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Abstract
The singular boundary value problem we discuss is as follows:

CDα
0+u(t) = λq(t)f (t,u(t)), 0 < t < 1,

α1u(0) + α2u
′(0) = a, β1u(1) + β2u

′(1) = b,

where 1 < α ≤ 2, λ > 0 is a parameter, CDα
0+ is the Caputo fractional derivative. We

present the existence of positive solutions for a fractional boundary value problem
modeled from the Thomas-Fermi equation subjected to Sturm-Liouville boundary
conditions.
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1 Introduction
The Thomas-Fermi model (see [–]), named after Llewellyn Thomas and Enrico Fermi,
is a quantum mechanical theory of electronic structure within many-body systems. In
, Thomas and Fermi independently conceived this statistical model applying it to ap-
proximate the distribution of electrons in an atom. The Thomas-Fermi model leads to the
nonlinear second order differential equation

t

 y′′ = y


 .

The boundary conditions under discussion include three circumstances as follows:
(i) for the neutral atom with Bohr radius ρ , the boundary conditions are

y() = , ρy′(ρ) = y(ρ);

(ii) for the ionized atom, the boundary conditions are

y() = , y(ρ) = ;
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(iii) for the isolated neutral atom, the boundary conditions are

y() = , lim
x→∞ y(x) = .

As we know fractional calculus has played a more and more significant role in engineer-
ing, science technology, economy and other fields (see [–]) just owing to the reason
that fractional derivatives could not only have the equation much briefer but also lead to
a better description that seems closer to reality. Standing on this point, our theory applies
to the generalized equation

CDα
+ u(t) = λq(t)f

(
t, u(t)

)
,  < t < ,

αu() + αu′() = a, βu() + βu′() = b,
(.)

where we suppose
(I)  < α ≤ , αi,βi ≥ , i = , , λ > , β

β+β
< α

α
≤ , f : [, ] × [, +∞) → (, +∞) is a

given continuous function, q : (, ] → (, +∞) is continuous and
 <

∫ 
 q(t) dt < +∞.

In order to get a better understanding of our work, let us retrospect some recent attrac-
tive results on the existence of positive solutions for boundary value problems.

Agarwal and O’Regan [] discussed the two-point boundary value problem

y′′ = qf (t, y),  < t < a,

y() = a, ky′(a) = y(a), k ≥ a,
(.)

where a >  is fixed. They presented an upper and lower solution theory for boundary
value problems modeled from the Thomas-Fermi equation subjected to boundary condi-
tions related to the neutral atom with Bohr radius.

Zhang [] considered the existence and multiplicity of positive solutions for the non-
linear fractional differential equation boundary value problem

Dα
+ u(t) = f

(
t, u(t)

)
,  < t < ,

u() + u′() = , u() + u′() = ,
(.)

where  < α ≤  is a real number, Dα
+ is the Caputo fractional derivative, f : [, ] ×

(, +∞) → (, +∞) is a given continuous function. Their results are based on a fixed point
theorem on cones.

Sun and Wen [] investigated the nonlinear third order ordinary equation

u′′′(t) = λa(t)f
(
u(t)

)
,  < t < ,

with the boundary conditions

αu′() + βu′′() = , u() = u′() = .

Via using the properties of Green’s function and Guo-Krasnosel’skii’s fixed point theo-
rem, Zhao et al. [] studied the existence of positive solutions for the following boundary
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value problem:

Dα
+ u(t) = λf

(
u(t)

)
,  < t < ,

u() + u′() = , u() + u′() = .
(.)

Su and Zhang [] proved an existence result for the problem

CDα
+ u(t) = f

(
t, u(t), CDβ

+ u(t)
)
,  < t < ,

au() – au′() = A, bu() + bu′() = B,
(.)

where  < α ≤ ,  < β ≤ , ai, bi ≥ , i = , , ab + ab + ab > , CDα
+ is the Caputo

fractional derivative and f : [, ] × (, +∞) → (, +∞) is a given continuous function.
Zhai and Xu [] established the existence and uniqueness of positive solutions to a class

of four-point boundary value problem of Caputo fractional differential equations for any
given parameter:

CDα
+ u(t) + λf

(
t, u(t)

)
= ,  < t < ,

u′() – μu(ξ ) = , u′() + μu(η) = ,
(.)

where  < α ≤ ,  ≤ ξ ≤ η ≤ ,  ≤ μ, μ ≤ , λ >  is a parameter, f (t, x) : [, ] × R+ →
R+ is continuous and increasing in x for each t ∈ [, ].

Moreover, there are also many interesting research works on the existence of solutions
of boundary value problems, readers can refer to [–].

After reading the previous results, it hits on the head that we might turn to problem
(.). Now let us have a look at the novel contributions of this work. First, we generalize
the Thomas-Fermi equation, the second order ordinary differential equation, into a frac-
tional order. Second, f is a function varying along with two variables t and u instead of
being constrained by only one variable u. Third, the problem is a singular one, as q(t) may
be singular at t = . Last but not the least, the existence and multiplicity of the positive
solutions depend on a parameter λ.

This paper is organized as follows. In Section , we retrospect some preliminaries and
lemmas. In Section , our results about the existence of positive solutions of problem (.)
are obtained. The multiplicity of existence of positive solutions for problem (.) is debated
in Section .

2 Preliminaries
For the convenience of the readers, we give some background material from fractional
calculus theory to facilitate analysis of boundary value problem (.).

Definition . ([]) The Riemann-Liouville fractional integral of order α >  of a function
y : (, +∞) →R is given by

Iα
+ y(t) =


�(α)

∫ t


(t – s)α–y(s) ds,

provided the right-hand side is pointwise defined on (, +∞).
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Definition . ([]) The Caputo fractional derivative of order α >  of a continuous func-
tion y : (, +∞) →R is given by

CDα
+ y(t) =


�(n – α)

∫ t



y(n)(s)
(t – s)α–n+ ds,

where n is the smallest integer greater than or equal to α, provided the right-hand side is
pointwise defined on (, +∞).

Lemma . ([]) The Caputo derivative of a power function is

CDα
+ tμ = μ(μ – ) · · · (μ – n + )

�( + μ – n)
�( + μ – α)

tμ–α for t ∈ (,∞),

given, in particular, CDα
+ tμ = , μ = , , . . . , n – , where CDα

+ is the Caputo fractional
derivative, n is the smallest integer greater than or equal to α.

There are some reduced properties between the Riemann-Liouville type fractional
derivative and the Caputo one.

Lemma . ([]) If α = n is an integer, the Caputo fractional derivative of order α is
the usual derivative of order n. Additionally, the following properties are well known:
Iα

+ Iβ

+ f (t) = Iα+β

+ f (t), CDα
+ Iα

+ f (t) = f (t), α > , f ∈ C[, ].

From the definition of Caputo derivative and Lemma ., we can obtain the following
statement.

Lemma . ([]) Let α > . Then the fractional differential equation

CDα
+ u(t) = 

has a unique solution

u(t) = c + ct + ct + · · · + cn–tn–, ci ∈R, i = , , , . . . , n – ,

where n is the smallest integer greater than or equal to α.

Lemma . ([]) Let α > . Assume that u ∈ Cn[, ]. Then

Iα
+

CDα
+ u(t) = u(t) + c + ct + ct + · · · + cn–tn–

for some ci ∈ R, i = , , , . . . , n – , where n is the smallest integer greater than or equal
to α.

With the help of Lemmas ., . and ., we present the Green’s function for boundary
value problem of fractional differential equation.
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Lemma . Let h ∈ C(, ) ∩ L(, ) and  < α ≤ . Take 	 = αβ – αβ – αβ < . Then
the fractional differential equation boundary value problem

CDα
+ u(t) = h(t),  < t < ,

αu() + αu′() = , βu() + βu′() = 
(.)

has a unique solution

u(t) =
∫ 


G(t, s)h(s) ds, (.)

where

G(t, s) =

⎧
⎨

⎩

(t–s)α–

�(α) + (αt – α)( β(–s)α–

	�(α) + β(–s)α–

	�(α–) ),  < s ≤ t < ,

(αt – α)( β(–s)α–

	�(α) + β(–s)α–

	�(α–) ),  < t ≤ s < .
(.)

Proof We may apply Lemma . to reduce equation (.) to an equivalent integral formula

u(t) = Iα
+ h(t) – c – ct

=


�(α)

∫ t


(t – s)α–h(s) ds – c – ct, c, c ∈ R. (.)

Then

u′(t) =


�(α – )

∫ t


(t – s)α–h(s) ds – c.

From αu() + αu′() = , βu() + βu′() = , we have

c =
αβ

	�(α)

∫ 


( – s)α–h(s) ds +

αβ

	�(α – )

∫ 


( – s)α–h(s) ds,

c = –
αβ

	�(α)

∫ 


( – s)α–h(s) ds –

αβ

	�(α – )

∫ 


( – s)α–h(s) ds.

Therefore, the unique solution of problem (.) is

u(t) =


�(α)

∫ t


(t – s)α–h(s) ds +

αβt – αβ

	�(α)

∫ 


( – s)α–h(s) ds

+
αβt – αβ

	�(α – )

∫ 


( – s)α–h(s) ds.

The proof is complete. �

Lemma . Let  < α ≤ . Then the following fractional differential equation boundary
value problem

CDα
+ u(t) = ,  < t < ,

αu() + αu′() = a, βu() + βu′() = b
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has a unique solution

u(t) =
(β + β)a – αb + (αb – βa)t

–	
.

In the following discussion, we denote

ϕ(t) :=
(β + β)a – αb + (αb – βa)t

–	
.

Next we present some useful properties of the Green’s function.

Lemma . The Green’s function G(t, s) obtained in Lemma . has these properties as
follows:

(i) G(t, s) ∈ C([, ] × [, )) and G(t, s) >  for t, s ∈ (, );
(ii) there exists a positive function γ ∈ C(, ) such that

min
t∈[ 

 , 
 ]

G(t, s) ≥ γ (s)M(s), max
t∈[,]

G(t, s) ≤ M(s), s ∈ (, ), (.)

where

M(s) = –
(αβ + αβ)( – s)α–

	�(α)
–

αβ( – s)α–

	�(α – )
, γ (s) ≥ 


.

Proof From the expression of G(t, s), it is clear that G(t, s) ∈ C([, ]× [, )) and G(t, s) > 
for s, t ∈ (, ).

Here we define

g(t, s) =
(t – s)α–

�(α)
+ (αt – α)

(
β( – s)α–

	�(α)
+

β( – s)α–

	�(α – )

)
, s ≤ t,

g(t, s) = (αt – α)
(

β( – s)α–

	�(α)
+

β( – s)α–

	�(α – )

)
, t ≤ s.

Then, obviously, g(t, s) is a continuous function for t ∈ [ 
 , 

 ] and g(t, s) is decreasing with
respect to t. Hence, we have

g(t, s) ≥ g(t, s) ≥ min
t∈[ 

 , 
 ]

g(t, s)

=
(




α – α

)(
β( – s)α–

	�(α)
+

β( – s)α–

	�(α – )

)
for t ∈

[



,



]
,

max
t∈[,]

g(t, s) ≤ (β(αt – α) + 	)( – s)α–

	�(α)
+

(αt – α)β( – s)α–

	�(α – )

≤ (–βα + 	)( – s)α–

	�(α)
+

–αβ( – s)α–

	�(α – )

=
(–αβ – αβ)( – s)α–

	�(α)
+

–αβ( – s)α–

	�(α – )
,

max
t∈[,]

g(t, s) = g(, s) = –
αβ( – s)α–

	�(α)
–

αβ( – s)α–

	�(α – )

≤ (–αβ – αβ)( – s)α–

	�(α)
+

–αβ( – s)α–

	�(α – )
.
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Thus, we get

min
t∈[ 

 , 
 ]

G(t, s) ≥ m(s) :=
(




α – α

)(
β( – s)α–

	�(α)
+

β( – s)α–

	�(α – )

)
, s ∈ [, ),

max
t∈[,]

G(t, s) ≤ M(s) := –
(αβ + αβ)( – s)α–

	�(α)
–

αβ( – s)α–

	�(α – )
, s ∈ [, ).

Let

γ (s) =
m(s)
M(s)

=
( 

α – α)( β(–s)α–

	�(α) + β(–s)α–

	�(α–) )

– (αβ+αβ)(–s)α–

	�(α) – αβ(–s)α–

	�(α–)

.

From hypothesis (I), we see

γ (s) ≥ ( 
α – α)( β(–s)α–

	�(α) + β(–s)α–

	�(α–) )

– αβ(–s)α–

	�(α) – αβ(–s)α–

	�(α–)

=
α – 

α

α
≥ 


.

Hence the statements in Lemma . are proved. �

Our main results are typically based on the following fixed point theorem.

Lemma . ([]) Let B be a Banach space, and let K ⊂ B be a cone. Assume that �, �

are open and bounded subset of B with  ∈ �, �̄ ⊂ �, and let T : K ∩ (�̄ \ �) → K be
a completely continuous operator such that

(i) ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂� and ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂� or
(ii) ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂� and ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂�.

Then T has a fixed point in K ∩ (�̄ \ �).

3 Existence results
In this section, we establish the existence of positive solutions for problem (.) in terms
of different values of the parameter λ.

From Lemmas . and ., we know that proving the existence of positive solutions for
fractional differential boundary value problem (.) is equivalent to discussing the exis-
tence of positive solutions for the problem

CDα
+ v(t) = λq(t)f

(
t, v(t) + ϕ(t)

)
,  < t < , (.)

αv() + αv′() = , βv() + βv′() = , (.)

then u = v + ϕ must be the solution of problem (.), and vice versa.
Let X = C[, ] with norm ‖u‖ = maxt∈[,] |u(t)|, u ∈ X. Clearly, X is a Banach space.

Take

P =
{

u ∈ X
∣∣
∣u(t) ≥ , min

t∈[ 
 , 

 ]
u(t) ≥ 


‖u‖

}
.

Then it is easy to see that P is a positive cone in X.
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Define an operator T : P → X by

Tv(t) = λ

∫ 


G(t, s)q(s)f

(
s, v(s) + ϕ(s)

)
ds,  ≤ t ≤ , v ∈ P.

Noting that the possible singular point of q is  and M maybe singular only at , we
are able to show that

∫ 
 M(s)q(s) ds is well defined by hypothesis (I), Lemma . and the

convergence of
∫ 

 M(s) ds and
∫ 

 q(s) ds. From this, it is easy to see that the operator T is
also well defined.

Denote

I =




∫ 





M(s)q(s) ds, I =
∫ 


M(s)q(s) ds.

Lemma . Assume that (I) holds. Then the pair of equations (.) and (.) is equivalent
to the nonlinear integral equation

v(t) = λ

∫ 


G(t, s)q(s)f

(
s, v(s) + ϕ(s)

)
ds. (.)

In other words, every solution of (.) and (.) is also a continuous solution of (.) and
vice versa.

Proof Let v ∈ X be a solution of (.) and (.); as the same method of proving Lemma .,
we can get that v is a solution of (.).

On the other hand, let v be a continuous solution of (.) on [, ]. Then define

ω(t) = λ

∫ 


G(t, s)q(s)f

(
s, v(s) + ϕ(s)

)
ds

= λ

(


�(α)

∫ t


(t – s)α–q(s)f

(
s, v(s) + ϕ(s)

)
ds

+
αβt – αβ

	�(α)

∫ 


( – s)α–q(s)f

(
s, v(s) + ϕ(s)

)
ds

+
αβt – αβ

	�(α – )

∫ 


( – s)α–q(s)f

(
s, v(s) + ϕ(s)

)
ds

)

= λ

(
Iα

+ q(t)f
(
t, v(t) + ϕ(t)

)
+

αβt – αβ

	
Iα

+ q()f
(
, v() + ϕ()

)

+
αβt – αβ

	
Iα–

+ q()f
(
, v() + ϕ()

))
. (.)

From Lemmas . and ., we have

ω′(t) = λ

(
D

+ I
+ Iα–

+ q(t)f
(
t, v(t) + ϕ(t)

)
+

αβ

	
Iα

+ q()f
(
, v() + ϕ()

)

+
αβ

	
Iα–

+ q()f
(
, v() + ϕ()

)
)

= λ

(
Iα–

+ q(t)f
(
t, v(t) + ϕ(t)

)
+

αβ

	
Iα

+ q()f
(
, v() + ϕ()

)
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+
αβ

	
Iα–

+ q()f
(
, v() + ϕ()

))
,

CDα
+ω(t) = Dα

+
(
ω(t) – ω

(
+)

– ω′(+))
= Dα

+ Iα
+λq(t)f

(
t, v(t) + ϕ(t)

)

= λq(t)f
(
t, v(t) + ϕ(t)

)
. (.)

One can verify easily that αv() + αv′() = , βv() + βv′() = . Therefore, v is a con-
tinuous solution of (.) and (.). The proof is completed. �

Lemma . indicates that the solution of problems (.) and (.) coincides with the fixed
point of the operator T .

Incidentally, we have the following dispensable lemma at hand.

Lemma . The operator T : P → P is completely continuous.

Proof Obviously, Tv(t) ≥ . Then first we are going to prove that the operator T : P → X
is continuous. Actually, for each vn, v ∈ P and vn → v, we get

‖Tvn – Tv‖ = max
t∈[,]

∣∣
∣∣λ

∫ 


G(t, s)q(s)

(
f
(
s, vn(s) + ϕ(s)

)
– f

(
s, v(s) + ϕ(s)

))
ds

∣∣
∣∣

≤ λ max
t∈[,]

∫ 



∣∣G(t, s)q(s)
∣∣∣∣f

(
s, vn(s) + ϕ(s)

)
– f

(
s, v(s) + ϕ(s)

)∣∣ds

= λ

∫ 


max
t∈[,]

G(t, s)q(s)
∣∣f

(
s, vn(s) + ϕ(s)

)
– f

(
s, v(s) + ϕ(s)

)∣∣ds.

Since f is continuous, for any ε > , there exists N ∈N such that |f (s, vn(s)+ϕ(s))– f (s, v(s)+
ϕ(s))| < ε, when n > N . Hence,

‖Tvn – Tv‖ ≤ ελ

∫ 


max
t∈[,]

G(t, s)q(s) ds

≤ ελ

∫ 


M(s)q(s) ds = ελI for all n > N .

So it is sufficient to say that T is continuous.
For v ∈ P, by Lemma ., we have

min
t∈[ 

 , 
 ]

Tv(t) = min
t∈[ 

 , 
 ]

λ

∫ 


G(t, s)q(s)f

(
s, v(s) + ϕ(s)

)
ds

≥ λ

∫ 


min

t∈[ 
 , 

 ]
G(t, s)q(s)f

(
s, v(s) + ϕ(s)

)
ds

≥ 


λ

∫ 


M(s)q(s)f

(
s, v(s) + ϕ(s)

)
ds.

On the other hand,

‖Tv‖ = max
t∈[,]

∣∣Tv(t)
∣∣ ≤

∫ 


λM(s)q(s)f

(
s, v(s) + ϕ(s)

)
ds.
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Thus, we obtain

min
t∈[ 

 , 
 ]

Tv(t) ≥ 


‖Tv‖,

therefore, T : P → P.
Let � ⊂ P be bounded. Then there exists a positive constant Q >  such that ‖v‖ ≤

Q for all v ∈ �. Take L = maxt∈[,],‖v‖≤Q |f (t, v(t) + ϕ(t))| + . Then, for each v ∈ �, from
Lemma ., we have

∣∣Tv(t)
∣∣ ≤

∫ 



∣∣λG(t, s)q(s)f
(
s, v(s) + ϕ(s)

)∣∣ds

≤ λL
∫ 


M(s)q(s) ds = λLI.

Hence, T(�) is bounded.
Next we are about to prove that for all ε > , each v ∈ P, t, t ∈ [, ], t < t, let η =

min{ 
 , ε

L
}, we have |Tv(t) – Tv(t)| < ε, when t – t < η. In fact, for each v ∈ �, we have

(Tv)′(t) = λ

(


�(α – )

∫ t


(t – s)α–q(s)f

(
s, v(s) + ϕ(s)

)
ds

+
αβ

	�(α)

∫ 


( – s)α–q(s)f

(
s, v(s) + ϕ(s)

)
ds

+
αβ

	�(α – )

∫ 


( – s)α–q(s)f

(
s, v(s) + ϕ(s)

)
ds

)

≤
(

λL
�(α – )

+
λαβL

	�(α – )

)∫ 


( – s)α–q(s) ds +

λαβL
	�(α)

∫ 


q(s) ds.

Since we have proved
∫ 

 ( – s)α–q(s) ds < ∞ and
∫ 

 q(s) ds < ∞, we can just define

L =
(

λL
�(α – )

+
λαβL

	�(α – )

)∫ 


( – s)α–q(s) ds +

λαβL
	�(α)

∫ 


q(s) ds.

Then (Tv)′(t) ≤ L.
Whence,

∣
∣Tv(t) – Tv(t)

∣
∣ ≤ L(t – t) < ε.

By the Arzela-Ascoli theorem, the operator T : P → P is completely continuous. The proof
is completed. �

For convenience, we give some denotations:

F = lim sup
v→+

max
t∈[,]

f (t, v + ϕ(t))
v

, F∞ = lim sup
v→+∞

max
t∈[,]

f (t, v + ϕ(t))
v

,

f = lim inf
v→+

min
t∈[,]

f (t, v + ϕ(t))
v

, f∞ = lim inf
v→+∞ min

t∈[,]

f (t, v + ϕ(t))
v

.



Feng et al. Advances in Difference Equations  (2015) 2015:350 Page 11 of 16

Theorem . Assume that (If∞)– =  if f∞ = ∞ and (IF)– = ∞ if F = . If If∞ > IF

holds, then for each

λ ∈ (
(If∞)–, (IF)–), (.)

the boundary value problem (.) has at least one positive solution.

Proof Choose ε >  sufficiently small such that

(
I(f∞ – ε)

)– ≤ λ ≤ (
I(F + ε)

)–. (.)

By the definition of F, we see that there exists r >  such that

f
(
t, v + ϕ(t)

) ≤ (F + ε)v for  < v ≤ r. (.)

So if v ∈ ∂P with ‖v‖ = r, then by (.) and (.), we see

‖Tv‖ = max
t∈[,]

∣
∣Tv(t)

∣
∣ ≤

∫ 


λM(s)q(s)f

(
s, v(s) + ϕ(s)

)
ds

≤
∫ 


λM(s)q(s)(F + ε)r ds

≤ λI(F + ε)r ≤ r = ‖v‖.

Hence, if we choose � = {v ∈ X : ‖v‖ < r}, then ‖Tv‖ ≤ ‖v‖ for v ∈ P ∩ ∂�.
Let r >  be a constant such that

f
(
t, v + ϕ(t)

) ≥ (f∞ – ε)v for v ≥ r. (.)

If v ∈ ∂P with ‖v‖ = r = max{r, r}, then by (.) and (.) we have

‖Tv‖ = max
t∈[,]

∣
∣Tv(t)

∣
∣ ≥

∫ 





λG(t, s)q(s)f
(
s, v(s) + ϕ(s)

)
ds

≥ 


λ

∫ 





M(s)q(s)(f∞ – ε)v(s) ds

≥ 


λ

∫ 





M(s)q(s)(f∞ – ε)‖v‖ds ≥ ‖v‖.

Thus, if we define � = {v ∈ X : ‖v‖ < r}, then ‖Tv‖ ≥ ‖v‖ for v ∈ P ∩ ∂�.
Then, by Lemma ., we find that T has a fixed point v ∈ P∩ (�̄ \�) with r ≤ ‖v‖ ≤ r,

therefore, v is a positive solution of (.) and (.), then v + ϕ is a positive solution of (.).
The proof is completed. �

Theorem . Assume that (If)– =  if f = +∞ and (IF∞)– = ∞ if F∞ = . If If > IF∞
holds, then for each

λ ∈ (
(If)–, (IF∞)–), (.)

the boundary value problem (.) has at least one positive solution.
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Proof Let λ be endowed with (.) and ε >  be such that

(
I(f – ε)

)– ≤ λ ≤ (
I(F∞ + ε)

)–. (.)

By the definition of f, we see that there exists r >  such that

f
(
t, v + ϕ(t)

) ≥ (f – ε)v for  < v ≤ r. (.)

Hence, if v ∈ ∂P with ‖v‖ = r, then by the same method used in Theorem ., we get
‖Tv‖ ≥ ‖v‖. Furthermore, if we choose � = {v ∈ X : ‖v‖ < r}, then ‖Tv‖ ≥ ‖v‖ for v ∈
P ∩ ∂�. In the next, we choose r >  subjected to

f
(
t, v + ϕ(t)

) ≤ (F∞ + ε)v for v ≥ r. (.)

We discuss two cases as follows.
Case . Assume that f is bounded. Then there exists a certain constant L >  such that

f (t, v + ϕ(t)) ≤ Lr for v ∈ (, +∞). We define r = max{r, r} and v ∈ ∂P with ‖v‖ = r,
then

‖Tu‖ = max
t∈[,]

∣
∣Tv(t)

∣
∣ ≤

∫ 


λM(s)q(s)f

(
s, v(s) + ϕ(s)

)
ds

≤ λLr

∫ 


M(s)q(s) ds

≤ λrIL ≤ r = ‖v‖.

Therefore, ‖Tv‖ ≤ ‖v‖ for v ∈ ∂Pr = {v ∈ P : ‖v‖ < r}.
Case . Assume that f is unbounded. Then there exists some constant r > max{r, r}

such that f (t, v + ϕ(t)) ≤ f (t, r + ϕ(t)) for  < v ≤ r. Let v ∈ ∂P with ‖v‖ = r. Then, from
(.) and (.), we have

‖Tv‖ = max
t∈[,]

∣∣Tv(t)
∣∣ ≤

∫ 


λM(s)q(s)f

(
s, v(s) + ϕ(s)

)
ds

≤
∫ 


λM(s)q(s)(F∞ + ε)r ds

≤ λI(F∞ + ε)r ≤ r = ‖v‖.

It is sufficient to show that ‖Tv‖ ≤ ‖v‖ for v ∈ ∂Pr = {v ∈ P : ‖v‖ < r}. Then we take
� = {v ∈ X : ‖v‖ < r =: max{r, r}}, then ‖Tv‖ ≤ ‖v‖ for v ∈ P ∩ ∂�. From Lemma .,
operator T has a fixed point v ∈ P ∩ (�̄ \ �) with r ≤ ‖v‖ ≤ r. It is clear enough that v
is a positive solution of (.) and (.), then v + ϕ is a positive solution of (.). The proof
is completed. �

Theorem . Suppose that there exist constants r > r >  for all t ∈ [, ], the following
condition holds:

min

 r≤v≤r

f
(
t, v + ϕ(t)

) ≥ r

λI
, max

≤v≤r
f
(
t, v + ϕ(t)

) ≤ r

λI
. (.)

Then the boundary value problem (.) has at least one positive solution.
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Proof Choose � = {v ∈ X : ‖v‖ < r}, then for v ∈ P ∩ ∂�, we have

‖Tv‖ = max
t∈[,]

∣∣Tv(t)
∣∣ ≥ min

t∈[ 
 , 

 ]

∫ 





λG(t, s)q(s)f
(
s, v(s) + ϕ(s)

)
ds

= λ

∫ 





min
t∈[ 

 , 
 ]

G(t, s)q(s)f
(
s, v(s) + ϕ(s)

)
ds

≥ 


λ

∫ 





M(s)q(s)f
(
s, v(s) + ϕ(s)

)
ds

≥ 


λ

∫ 





M(s)q(s) min

 r≤v≤r

f
(
s, v(s) + ϕ(s)

)
ds

≥ λI
r

λI
= r = ‖v‖.

On the other hand, choose � = {v ∈ X : ‖v‖ < r}, then for v ∈ P ∩ ∂�, we have

‖Tv‖ = max
t∈[,]

∣
∣Tv(t)

∣
∣ ≤

∫ 


λM(s)q(s)f

(
s, v(s) + ϕ(s)

)
ds

≤
∫ 


λM(s)q(s) max

≤v≤r
f
(
t, v(s) + ϕ(s)

)
ds

≤ λI
r

λI
= r = ‖v‖.

Therefore from Lemma ., operator T has a fixed point v ∈ P ∩ (�̄ \ �) with
r ≤ ‖v‖ ≤ r. It is clear enough that v is a positive solution of (.) and (.), then v + ϕ is
a positive solution of (.). The proof is completed. �

Theorem . Suppose that the following condition holds:

λIf
(
t, v + ϕ(t)

)
< v for all t ∈ [, ], v ∈ (, +∞). (.)

Then the boundary value problem (.) has no positive solution.

Proof Assume to the contrary that v+ϕ is a positive solution of (.), v is a positive solution
of (.) and (.). Then

‖v‖ = ‖Tv‖ = max
t∈[,]

∣∣Tv(t)
∣∣ ≤

∫ 


λM(s)q(s)f

(
s, v(s) + ϕ(s)

)
ds

<


λI
‖v‖

∫ 


λM(s)q(s) ds = ‖v‖,

which comes to a contradiction and completes the proof. �

Theorem . Suppose that the following condition holds:

λIf
(
t, v + ϕ(t)

)
> v for all t ∈ [, ], v ∈ (, +∞). (.)

Then the boundary value problem (.) has no positive solution.
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Proof The proof of Theorem . is similar to that of Theorem ., therefore omitted. �

Example . Consider the boundary value problem

CD


+ u(t) = λt– 

 u(t)
(
t +  + u(t)

)
,  < t < ,

u() = , u() = .

Then

F = , f∞ = ∞, F∞ = ∞, f = .

By a direct calculation, we get

I ≈ ., I ≈ ..

From Theorem ., we see if

 =


If∞
< λ <


IF

≈ .,

then problem (.) has at least one positive solution. From Theorem ., if

λ <


IF∞
= ,

we see that problem (.) has no positive solution. By Theorem ., if

λ >


If
≈ .,

then we obtain that problem (.) has no positive solution.

4 Existence of multiple positive solutions
Here we are about to give some results on the existence of multiple positive solutions. The
following two lemmas will be of use to prove our main results.

Lemma . Assume that there exists a constant c >  such that max≤v≤c f (t, v +ϕ(t)) ≤ c
λI

for all t ∈ [, ]. Then

‖Tv‖ ≤ c for v ∈ P with ‖v‖ = c.

Proof If v ∈ P with ‖v‖ = c, then

‖Tv‖ = max
t∈[,]

∣∣Tv(t)
∣∣ ≤

∫ 


λM(s)q(s)f

(
s, v(s) + ϕ(s)

)
ds

≤ c
λI

∫ 


λM(s)q(s) ds = c,

the proof is complete. �
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Lemma . Assume that there exists a constant c >  such that min 
 c≤v≤c f (t, v + ϕ(t)) ≥

c
λI

for all t ∈ [, ]. Then

‖Tv‖ ≥ c for v ∈ P with ‖v‖ = c.

Proof If v ∈ P with ‖v‖ = c, then for t ∈ [ 
 , 

 ] we have v(t) ≥ 
‖v‖. Therefore, we have

‖Tv‖ = max
t∈[,]

∣∣Tv(t)
∣∣ ≥ min

t∈[ 
 , 

 ]

∫ 





λG(t, s)q(s)f
(
s, v(s) + ϕ(s)

)
ds

≥ 


λ

∫ 





M(s)q(s)f
(
s, v(s) + ϕ(s)

)
ds

≥ 


λ

∫ 





M(s)q(s) min

 c≤v≤c

f
(
s, v(s) + ϕ(s)

)
ds

≥ λI
c

λI
= c = ‖v‖,

so the proof is complete. �

Theorem . Assume that there are constants  < c < c < c < c such that
(i) max≤v≤ci f (t, v + ϕ(t)) ≤ ci

λI
for all t ∈ [, ], i = ,  and

(ii) min 
 ci≤v≤ci

f (t, v + ϕ(t)) ≥ ci
λI

for all t ∈ [, ], i = , .
Then the boundary value problem (.) has at least two positive solutions.

Proof If

�i =
{

v ∈ X : ‖v‖ < ci
}

, i = , , , ,

then from Lemmas . and ., we have

‖Tv‖ ≤ ‖v‖ for v ∈ P ∩ ∂�i, i = , 

and

‖Tv‖ ≥ ‖v‖ for v ∈ P ∩ ∂�i, i = , .

Now from Lemma . we get that T has two fixed points, one in each of two sets P ∩ (�̄ \
�) and P ∩ (�̄ \ �). This completes the proof. �

In the same way, we can obtain the following result.

Theorem . Assume that there are constants  < c < c < c < c such that
(i) max≤v≤ci f (t, v + ϕ(t)) ≤ ci

λI
for all t ∈ [, ], i = , , and

(ii) min 
 ci≤v≤ci

f (t, v + ϕ(t)) ≥ ci
λI

for all t ∈ [, ], i = , .
Then the boundary value problem (.) has at least two positive solutions.

For an arbitrary positive integer n, we can choose proper constants to meet expectation
of f , so that problem (.) has at least n positive solutions.
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Theorem . Assume that there are constants  < c < c < c < · · · < cn– < cn such that
(i) max≤v≤ci f (t, v + ϕ(t)) ≤ ci

λI
for all t ∈ [, ], i = , , . . . , k –  + (+(–)n)

 and
(ii) min 

 ci≤v≤ci
f (t, v + ϕ(t)) ≥ ci

λI
for all t ∈ [, ], i = , , . . . , k –  + +(–)n

 ,
where k = , , . . . , [ n+

 ]. Then the boundary value problem (.) has at least n positive so-
lutions.

Competing interests
The authors declare that the study was realized in collaboration with the same responsibility. All authors read and
approved the final manuscript.

Authors’ contributions
The authors declare that they have no competing interests.

Acknowledgements
The authors sincerely thank the reviewers for their valuable suggestions and useful comments that have led to the
present improved version of the original manuscript. This research is supported by the Natural Science Foundation of
China (11571202, 61374074), Natural Science Outstanding Youth Foundation of Shandong Province (JQ201119) and
supported by Shandong Provincial Natural Science Foundation (ZR2012AM009, ZR2013AL003).

Received: 8 January 2015 Accepted: 23 October 2015

References
1. Nagy, Á: Density functional. Theory and application to atoms and molecules. Phys. Rep. 298, 1-79 (1998)
2. Ourabah, K, Tribeche, M: The nonextensive Thomas-Fermi theory in an n-dimensional space. Physica A 392,

4477-4480 (2013)
3. Kılıçman, A, Hashimb, I, Kajani, MT, Maleki, M: On the rational second kind Chebyshev pseudospectral method for the

solution of the Thomas-Fermi equation over an infinite interval. J. Comput. Appl. Math. 257, 79-85 (2014)
4. Kilbas, AA, Srivastava, HH, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam

(2006)
5. Oldham, KB, Spanier, J: The Fractional Calculus. Academic Press, New York (1974)
6. Podlubny, I: Fractional Differential Equations. Academic Press, New York (1999)
7. Guo, D, Lakshmikantham, V: Nonlinear Problems in Abstract Cones. Academic Press, Orlando (1988)
8. Krishnan, B, Jayakumar, K: On the controllability of fractional dynamical systems. Int. J. Appl. Math. Comput. Sci. 22,

523-531 (2012)
9. Kaczorek, T: Selected Problems of Fractional Systems Theory. Lecture Notes in Control and Information Sciences,

vol. 411. Springer, Berlin (2011)
10. Machado, JAT: Analysis and design of fractional-order digital control systems. Syst. Anal. Model. Simul. 27, 107-122

(1997)
11. Mozyrska, D, Pawluszewicz, E: Controllability of h-difference linear control systems with two fractional orders. In: 13th

International Carpathian Control Conference (ICCC), pp. 501-506 (2012)
12. Mozyrska, D, Pawluszewicz, E: Local controllability of nonlinear discrete-time fractional order systems. Bull. Pol. Acad.

Sci., Tech. Sci. 61(1), 251-256 (2013)
13. Sierociuk, D, Nski, AD: Fractional Kalman filter algorithm for the states parameters and order of fractional system

estimation. Int. J. Appl. Math. Comput. Sci. 16, 129-140 (2006)
14. Agarwal, RP, O’Regan, D: An upper and lower solution approach for a generalized Thomas-Fermi theory of neutral

atoms. Math. Probl. Eng. 8(2), 135-142 (2002)
15. Zhang, S: Positive solutions for boundary-value problems of nonlinear fractional differential equations. Electron.

J. Differ. Equ. 2006, 36 (2006)
16. Sun, H, Wen, W: On the number of positive solutions for a nonlinear third order boundary value problem. Int. J. Differ.

Equ. 1, 165-176 (2006)
17. Zhao, Y, Sun, S, Han, Z, Zhang, M: Positive solutions for boundary value problems of nonlinear fractional differential

equations. Appl. Math. Comput. 217, 6950-6958 (2011)
18. Su, X, Zhang, S: Solutions to boundary-value problems for nonlinear differential equations of fractional order.

Electron. J. Differ. Equ. 2009, 26 (2009)
19. Zhai, C, Xu, L: Properties of positive solutions to a class of four-point boundary value problem of Caputo fractional

differential equations with a parameter. Commun. Nonlinear Sci. Numer. Simul. 19, 2820-2827 (2014)
20. Sun, S, Li, Q, Li, Y: Existence and uniqueness of solutions for a coupled system of multi-term nonlinear fractional

differential equations. Comput. Math. Appl. 64, 3310-3320 (2012)
21. Feng, W, Sun, S, Han, Z, Zhao, Y: Existence of solutions for a singular system of nonlinear fractional differential

equations. Comput. Math. Appl. 62, 1370-1378 (2011)
22. Sun, S, Zhao, Y, Han, Z, Li, Y: The existence of solutions for boundary value problem of fractional hybrid differential

equations. Commun. Nonlinear Sci. Numer. Simul. 17, 4961-4967 (2012)
23. Zhang, Q, Jiang, D: Upper and lower solutions method and a second order three-point singular boundary value

problem. Comput. Math. Appl. 56, 1059-1070 (2008)
24. Zhao, Y, Sun, S, Han, Z, Li, Q: The existence of multiple positive solutions for boundary value problems of nonlinear

fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 16, 2086-2097 (2011)
25. Feng, W, Sun, S, Li, X, Xu, M: Positive solutions to fractional boundary value problems with nonlinear boundary

conditions. Bound. Value Probl. 2014, 225 (2014)


	Existence of positive solutions for a generalized and fractional ordered Thomas-Fermi theory of neutral atoms
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Existence results
	Existence of multiple positive solutions
	Competing interests
	Authors' contributions
	Acknowledgements
	References


