤ V(t, x∗(t)) ≤
u(t∗; t, u) < a(ε). Therefore, for t ≥ t, the inequality ‖x∗(t)‖ < ε holds.

Let δ ∈ (, δ] be an arbitrary number. Then there exists δ ∈ (, δ] such that c(δ) > δ.
According to the above, for δ there exists ε∗

 ∈ (, δ] such that |v| > δ implies inequality
(), ε = ε∗

 , for the second component v(t; t, v) of the solution of (). Let the initial
value x ∈R

n additionally satisfy ‖x‖ > δ. From the above x∗(t) ∈ B(A) for t ≥ t. Choose
ε ∈ (, δ] such that d(ε) ≤ ε∗

 .
Let v = V(t, x) and let v(t; t, v) be the minimal solution of the second equation of

the couple of FrDE (). According to condition ()(iv), it follows that |v| = V(t, x) ≥
c(‖x‖) > c(δ) > δ. Therefore, the component v(t; t, v) of the solution of FrDE () satis-
fies inequality () for ε = ε∗

 .
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From Corollary  we have

V
(
t, x∗(t)

) ≥ v(t; t, v) for t ≥ t. ()

From inequalities (), () and condition ()(iv) we get

d
(∥∥x∗(t)

∥∥) ≥ V
(
t, x∗(t)

) ≥ v(t; t, v) > ε∗
 ≥ d(ε). ()

Therefore, for t ≥ t, the inequality ‖x∗(t)‖ > ε holds. �

Corollary  Let the conditions () and () of Theorem  be satisfied with gi(t, x) ≡ , i = , .
Then the zero solution of the system of FrDE () is uniformly strictly stable.

Sufficient conditions for strict stability could be obtained in the case of one Lyapunov
function.

Theorem  Let the following conditions be satisfied:
() The function gi ∈ C[R+ ×R,R], gi(t, ) ≡ , i = , , g(t, u) ≥ g(t, u) for t ∈R+,

u ∈R and satisfies condition (H).
() There exists a function V ∈ 	(R+, B(A)) such that

(i) the inequalities

g
(
t, V (t, x)

) ≤ c
()D

q
+V (t, x; t, x) ≤ g

(
t, V (t, x)

)

hold for any t, t ∈R+, t ≥ t and x, x ∈R
n;

(ii) a(‖x‖) ≤ V (t, x) ≤ b(‖x‖) for t ∈ R+, x ∈ B(A), where a, b ∈K, A >  is a given
number.

() The zero solution of the couple of FrDE () is strictly stable (uniformly strictly stable)
in couple.

Then the zero solution of the system FrDE () is strictly stable (uniformly strictly stable).

The result of Theorem  is a partial case of Theorem  and Theorem .
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