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Abstract
We present a second-order in time linearized semi-implicit Fourier pseudospectral
scheme for the generalized regularized long wave equation. Based on the consistency
analysis, the nonlinear stability and the convergence of the scheme are discussed,
along with the a priori assumption and an aliasing error control estimate. The
numerical examples demonstrate the features of the proposed scheme, including the
convergence order, conservative properties, and the evolution of the unstable wave.
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1 Introduction
In this paper, we consider the following initial-boundary value problem for the General-
ized Regularized Long Wave (GRLW) equation:

ut + ux + α
(
up)

x – βuxxt = , x ∈ (xL, xR), t ∈ (, T], (.)

u(x, ) = u(x), x ∈ [xL, xR], (.)

u(xL, t) = u(xR, t) = , t ∈ [, T], (.)

where u(x) is the given known function, p ≥  is an integer and α, β are constants. The
RLW equation (p = ) is originally introduced to describe the behavior of the undular bore
by Peregrine [] and plays a major role in the study of nonlinear dispersive waves, such as
shallow water waves and ion acoustic plasma waves. Mathematical theory for this equation
was presented in [, ] and the references therein. Due to nonlinearity of the GRLW equa-
tion, only a few exact solutions exist []. Therefore, the higher accurate numerical methods
are essential for capturing physical phenomena accurately. Many efforts have been made
to develop numerical method for solving this equation, such as the variational iteration
method [], the finite difference method [–], the Fourier pseudospectral method [,
], the Galerkin element method [, ], the Adomian decomposition method [, ],
the collocation method [, ], and others.
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In addition to the nonlinearity, another interesting feature of the GRLW equation is that
it has both stable and unstable solitary-wave solutions when p ≥  []. Bona et al. []
proposed a high-order accurate pseudospectral scheme to approximate the solutions of
the GRLW equation and to examine the dynamics of the suitably perturbed solitary waves.
In their experiments, they found that unstable solitary waves may evolve into several, sta-
ble solitary waves, and the positive initial data does not need the feature of the solitary
waves for the long-time asymptotic behavior. Also, similar discussions for the generalized
Benjamin-Bona-Mahony equation can be found in [].

On the other hand, spectral and pseudospectral methods have been developed rapidly
in the past two decades. They have been applied to numerical simulations in many fields
because of its high accuracy. For instance, the stability analysis for linear time-dependent
problems can be found in [, ]. Some pioneering works for nonlinear equations were
initiated by Maday and Quarteroni [] for steady-state spectral solutions. Also note the
analysis of one-dimensional conservation laws by Tadmor [, ], semi-discrete viscous
Burgers’ equation and Navier-Stokes equations by Weinan [], Fourier spectral projec-
tion method for Navier-Stokes equations by Guo and Zou [], fully discrete (discrete
both in space and time) pseudospectral method applied to viscous Burgers’ equation and
Boussinesq equation in [, ] by Gottlieb and Wang, and Fourier spectral approxima-
tion to the flow of liquid crystals [] by Du et al., and so forth.

In this paper, we present a fully discrete semi-implicit Fourier pseudospectral method
for the GRLW equation, with periodic boundary condition on [xL, xR]. This periodicity
assumption is reasonable if the solution decays exponentially outside [xL, xR] for large
enough xL and xR. For the theoretical analysis, the convergence analysis follows the com-
bination of consistency analysis for the proposed scheme and the stability analysis for the
numerical error function. The consistency analysis shows that such an approximate solu-
tion satisfies the numerical scheme with an O(�t) accuracy in time and a spectral accu-
racy in space. Based on the a priori estimate, a detailed error estimate is performed by an
aliasing error control estimate for the nonlinear terms, and the a priori assumption can be
recovered. Additionally, various numerical experiments are given to verify the theoretical
analysis, wave interaction and evolution of the unstable solitary wave, respectively.

The remainder of the paper is organized as follows. In Section , we review the Fourier
pseudospectral method and present a second-order in time linearized semi-implicit
Fourier pseudospectral scheme for the GRLW equation. In Section , the consistency
analysis is discussed in detail, and the stability and convergence analysis are reported in
Section . Finally, we present we present many numerical simulations related to different
types of the GRLW equations in Section .

2 Numerical scheme
2.1 Reviews of pseudospectral approximation
For f (x) ∈ L(�), � = (, L), with Fourier series

f (x) =
∞∑

l=–∞
f̂leπ ilx/L, with f̂l =

∫

�

f (x)e–π ilx/L dx,
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its truncated series is defined as the projection onto the space BN of trigonometric poly-
nomials in x of degree up to N , given by

PN f (x) =
N∑

l=–N

f̂leπ ilx/L.

To obtain a pseudospectral approximation at a given set of points, an interpolation oper-
ator IN is introduced. Given a uniform numerical grid with (N + ) points and a discrete
vector function f where fi = f (xi), for each spatial point xi. The Fourier interpolation of
the function is defined by

(IN f )(x) =
N∑

l=–N

(
f̂ N
c

)
le

π ilx/L, (.)

where the (N + ) pseudospectral coefficients (f̂ N
c )l are computed based on the inter-

polation condition f (xi) = (IN f )(xi) on the N +  equidistant points. These collocation
coefficients can be efficiently computed using the fast Fourier transform (FFT). Note that
the pseudospectral coefficients are not equal to the actual Fourier coefficients; the differ-
ence between them is known as the aliasing error. In general, PN f (x) �= IN f (x), and even
PN f (xi) �= IN f (xi), except of course in the case that f ∈ BN .

The Fourier series and the formulas for its projection and interpolation allow one to
easily take derivative by simply multiplying the appropriate Fourier coefficients (f̂ N

c )l by
lπ i/L. Furthermore, we can take subsequent derivatives in the same way, so that differen-
tiation in physical space is accomplished via multiplication in Fourier space. As long as f
and all is derivatives (up to mth order) are continuous and periodic on �, the convergence
of the derivatives of the projection and interpolation is given by

∥∥∂kf (x) – ∂kPN f (x)
∥∥

L ≤ C
∥∥f (m)∥∥

L hm–k , for  ≤ k ≤ m,

∥∥∂kf (x) – ∂kIN f (x)
∥∥

L ≤ C‖f ‖Hm hm–k , for  ≤ k ≤ m, m >
d


,
(.)

where d denotes the space dimension, ‖f ‖L = (
∫
�

f (x) dx)/, and

‖f ‖Hm =
(∫

�

∑

|α|≤m

∣
∣(Dαf

)(x)
∣
∣dx

)/

.

For more details, see the discussion of approximation theory by Canuto and Quarteroni
[].

For any collocation approximation to the function f (x) at the points xi

f (xi) = (IN f )i =
N∑

l=–N

(
f̂ N
c

)
le

π ilxi/L, (.)

one can define discrete differentiation operator DN operating on the vector of grid val-
ues f = f (xi). In practice, one may compute the collocation coefficients ( ˆf N

c )l via FFT, and
then multiply them by the correct values (given by lπ i/L) and perform the inverse FFT.
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Alternatively, we can view the differentiation operator DN as a matrix, and the above pro-
cess can be seen as a matrix-vector multiplication. The same process is performed for
the second ∂

x , where the collocation coefficients are multiplied by (–πl/L). In turn,
the differentiation matrix can be applied for multiple times, i.e., the vector f is multiplied
by D

N .
Since the pseudospectral differentiation is taken at a point-wise level, a discrete L norm

and inner product need to be introduced to facilitate the analysis. Given any periodic grid
functions f and g (over the numerical grid), we note that these are simply vectors and
define the discrete L inner product and norm

‖f‖ =
√〈f , f〉, with 〈f , g〉 =


N + 

N∑

i=

figi. (.)

The following summation by parts (see []) will be of use:

〈f ,DN g〉 = –〈DN f , g〉, 〈
f ,D

N g
〉

= –〈DN f ,DN g〉. (.)

2.2 Numerical scheme
Since the standard second-order Adams-Bashforth extrapolation formula involves the nu-
merical solutions at time node points tn, tn–, with the well-known coefficients / and
–/, respectively, we propose a linearized semi-implicit Fourier pseudospectral scheme
with second-order accuracy in time as follows:

(
 – βD

N
)un+ – un

�t
+ DN

(



un –



un–
)

+ αDN

((


(
un)p –



(
un–)p

))
= . (.)

Remark . Sloan [] investigated the RLW equation (p = ) by a three-level explicit
Fourier pseudospectral scheme. But numerical tests indicated that the high accuracy in
space can only be matched in time with the second-order leap-frog discretization under
a strict stability condition. Furthermore, the formal stability and the convergence analysis
were not pursued in his work.

Remark . Although another implicit Fourier pseudospectral scheme discussed by Djid-
jeli et al. [] for the GRLW equation can ensure the unconditionally stability, a set of non-
linear algebraic equations has to be solved by a linearizing pseudospectral scheme by the
Taylor expansion. Similar to the previous statement, a detailed theoretical analysis also
was not given.

3 Consistency analysis
Without loss of generality, C denotes a general positive constant, which may have different
values in different occurrences. Meanwhile, some function spaces and norms are defined
as follows:

‖f ‖L(,T :Hr) =
(∫ T


‖f ‖

Hr dt
) 


, ‖f ‖L∞(,T :Hr ) = sup

≤t≤T
‖f ‖Hr ,
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and corresponding semi-discrete versions are given by

‖f ‖l(,T :Hr) =

√√√√�t
Nk∑

k=

∥
∥f k

∥
∥

Hr , ‖f ‖l∞(,T :Hr) = max
≤k≤Nk

∥
∥f k∥∥

Hr , Nk =
[

T
�t

]
.

Similarly, other norms used in the next text can be defined and we omit the details.

3.1 Truncation error analysis for UN

Denote by ue the exact solution and

UN (x, t) = PN ue(x, t). (.)

From (.), the following approximation estimates are clear:

‖UN – ue‖L∞(,T ;Hr ) ≤ Chm‖ue‖L∞(,T ;Hm+r), for r ≥ , (.)

and

∥
∥∂k

t (UN – ue)
∥
∥

Hr ≤ Chm∥
∥∂k

t ue
∥
∥

Hm+r , for r ≥ ,  ≤ k ≤ , (.)

which comes from the fact that ∂k
t UN is the truncation of ∂k

t ue for any k ≥ , since projec-
tion and differentiation can commute,

∂k

∂tk UN (x, t) =
∂k

∂tk PN ue(x, t) = PN
∂kue(x, t)

∂tk . (.)

Consequently, the following linear estimates are straightforward:

∥∥∂t(UN – ue)
∥∥

L ≤ Chm‖∂tue‖Hm , (.)
∥
∥∂x(UN – ue)

∥
∥

L ≤ Chm‖ue‖Hm+ , (.)
∥∥∂t ∂


x (UN – ue)

∥∥
L ≤ Chm‖∂tue‖Hm+ . (.)

Again, a discrete ‖ · ‖ estimate should be given in the local truncation derivation. Note
that

∥
∥∂t(UN – ue)

∥
∥

 =
∥
∥IN

(
∂t(UN – ue)

)∥∥
L ≤ ∥

∥∂t(UN – ue)
∥
∥

L +
∥
∥∂t(IN ue – ue)

∥
∥

L , (.)

where the fact IN∂tUN = ∂tUN is applied, since ∂tUN ∈ BN . The first term on the right-
hand side of (.) has an estimate obtained from (.), and it follows from (.) that the
second term also is bounded by

∥∥∂t(IN ue – ue)
∥∥

L = ‖IN∂tue – ∂tue‖L ≤ Chm‖∂tue‖Hm . (.)

Therefore, from (.), (.), and (.), we have

∥∥∂t(UN – ue)
∥∥

 ≤ Chm‖∂tue‖Hm . (.)
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Similarly, we have

∥∥∂x(UN – ue)
∥∥

 ≤ Chm‖ue‖Hm+ ,
∥∥∂t ∂


x (UN – ue)

∥∥
 ≤ Chm‖∂tue‖Hm+ . (.)

For the nonlinear term, from the expansion ∂xup
e = pup–

e (ue)x and

∂x
(
up

e – Up
N
)

= pup–
e (ue)x – pUp–

N (UN )x

= pUp–
N (ue – UN )x + p

(
up–

e – Up–
N

)
(ue)x

= pUp–
N (ue – UN )x + p(ue)x(ue – UN )

p–∑

k=

uk
e Up––k

N , (.)

we get

∥∥∂x
(
up

e – Up
N
)∥∥

L

≤ C
(‖UN‖p–

L∞ ‖ue – UN‖H + ‖ue – UN‖L∞
(‖ue‖p–

L∞ + ‖UN‖p–
L∞

)‖ue‖H
)

≤ C‖ue – UN‖H‖ue‖p
H ≤ Chm‖ue‖Hm+‖ue‖p

H , (.)

in which the D Sobolev embedding is used.
Furthermore, from (.), the following interpolation error also can be derived in a similar

analysis:

∥
∥∂xup

e – IN
(
∂xup

e
)∥∥

L ≤ Chm∥
∥∂xup

e
∥
∥

Hm ≤ Chm‖ue‖p
H‖ue‖Hm+ ,

∥∥∂xUp
N – IN

(
∂xUp

N
)∥∥

L ≤ Chm∥∥∂xUp
N
∥∥

Hm ≤ Chm‖ue‖p
H‖ue‖Hm+ . (.)

Then the combination of (.), (.), and (.) yields

∥∥∂x
(
up

e – Up
N
)∥∥

 =
∥∥IN∂x

(
up

e – Up
N
)∥∥

L

=
∥∥∂x

(
up

e – Up
N
)

– ∂xup
e + IN∂xup

e + ∂xUp
N – IN∂xUp

N )
∥∥

L

≤ ∥
∥∂x

(
up

e – Up
N
)∥∥

L +
∥
∥∂xup

e – IN
(
∂xup

e
)∥∥

L +
∥
∥∂xUp

N – IN
(
∂xUp

N
)∥∥

L

≤ Chm‖ue‖p
H‖ue‖Hm+ . (.)

Thus, the bounds on the projection error and its derivatives indicate that

∂tUN – β∂xxtUN + ∂xUN + α∂xUp
N = ∂tue – β∂xxtue + ∂xue + α∂xup

e + τ = τ (.)

with ‖τ‖ ≤ Chm, since ue is the exact solution.

3.2 Truncation error analysis in time
For simplicity of presentation, we assume T = K�t with an integer K . Our approach is
based upon the following simple, but fundamental estimates [].

Lemma . [] For f ∈ H(, T), we have

∥∥τ t f
∥∥

l(,T) ≤ C�tm‖f ‖Hm+(,T), (.)



Kang et al. Advances in Difference Equations  (2015) 2015:339 Page 7 of 22

with τ t f n = f n+–f n

�t – f ′(tn+/), for  ≤ m ≤ , where C only depends on T , ‖·‖l(,T) is a

discrete L norm (in time) given by ‖g‖l(,T) =
√

�t
∑K–

n= (gn).

Lemma . [] For f ∈ H(, T), we have

∥∥D
t/f

∥∥
l(,T) :=

(

�t
K–∑

n=

(
D

t/f n+/)
) 



≤ C‖f ‖H(,T), (.)

∥
∥D

t f
∥
∥

l(,T) :=

(

�t
K–∑

n=

(
D

t f n)
) 



≤ C‖f ‖H(,T),

with D
t/f n+/ =

(f n+ – f ( ·, tn+/) + f n)
�t , D

t f n =
f n+ – f n + f n–

�t ,

(.)

where C only depends on T .

For the approximate solution UN , define its vector grid function Un = IUN as its inter-
polation: Un

i = Un
N (xi, tn).

Theorem . For any fixed time T , assume that the problem (.)-(.) possesses a unique
solution ue such that ue ∈ L∞(, T ; Hm+) ∩ H(, T ; H). Let UN be the approximation
solution and U be its discrete interpolation. Then we have

(
 – βD

N
)Un+ – Un

�t
+ DN

(



Un –



Un–
)

+ αDN

((


(
Un)p –



(
Un–)p

))
= τ n, (.)

where τ k satisfies

‖τ‖l(,T ;l) :=

(

�t
K∑

k=

∥
∥τ k∥∥



)/

≤ C
(
�t + hm)

, (.)

in which C only depends on the regularity of the exact solution ue.

Proof According to Lemma ., letting m = , we have

Un+
N – Un

N
�t

= ∂tUN
(·, tn+ 


)

+ τ n
 (·), (.)

with ‖τ‖l(,T) ≤ C�t‖UN (·)‖H(,T) ≤ C�t‖ue‖H(,T). In turn, an application of a dis-
crete summation in � yields

‖τ‖l(,T ;l) ≤ C�t∥∥UN (·)∥∥H(,T ;L) ≤ C�t‖ue‖H(,T ;L). (.)

Using a similar argument, we also can arrive at

∂
x Un+

N – ∂
x Un

N
�t

= ∂xxtUN
(·, tn+ 


)

+ τ n
 (·), (.)
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which leads to

‖τ‖l(,T ;l) ≤ C�t∥∥∂
x UN (·)∥∥H(,T ;L) ≤ C�t∥∥UN (·)∥∥H(,T ;H)

≤ C�t‖ue‖H(,T ;H). (.)

Since ( 
 Un

N – 
 Un–

N ) ∈ BN , the following result is valid:

∥∥
∥∥DN

(



Un –



Un–
)

– I
(

∂x

(



Un
N –




Un–
N

))∥∥
∥∥


= , (.)

where I is the discrete operator of the continuous function at fixed points. Also, one can
observe that




Un
N –




Un–
N = UN

(·, tn+ 

)

+


�tD

t/UN –


�tD

t UN , (.)

and denote

∂x

(



Un
N –




Un–
N

)
= ∂xUN

(·, tn+ 

)

+ τ n
 (·). (.)

An application of Lemma . also yields

∥
∥D

t/∂xUN
∥
∥

l(,T) ≤ C‖∂xUN‖H(,T),
∥
∥D

t ∂xUN
∥
∥

l(,T) ≤ C‖∂xUN‖H(,T). (.)

As a result, the combination of (.)-(.) implies that

‖τ‖l(,T ;l) ≤ C�t∥∥UN (·)∥∥H(,T ;H) ≤ C�t‖ue‖H(,T ;H). (.)

For the nonlinear term, let

∂x

(


(
Up

N
)n –



(
Up

N
)n–

)
= ∂xUp

N
(·, tn+ 


)

+ τ n
 (·). (.)

First, we have the following estimate:

∥∥∥
∥DN

(


(
Up)n –



(
Up)n–

)
– I

(
∂x

(


(
Up

N
)n –



(
Up

N
)n–

))∥∥∥
∥



≤ Chm
∥∥
∥∥



(
Up

N
)n –



(
Up

N
)n–

∥∥
∥∥

Hm+

≤ Chm(∥∥Un
N
∥
∥p

Hm+ +
∥
∥Un–

N
∥
∥p

Hm+
)

≤ Chm‖UN‖p
L∞(,T ;Hm+). (.)

Similar to (.), one can get

∂x

(


(
Up

N
)n –



(
Up

N
)n–

)
= ∂xUp

N
(·, tn+ 


)

+


�tD

t/∂xUp
N –



�tD

t ∂xUp
N , (.)
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which leads to

∥
∥∥
∥I

(
∂x

(


(
Up

N
)n –



(
Up

N
)n–

)
– ∂xUp

N
(·, tn+ 


)
)∥

∥∥
∥



≤ 

�t∥∥D

t/∂xUp
N
∥∥

H +


�t∥∥D

t ∂xUp
N
∥∥

H , (.)

where the estimate (.) is applied in the last step. Meanwhile, using the Hölder inequality,
the Sobolev imbedding, and the first- and the second-order time derivative of Up

N , we can
get

∥∥Up
N
∥∥

H(,T) ≤ C‖UN‖p
H(,T). (.)

With the same analysis above of the term ‖τ‖, the direct estimate of ‖τ‖ is given as
follows:

‖τ‖l(,T ;l) ≤ C�t∥∥UN (·)∥∥H(,T ;H) ≤ C�t‖ue‖H(,T ;H). (.)

Therefore, the second order in time consistency of the approximation solution U is ob-
tained. With the truncation error analysis of UN , we can get the result (.), in which
τ = IN (τ + τ + βτ + τ + ατ). This completes the detailed consistency analysis. �

4 Stability and convergence
Let en

i = Un
i –un

i , and denote by un
N ∈ BN , en

N ∈ BN the continuous versions of the numerical
solution un and en, with the interpolation formula given by (.), respectively.

The following lemma is critical to our analysis and enables us to obtain an Hm bound of
the interpolation of the nonlinear term (for detailed proof, see []).

Lemma . [] For any f ∈ BpN (with p an integer) in dimension d, we have

‖IN f ‖Hk ≤ (
√

p)d‖f ‖Hk . (.)

Moreover, the following preliminary estimate also will be used in the later analysis.

Lemma . At any time step tk , k ≥ , we have

∥∥ek
N
∥∥

H ≤ C
(∥∥DN ek∥∥

 + hm)
. (.)

Proof From the Poincaré inequality, we have

∥
∥ek

N
∥
∥

H ≤ C

(∥
∥∂xek

N
∥
∥

L +
∣∣
∣∣

∫

�

ek
N dx

∣∣
∣∣

)
. (.)

Since Uk
N , uk

N ∈ BN , ek
N = Uk

N – uk
N ∈ BN holds, which also shows that

∥∥∂xek
N
∥∥

L =
∥∥DN ek∥∥

. (.)
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On the other hand, we recall that the solution of the GRLW equation (.) is mass con-
servative:

∫

�

ue(·, t) dx =
∫

�

ue(·, ) dx,

for ∀t > . Considering UN is the projection of ue into BN , we have

∫

�

UN (·, t) dx =
∫

�

ue(·, t) dx =
∫

�

ue(·, ) dx =
∫

�

UN (·, ) dx,

for ∀t > . Conversely, the numerical scheme (.) is mass conservative: uk := h
∑N–

i= uk
i =

u. For Uk
N ∈ BN , one can get

Uk =
∫

�

UN
(·, tk)dx =

∫

�

UN (·, ) dx = U.

Owing to the spectral accuracy in space for the numerical error function at each time step,
we obtain

ek = Uk – uk = Uk – uk = U – u = O
(
hm)

, ∀k > 

which is equivalent to
∫

�

ek
N dx = ek = O

(
hm)

. (.)

Hence, substituting (.) and (.) into (.) yields the inequality (.). �

Suppose the constructed approximation solution has a W ,∞ bound,

‖UN‖L∞(,T ;W ,∞) = sup
≤t≤T

(‖uN‖L∞ +
∥∥(uN )x

∥∥
L∞

) ≤ C,

i.e.,

∥∥Un
N
∥∥

L∞ ≤ C,
∥∥(UN )n

x
∥∥

L∞ ≤ C, (.)

for any n ≥ , which comes from the regularity of the constructed solution.
Now, we present the main result of this paper.

Theorem . For any fixed time T , assume that the exact solution ue for the GRLW equa-
tions (.)-(.) satisfies ue ∈ L∞(, T ; Hm+) ∩ H(, T ; H). Denote by u�t,h the continuous
extension of the fully discrete numerical solution computed by the proposed scheme (.).
Then, as �t, h → , we have the following convergence result:

‖u�t,h – ue‖l∞(,T ;H) ≤ C̃
(
�t + hm)

, (.)

provided that the time step �t and the space grid size h are bounded by given constants.
Note that the convergence constant C̃ also depends on the exact solution and the fixed
time T .
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Proof We have an a priori H assumption up to time step tn.
Assume that the numerical error function has an H bound at time steps tn, tn–,

∥
∥ek

N
∥
∥

H ≤ , with ek
N = IN ek , for k = n, n – , (.)

which yields directly the following results:

∥
∥uk

N
∥
∥

H =
∥
∥Uk

N – ek
N
∥
∥

H ≤ C +  := C,
∥
∥uk∥∥∞ ≤ C

∥
∥uk

N
∥
∥

L∞ ≤ C
∥
∥uk

N
∥
∥

H ≤ CC := C,
(.)

where a -D Sobolev embedding was used in the last step.
Subtracting (.) from (.), we have

(
 – βD

N
)en+ – en

�t
= –DN

(



en –



en–
)

– αDN

(



en
p–∑

k=

(
Un)k(un)p––k

–



en–
p–∑

k=

(
Un–)k(un–)p––k

)

+ τ n. (.)

For convenience, denote

NLT  = –



en
p–∑

k=

(
Un)k(un)p––k , (.)

NLT  =



en–
p–∑

k=

(
Un–)k(un–)p––k . (.)

Taking a discrete L inner product of (.) with en+, we get

〈(
 – βD

N
)(

en+ – en), en+〉

= –�t
〈
DN

(



en –



en–
)

, en+
〉

+ �tα
(〈
DN (NLT ), en+〉 +

〈
DN (NLT ), en+〉) + �t

〈
τ n, en+〉. (.)

The first term on the left side of (.) and the truncation error term can be handled in a
straightforward way as follows:

〈
en+ – en, en+〉 =

∥∥en+∥∥
 –

∥∥en∥∥
 +

∥∥en+ – en∥∥
, (.)

–β
〈
D

N
(
en+ – en), en+〉 = β

〈
DN

(
en+ – en),DN en+〉,

= β
∥
∥DN en+∥∥

 – β
∥
∥DN en∥∥

 + β
∥
∥DN en+ – DN en∥∥

, (.)
〈
τ n, en+〉 ≤ ∥

∥τ n∥∥
 +

∥
∥en+∥∥

, (.)
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in which a discrete Cauchy inequality is used in the last inequality. Similarly, for the first
term on the right side of (.), one can get

–
〈
DN

(



en –



en–
)

, en+
〉

= –
〈
DN en, en+〉 +

〈
DN en–, en+〉

≤ 

∥∥DN en∥∥

 +


∥∥DN en–∥∥

 + 
∥∥en+∥∥

. (.)

Next, we discuss nonlinear terms on the right-hand side of (.) in turn.
For the nonlinear term NLT , noting that

en(Un)k(un)p––k = I
(
en

N
(
Un

N
)k(un

N
)p––k),  ≤ k ≤ p – , (.)

we have

∥
∥DN en(Un)k(un)p––k∥∥

 =
∥
∥∂x

(
IN

(
en

N
(
Un

N
)k(un

N
)p––k))∥∥

L ,  ≤ k ≤ p – . (.)

Since en
N (Un

N )k(un
N )p––k ∈ BpN , an application of Lemma . yields

∥
∥∂x

(
IN

(
en

N
(
Un

N
)k(un

N
)p––k))∥∥

L ≤ ∥
∥IN

(
en

N
(
Un

N
)k(un

N
)p––k)∥∥

H

≤ √
p
∥
∥en

N
(
Un

N
)k(un

N
)p––k∥∥

H . (.)

Moreover, a detailed expansion for ∂xen
N (Un

N )k(un
N )p––k indicates that

∥
∥∂x

(
en

N
(
Un

N
)k(un

N
)p––k)∥∥

L ≤ C
(∥∥Un

N
∥
∥p–

H +
∥
∥un

N
∥
∥p–

H + 
)∥∥en

N
∥
∥

H , (.)

which can be obtained by repeated application of the Sobolev embedding, the Hölder in-
equality, and the Young inequality. Substituting the bound (.) for the constructed solu-
tion UN and the a priori assumption (.) into (.), respectively, we get

∥∥(
en

N
(
Un

N
)k(un

N
)p––k)∥∥

H ≤ C
(
Cp–

 + Cp–
 + 

)∥∥en
N
∥∥

H . (.)

Consequently, it follows from (.), (.), and (.) that

∥∥DN
(
en(Un)k(un)p––k)∥∥

 ≤ C
(
Cp–

 + Cp–
 + 

)√
p
∥∥en

N
∥∥

H , (.)

for any  ≤ k ≤ p – , that is,

∥
∥DN (NLT )

∥
∥

 ≤ C
∥
∥en

N
∥
∥

H , (.)

with C = C(Cp–
 + Cp–

 + )√p.
Obviously, a similar analysis can be applied to NLT  and we have

∥
∥DN (NLT )

∥
∥

 ≤ C
∥
∥en–

N
∥
∥

H . (.)

From (.) and (.), one can get

∥∥DN (NLT )
∥∥

 =
∥∥DN (NLT )

∥∥
 +

∥∥DN (NLT )
∥∥

 ≤ C
(∥∥en

N
∥∥

H +
∥∥en–

N
∥∥

H
)
. (.)
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From the result above, the nonlinear inner product can be analyzed as

α
〈
DN (NLT ), en+〉 ≤ α

∥∥DN (NLT )
∥∥



∥∥en+∥∥


≤ αC
(∥∥en

N
∥∥

H +
∥∥en–

N
∥∥

H
)∥∥en+∥∥



≤ αC
(∥∥en

N
∥
∥

H +
∥
∥en–

N
∥
∥

H + 
∥
∥en+∥∥



)

≤ αCC

∥∥DN en∥∥

 + αCC

∥∥DN en–∥∥

 + αCC

∥∥en+∥∥



+ αCC
 hm

= C
∥∥DN en∥∥

 + C
∥∥DN en–∥∥

 + C
∥∥en+∥∥

 + Chm (.)

in which C = αCC
 and Lemma . are applied.

Substituting (.), (.), (.), (.), (.) into (.) indicates that

∥
∥en+∥∥

 –
∥
∥en∥∥

 +
∥
∥en+ – en∥∥

 + β
∥
∥DN en+∥∥

 – β
∥
∥DN en∥∥

 + β
∥
∥DN en+ – DN en∥∥



≤ ( + C)�t
∥∥en+∥∥

 +
(




+ C

)
�t

∥∥DN en∥∥
 +

(



+ C

)
�t

∥∥DN en–∥∥


+ C�thm + �t
∥
∥τ n∥∥

. (.)

Summing in time gives

∥
∥en+∥∥

 +
n∑

k=

∥
∥ek+ – ek∥∥

 + β
∥
∥DN en+∥∥

 + β

n∑

k=

∥
∥DN ek+ – Dek∥∥



≤ ( + C)�t
n∑

k=

∥
∥ek+∥∥

 + ( + C)�t
n∑

k=

∥
∥DN ek∥∥

 +
(




+ C

)
�t

∥
∥DN e∥∥



+
∥∥e∥∥

 + β
∥∥DN e∥∥

 + C�thm + �t
∥∥τ n∥∥



≤ C�t

( n∑

k=

∥
∥ek+∥∥

 + β�t
n∑

k=

∥
∥DN ek∥∥



)

+ C�thm + �t
∥
∥τ n∥∥

 + Chm. (.)

Here C = ( + C), and the choice of C satisfies with ( + C)/( + C) ≤ β . Note
that we use the fact ‖e‖H

h
≤ hm, due to the collocation spectral approximation of the

initial data. As a result, an application of discrete Gronwall inequality leads to the following
convergence result:

∥
∥el∥∥

 + β
∥
∥DN el∥∥

 ≤ C̃
(
�t + hm)

, ∀ ≤ l ≤ K , (.)

where C̃ = Ce 
 CT .

Recovery of the H a priori bound:
With the help of l∞(, T ; H) error estimate (.), we can see the a priori estimate (.)

is also valid for the numerical error function eN at time step tn+, provided that

�t ≤ (C̃)–/, h ≤ (C̃)–/m. (.)

Finally, a combination of (.) and the classical projection (.) yields (.). The proof of
Theorem . is completed. �
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Remark . One well-known challenge in the nonlinear analysis of pseudospectral
scheme comes from the aliasing error. This work avoids an application of the inverse
inequality but adopts an novel aliasing error control estimate given by Lemma .. So we
could obtain the estimate for its discrete H norm.

5 Numerical experiments
The single solitary-wave solution of (.) is

u(x, t) = A sech


p–
[
K(x – ct + x)

]
, (.)

where

A =
[

(p + )(c – )
α

] 
p–

, K =
p – 
β

√
c – 

c
, (.)

and c, x are arbitrary constants and p ≥  is an integer. The corresponding initial function
can be rewritten

u(x) = A sech


p–
[
K(x + x)

]
. (.)

5.1 Propagation of single solitary wave
Here we take x = , α = 

 , β = , xL = –, xR = , and c = . in (.) and (.). Choose
N =  and �t = . to investigate the dynamics of a single solitary wave. The profile of
a single solitary waves for the GRLW equation with p =  and p =  from time t =  to 
are depicted in Figure . It can be seen that the solitary wave moves to the right unchanged
in which the solitary wave propagates in a stable fashion. Moreover, while p increases, the
speed velocity of the wave decreases and the amplitude increases, as time increases.

5.2 Accuracy tests
.. Spectral accuracy in space
To investigate the accuracy in space, we take �t = – so that the temporal numerical
error is negligible. xL, xR, α, β , and c are defined as in Section .. With grid sizes from

Figure 1 Profile of a single solitary wave u(x, t) from t = 0 to 6 with p = 2, c = 1.5 and p = 8, c = 1.5,
respectively.
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Figure 2 Discrete L2 numerical errors of u with
�t = 10–3 for different p.

Table 1 ‖ ·‖2 errors and convergence orders of numerical solution u at T = 5 for p = 2, 4, and 6

�t p = 2 order p = 4 order p = 6 order

0.1 2.2055199e–3 - 7.4971272e–3 - 2.4952949e–2 -
0.05 5.5175158e–4 1.9990 1.6977751e–3 2.1426 4.2548344e–3 2.5520
0.025 1.3823443e–4 1.9969 4.0822074e–4 2.0562 9.1684708e–4 2.2143
0.0125 3.4646085e–5 1.9963 1.0027214e–4 2.0254 2.1345592e–4 2.1027
0.00625 8.8159403e–6 1.9745 2.4863890e–5 2.0117 5.1499083e–5 2.0513

N =  to  in increment of , we solve (.) up to time T =  for p = , , , respectively.
The discrete norm ‖ · ‖ of numerical errors at T =  is given in Figure , which shows
apparently the spatial spectral accuracy is verified.

.. Second-order accuracy in time
For exploring the temporal accuracy, we fix spatial resolution as N = , so that the
numerical error is dominated mainly by the temporal ones. With a sequence of time step
sizes �t = ., ., ., ., ., we also compute the numerical errors at T = 
for p = , , , respectively, and the results are presented in Table  in which a second-order
in time accuracy is shown clearly.

.. Conservation properties
As stated in [, ], the GRLW equation has three conservative laws related to mass,
momentum and energy, respectively. In particular, for p = , it reduces to the regularized
long wave (RLW) equation. The invariants are given by

I =
∫

�

u dx, I =
∫

�

(
u + βu

x
)

dx, I =
∫

�

(
u + u)dx, (.)

and the corresponding discrete quantities are computed for the numerical scheme as fol-
lows:

I = h
N∑

j=

un
j , I = h

N∑

j=

[(
un

j
) + β

(
(ux)n

j
)],

I = h
N∑

j=

[(
un

j
) + 

(
un

j
)].

(.)
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Table 2 Invariants for single soliton of RLW equation with N = 128 and c = 4
3

Time �t = 0.05 �t = 0.025

I1 I2 I3 I1 I2 I3

T = 0 7.9999950 5.5997821 20.266666 7.9999950 5.5997821 20.266666
T = 4 7.9999950 5.5998333 20.266871 7.9999950 5.5997884 20.266692
T = 8 7.9999950 5.5998850 20.267078 7.9999950 5.5997947 20.266717
T = 12 7.9999950 5.5999359 20.267284 7.9999950 5.5998002 20.266743
T = 16 7.9999950 5.5998258 20.267490 7.9999950 5.5996448 20.266768

Table 3 Invariants for single soliton of MRLW equation with N = 128 and c = 4
3

Time �t = 0.05 �t = 0.025

J1 J2 J3 J1 J2 J3

T = 0 7.9999950 5.5997821 2.0584499 7.9999950 5.5997821 2.0584499
T = 4 7.9999950 5.5998333 2.0586695 7.9999950 5.5997884 2.0584982
T = 8 7.9999950 5.5998850 2.0588246 7.9999950 5.5997947 2.0585311
T = 12 7.9999950 5.5999359 2.05886249 7.9999950 5.5998002 2.0585384
T = 16 7.9999950 5.5998258 2.0598310 7.9999950 5.5996448 2.0595023

Take �t = . and �t = . with N =  and c = 
 . xL, xR, α, β are also defined as in

Section .. The invariants I, I, and I up to time T =  are given in Table .
Another special case of the GRLW equation is the modified regularized long wave

(MRLW) equation with p = . Similar to the quantities for the RLW equation, the MRLW
equation also has the following conservative laws:

J =
∫

�

u dx, J =
∫

�

(
u + βu

x
)

dx, J =
∫

�

(
u – βu

x
)

dx (.)

and

J = h
N∑

j=

un
j , J = h

N∑

j=

[(
un

j
) + β

(
(ux)n

j
)],

J = h
N∑

j=

[(
un

j
) – β

(
(ux)n

j
)].

(.)

In Table , we presented that the discrete mass, momentum and energy of the numeri-
cal solutions for the MRLW equation. From both tables, it is obvious that the proposed
scheme is satisfactorily conservative.

5.3 Interaction of two GRLW solitary waves
Next, we study the interaction of two well-separated solitary waves having different am-
plitudes and traveling in the same direction. The initial condition is given by

u(x) =
∑

i=

Ai sech


p–
[
Ki(x + xi)

]
. (.)

For p = , we choose c = ., c = ., x = , x = , �t = ., N = , and α, β are de-
fined as in Section .. Figure  and Figure  show the interaction of two solitary solutions
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Figure 3 Interaction of two solitary waves for the GRLW equation with p = 2 at t = 0.1 and t = 15,
respectively.

Figure 4 Interaction of two solitary waves for the GRLW equation with p = 2 at t = 35 and t = 70,
respectively.

Figure 5 Interaction of two solitary waves for the GRLW equation with p = 6 at t = 0.1 and t = 12,
respectively.

of the GRLW equation. Meanwhile, we briefly plot two figures to show the simulation for
p =  at t = . and t =  in Figure .

From these figures, it can be seen that an oscillation of small amplitude, trailing be-
hind the solitary waves, was observed. This is in accordance with the observations of Soli-
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man []. Moreover, the solitary-wave interaction in Figure  for p =  shows clearly some
evidence of an additional disturbance, which may be due to the fact that the GRLW equa-
tion are not completely integrable.

5.4 Unstable solitary-wave solution
Souganidis and Strauss [] derived the following result for the GRLW equation:

(a) if p < , then u(x, t) is H-stable;
(b) if p > , then u(x, t) is H-stable for c > cp, and H-unstable for  ≤ c ≤ cp, where

cp =
 +

√
 – σ – + σ –

(σ + )
, (.)

and σ = 
p– . Note that cp =  when p =  and cp >  for p ≥ . Certainly, for p = , the

critical speed is cp = ..
Similar to the experiments in [], the high accuracy scheme we proposed also can simu-

late this phenomenon, that is, the evolution of solutions emanating from initial data which
are perturbations of exact analytical solutions of (.) with p >  and  ≤ c ≤ cp are featured,
where the initial data is a perturbed solitary wave,

ũ = γ u(x), (.)

and γ is called the perturbation parameter; it is used to effect an amplitude perturbation.
According to [], when γ ≥ , the solution emanating from the initial data will resolve
itself into one or more solitary waves, sometimes accompanied by additional structure.
Therefore, mainly attention will be given to evolutions starting with ũ for γ > .

Since unstable solutions have a speed c in the range  ≤ c ≤ cp and cp is near , we simu-
late only one of long-time outcomes for perturbed unstable solitary-wave solutions, with
α = β = , p = , c = .. To achieve such an outcome, the initial unstable solitary data had
to be given enough energy to produce two stable solitary waves. Hence, we choose γ = ..
As seen in Figure  and Figure , the outcomes illustrate how such a process occurred in
the experiment.

Figure 6 Evolution of an unstable perturbed solitary wave with c = 1.01 and γ = 1.5 for p = 8 (I).
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Figure 7 Evolution of an unstable perturbed solitary wave with c = 1.01 and γ = 1.5 for p = 8 (II).

Figure 8 Numerical solution at t = 30 and t = 60 with the Maxwellian initial condition for the RLW
equation.

5.5 Maxwellian initial condition
A more interesting test case for the GRLW equation is to investigate the long-time asymp-
totic properties by initiating the wave motion with a Gaussian pulse, namely, the so-called
Maxwellian initial condition []. We take α = 

 , β =  for RLW equation (p = ) and α = 
 ,

β =  for MRLW equation (p = ), respectively, with initial data

u(x, ) = exp
(
–.(x – )). (.)

In a numerical test, let N = , �t = ., xL = –, and xR = . The numerical so-
lution at different times for both cases are drawn in Figure  and Figure  for the RLW
equation, and Figure  and Figure  for the MRLW equation, respectively. Furthermore,
the quantities for three conservative laws are presented in Table . As seen from these
results, an initial date with Maxwellian disturbance will resolve into a sequence of solitary
waves in the stable range ordered by amplitude with the larger waves in the front, followed
by a dispersive tail. Clearly, the presented results are consistent with earlier work on this
topic in [, ].

6 Conclusion
In this paper, we propose a fully discrete Fourier pseudospectral scheme for the GRLW
equation with the second-order in time accuracy. The theoretical analysis, such as con-
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Figure 9 Numerical solution at t = 90 and t = 120 with the Maxwellian initial condition for the RLW
equation.

Figure 10 Numerical solution at t = 30 and 60 with the Maxwellian initial condition for the MRLW
equation.

Figure 11 Numerical solution at t = 90 and t = 120 with the Maxwellian initial condition for the MRLW
equation.

sistence analysis, stability and convergence analysis are presented in detail. Due to the
linearized semi-implicit property, the algorithm can be implemented more effectively. Nu-
merical experiments also verifies the second-order accuracy in time and the spectral ac-
curacy in space. Furthermore, thanks to the high accuracy scheme, the evolution of the
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Table 4 Invariants for single soliton of MRLW equation with N = 128 and c = 4
3

Time RLW equation (p = 2) MRLW equation (p = 3)

I1 I2 I3 J1 J2 J3

T = 0 12.533141 9.0394281 33.822820 12.533141 9.0394281 5.2036174
T = 2 12.533141 9.0394599 33.823003 12.533141 9.0394430 5.2037832
T = 4 12.533141 9.0394331 33.823012 12.533141 9.0393901 5.2041213
T = 6 12.533141 9.0393867 33.823027 12.533141 9.0392994 5.2046997
T = 8 12.533141 9.0393237 33.823048 12.533141 9.0391822 5.2054479
T = 10 12.533141 9.0392517 33.823072 12.533141 9.0390559 5.2062565

unstable solitary wave of the GRLW equation with p ≥  also be simulated, as established
in [].
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