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Abstract
In this paper, we consider a time-fractional inverse diffusion problem, where the data
is given at x = 1 and the solution is sought in the interval 0≤ x < 1. Such a problem is
obtained from the classical diffusion equation by replacing the first-order time
derivative by the Caputo fractional derivative of order α ∈ (0, 1). We show that a
time-fractional inverse diffusion problem is severely ill-posed and we further apply a
modified kernel method to solve it based on the solution in the frequency domain.
The corresponding convergence estimates are provided. Finally, an example is
constructed to show the feasibility and efficiency of the proposed method.

MSC: 35R25; 35R30; 47A52

Keywords: time-fractional inverse diffusion problem; ill-posed problem;
regularization method; error estimate

1 Introduction
In the past decades, studies on the problems of the partial differential equation mainly
focused on direct problems and inverse problems of integer order differential equation,
and some numerical techniques have been proposed to solve integer order differential
equation [–]. However, fractional derivatives calculus and fractional differential equa-
tions have been used recently to solve a range of problems in mechanical engineering [],
viscoelasticity [], electron transport [], dissipation [], heat conduction [, ], and
high-frequency financial data [].

The time-fractional diffusion equation arises by replacing the standard time partial
derivative in the diffusion equation with a time-fractional partial derivative. It is usually
used to describe the anomalous diffusion (superdiffusion, non-Gaussian diffusion, subdif-
fusion) which is not consistent with the classical Fick (or Fourier) law []. The direct prob-
lem, i.e., initial value problem and initial boundary for time-fractional diffusion equation
have been studied extensively in the past few years [–]. However, in some practical
problems, the boundary data on the whole boundary cannot be obtained. We only know
the noisy data on a part of the boundary or at some interior points of the concerned do-
main. This leads to an inverse and ill-posed problem of the fractional diffusion equation,
which means the solution does not depend continuously on the given known conditions.
In this paper, we investigate an inverse problem of the time-fractional diffusion equation.
This kind of ill-posed problem is important in many branches of engineering sciences
[, ].
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Due to the difficulty of the fractional derivative and the ill-posedness, to the authors’
knowledge, the results on inverse problem of the time-fractional diffusion equation are
very few. The uniqueness of an inverse problem for a one-dimensional fractional diffusion
equation was given in []. Cheng and Fu [] gave an iteration regularization method
for a time-fractional inverse diffusion problem. Zheng and Wei [, ] investigated a
time-fractional inverse diffusion problem by using a spectral regularization method and a
modified equation method.

In this article, we consider the following time-fractional inverse diffusion problem
(TFIDP):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–ux(x, t) = Dα
t u(x, t), x > , t > ,  < α < ,

u(x, ) = , x ≥ ,

u(, t) = f (t), t ≥ ,

limx→∞ u(x, t) = , t ≥ ,

()

where the time-fractional derivative Dα
t u(x, t) is the Caputo fractional derivative of order

α ∈ (, ) defined by []

Dα
t u(x, t) =


�( – α)

∫ t



∂u(x, s)
∂s

ds
(t – s)α

,  < α < , ()

Dα
t u(x, t) =

∂u(x, t)
∂t

, α = , ()

where �(·) is the gamma function.
The TFIDP is an inverse problem and is severely ill-posed. That means the solution does

not depend continuously on the given data, and any small perturbation in the given data
may cause large changes to the solution. In this paper, we will present a modified kernel
method to construct a stable approximation solution of the TFIDP.

The rest of this paper is organized as follows. In Section , we demonstrate ill-posedness
of the time-fractional inverse diffusion problem. In Section , a modified kernel method
is used to solve problem (), and we also obtain the convergence estimates between the
regularization solution and the exact solution based on the a priori assumptions for the
exact solution. In Section , an example is illustrated to show the main results. Finally, we
conclude this paper in Section .

2 Ill-posedness of a time-fractional inverse diffusion problem
In order to apply the Fourier analysis of the time-fractional inverse diffusion problem, we
extend all the functions to the whole line –∞ < t < ∞ by defining them to be zero for t < 
whenever it is necessary. We also assume all the functions involving t variable are in L(R).
Here, and in the following sections, we use the corresponding L norm, as defined below:

‖g‖ =
(∫ ∞

–∞

∣
∣g(t)

∣
∣ dt

) 


.

Let

ĝ(ξ ) =
√
π

∫ ∞

–∞
g(t)e–iξ t dt
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be the Fourier transform of the function g(t) ∈ L(R) and ‖ · ‖p denote the Hp norm, i.e.,

‖g‖p =
(∫ ∞

–∞

(
 + ξ )p∣∣ĝ(ξ )

∣
∣ dξ

) 


.

Then, applying the Fourier transforming with respect to t to problem (), we have []

ûx(x, ξ ) = –(iξ )αû(x, ξ ), ()

û(, ξ ) = ĝ(ξ ). ()

The solution of the above problem can be given by

û(x, ξ ) = el(ξ )(–x)ĝ(ξ ), ()

where

l(ξ ) = (iξ )α =

⎧
⎨

⎩

|ξ |α(cos απ
 + i sin απ

 ), ξ ≥ ,

|ξ |α(cos απ
 – i sin απ

 ), ξ < .

For the above problem, note that l(ξ ) has a positive real part |ξ |α cos απ
 , the small error

in the high-frequency components will be amplified by the factor e|ξ |α cos απ
 (–x). Therefore

the TFIDP for recovering the temperature u(x, t) from the measured data gδ(t) is severely
ill-posed. Here, suppose that the measured data gδ(t) ∈ L(R) satisfy

∥
∥gδ(t) – g(t)

∥
∥ ≤ δ, ()

where the constant δ >  is the noise level.
To solve the problem (), a natural way to stabilize the problem is to eliminate the high

frequencies or to replace the ‘kernel’ el(ξ )(–x) by a bounded approximation.
We now list two kernels of regularization methods for solving the time-fractional inverse

diffusion problem.
The first is

e(iξ )α (–x)χmax,

where χmax denotes the characteristic function of interval [–ξmax, ξmax], and ξmax is a reg-
ularization parameter. It corresponds to a spectral regularization method; see [].

The second is

e
(iξ )α

+μξ (–x),

where μ is a regularization parameter. It corresponds to a modified equation method; see
[].

In this article, we propose a regularization method by modifying the ‘kernel’ to deal with
the difficulty of problem () as follows:

el(ξ )(–x)

 + βe|ξ |α cos απ


,

where β is a regularization parameter.
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Now, we will apply this regularization strategy to solve a time-fractional inverse diffusion
problem and prove that this regularization strategy is feasible.

3 A modified kernel method and error estimates
In this section, we will construct regularization solution by modifying the ‘kernel’ and
obtain convergence estimates.

Here, we give an approximate solution of problem () by perturbing the kernel of () as
follows:

ûβ ,δ(x, ξ ) =
el(ξ )(–x)

 + βe|ξ |α cos απ


ĝδ(ξ ). ()

In order to obtain our main results, we first give two important lemmas. Here, we set
η = |ξ |α cos απ

 .

Lemma  If  < x < ,  < α < , then we have

sup
η≥

eη(–x)

 + βeη
≤ βx–. ()

Proof Let

F(η) =
eη(–x)

 + βeη
,

by elementary calculation, we see that η = 
 ln ( –x

+x β–) is the maximum point of F(η). So,
we know

(
 + βeη

)– =
(

 +
 – x
 + x

)–

=
(


 + x

)–

=
 + x


≤  ()

and

eη(–x) =
(

 – x
 + x

β–
) –x


=

(
 – x
 + x

) –x


βx– ≤ βx–. ()

Combining () and (), we have

sup
η≥

eη(–x)

 + βeη
≤ βx–. �

Lemma  If  < x < ,  < α < , then we have

sup
η≥

eη(–x)

 + βeη
≤ βx–. ()

Proof The proof of this lemma is similar to that of Lemma , we get the inequality ().
�

In the following theorems, the convergence estimates between the regularization solu-
tion and the exact solution will be given based on an a priori choice of the regularization
parameter.
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Theorem  Suppose that uβ ,δ(x, t) is the regularization solution for problem () with noisy
data gδ(t) and that u(x, t) is the exact solution for problem () with the exact data g(t). Let
the assumption ‖gδ(t) – g(t)‖ ≤ δ be satisfied and let ‖u(, ·)‖ ≤ E hold. If we choose

β =
δ

E
, ()

then for every x ∈ (, ), we obtain the following error estimate:

∥
∥uβ ,δ(x, ·) – u(x, ·)∥∥ ≤ δxE–x. ()

Proof By Parseval’s identity and the triangle inequality, we have

∥
∥uβ ,δ(x, ·) – u(x, ·)∥∥ =

∥
∥ûβ ,δ(x, ·) – û(x, ·)∥∥

=
∥
∥
∥
∥

el(ξ )(–x)

 + βe|ξ |α cos απ


ĝδ(ξ ) – el(ξ )(–x)ĝ(ξ )
∥
∥
∥
∥

≤
(∫ ∞

–∞

∣
∣
∣
∣

el(ξ )(–x)

 + βe|ξ |α cos απ


ĝδ(ξ ) –
el(ξ )(–x)

 + βe|ξ |α cos απ


ĝ(ξ )
∣
∣
∣
∣



dξ

) 


+
(∫ ∞

–∞

∣
∣
∣
∣

el(ξ )(–x)

 + βe|ξ |α cos απ


ĝ(ξ ) – el(ξ )(–x)ĝ(ξ )
∣
∣
∣
∣



dξ

) 


=
(∫ ∞

–∞

∣
∣
∣
∣

el(ξ )(–x)

 + βe|ξ |α cos απ


ĝδ(ξ ) –
el(ξ )(–x)

 + βe|ξ |α cos απ


ĝ(ξ )
∣
∣
∣
∣



dξ

) 


+
(∫ ∞

–∞

∣
∣
∣
∣

(
e–l(ξ )x

 + βe|ξ |α cos απ


– e–l(ξ )x
)

el(ξ )ĝ(ξ )
∣
∣
∣
∣



dξ

) 


≤ δ sup
ξ∈R

|el(ξ )(–x)|
 + βe|ξ |α cos απ



+ sup
ξ∈R

∣
∣
∣
∣
βe(–x)|ξ |α cos απ

 –ix sign(ξ )|ξ |α sin απ


 + βe|ξ |α cos απ


∣
∣
∣
∣

∥
∥û(, ·)∥∥

≤ δ sup
ξ∈R

K(ξ ) + E sup
ξ∈R

K(ξ ),

where

K(ξ ) =
e|ξ |α cos απ

 (–x)

 + βe|ξ |α cos απ


,

K(ξ ) =
βe(–x)|ξ |α cos απ



 + βe|ξ |α cos απ


.

Combining () and (), and setting η = |ξ |α cos απ
 , we get

K(ξ ) =
eη(–x)

 + βeη
≤ βx–,

K(ξ ) =
βe(–x)η

 + βeη
≤ ββx– = βx.
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Therefore,

∥
∥uβ ,δ(x, ·) – u(x, ·)∥∥ ≤ δβx– + Eβx,

according to (), we can get the error estimate

∥
∥uβ ,δ(x, ·) – u(x, ·)∥∥ ≤ δxE–x. �

The error estimate in Theorem  does not give any useful information on the continuous
dependence of the solution at x = . To retain the continuous dependence of the solution
at x = , one has to introduce a stronger a priori assumption.

We are now in the position to formulate the convergence rate for x = .

Theorem  Suppose that uβ ,δ(x, t) is the regularization solution for problem () with noisy
data gδ(t) and that u(x, t) is the exact solution for problem () with the exact data g(t).
Let the assumption ‖gδ(t) – g(t)‖ ≤ δ be satisfied and let ‖u(, ·)‖p ≤ E (p ≥ ) hold. If we
choose

β =
(

δ

E

)γ

,



< γ < , ()

then, for x = , we obtain the following error estimate:

∥
∥uβ ,δ(, ·) – u(, ·)∥∥

≤ δ–γ Eγ +
√

πδγ –cos απ
 E–γ +cos απ



(

ln
E
δ

)–p cos απ


+ E
[




ln

(
E
δ

(

ln
E
δ

)–p)]– p
α

.

Proof It is similar to Theorem ; we obtain

∥
∥uβ ,δ(x, ·) – u(x, ·)∥∥

≤
(∫ ∞

–∞

∣
∣
∣
∣

el(ξ )(–x)

 + βe|ξ |α cos απ


(
ĝδ(ξ ) – ĝ(ξ )

)
∣
∣
∣
∣



dξ

) 


+
(∫ ∞

–∞

∣
∣
∣
∣
βe(–x)|ξ |α cos απ

 –ix sign(ξ )|ξ |α sin απ


( + βe|ξ |α cos απ
 )( + ξ )

p


(
 + ξ )

p
 û(, ·)

∣
∣
∣
∣



dξ

) 


= K(ξ ) + K(ξ ).

Setting η = |ξ |α cos απ
 , and combining () and (), we get

K(ξ ) ≤ δ sup
η∈R

eη(–x)

 + βeη
≤ δβx–
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and

K(ξ ) =
(∫ ∞

–∞

∣
∣
∣
∣

βe(–x)η

( + βeη)( + ξ )
p


(
 + ξ )

p
 û(, ·)

∣
∣
∣
∣



dξ

) 


≤ E
(∫

|ξ |≤ξ

[
βe(–x)η

( + βeη)( + ξ )
p


]

dξ

) 


+ E
(∫

|ξ |>ξ

[
βe(–x)η

( + βeη)( + ξ )
p


]

dξ

) 


≤ E
√

πβ(e(–x)η |η=|ξ|α cos απ


)
+ Eβxξ

–p
 .

Taking ξ = [ 
 ln( E

δ
(ln E

δ
)–p)] 

α and using (), we get

∥
∥uβ ,δ(x, ·) – u(x, ·)∥∥

≤ δβx– +
√

πEβ(e(–x)η |η=|ξ|α cos απ


)
+ Eβxξ

–p


≤ δ–γ +γ xEγ –γ x +
√

πδγ –(– x
 ) cos απ

 E–γ +(– x
 ) cos απ



(

ln
E
δ

)( px
 –p) cos απ



+ δγ xE–γ x
[




ln

(
E
δ

(

ln
E
δ

)–p)]– p
α

.

Here, for x = , we obtain

∥
∥uβ ,δ(, ·) – u(, ·)∥∥

≤ δ–γ Eγ +
√

πδγ –cos απ
 E–γ +cos απ



(

ln
E
δ

)–p cos απ


+ E
[




ln

(
E
δ

(

ln
E
δ

)–p)]– p
α

. �

4 Numerical example
The purpose of this section is to present a numerical example and illustrate the accuracy
and efficiency of the proposed method. Here, the proposed methods will be implemented
in Matlab. In our numerical experiment, we fix the interval  ≤ t ≤ .

To illustrate the behavior of a modified kernel regularization method, we construct the
test problems with a given function f at x = , then we compute a data function g at x = 
according to ĝ(ξ ) = e–l(ξ ) f̂ (ξ ), which is well-posed. We usually think that the computed
data g is exact. The discrete noisy data gδ is obtained by adding a random noise to the
exact data g , that is,

gδ = g + ε randn
(
size(g)

)
,

where

g =
(
g(x), g(x), . . . , g(xn)

)T , xi = (i – )x,x =


n – 
, i = , , . . . , n.
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Then the total noise δ can be measured in the sense of the root mean square error accord-
ing to

δ :=
∥
∥gδ – g

∥
∥

l =

√
√
√
√ 

n

n∑

i=

(
gδ

i – gi
).

Here, the function randn(·) generates arrays of random numbers whose elements are
normally distributed with mean , variance σ  =  and standard deviation σ = , the func-
tion randn(size(g)) returns an array of random entries that has the same size as g .

Example  Consider a smooth function

f (t) =

⎧
⎨

⎩


t/ e– 

t , t > ,

, others.

The comparison of the computational effects with α = ., ε = ., at x = ., ., ., 
are shown in Figure .

The comparison of the computational effects with α = ., x = , for ε = ., .,
., . are shown in Figure .

The comparison of the computational effects with α = ., x = , ε = . for γ =
., ., ., . are shown in Figure .

From Figures - (see also Tables -), we can find that the numerical results near the
boundary x =  are better than the ones close to x = , and the smaller the parameter ε,

Figure 1 The exact solution (ES) and its approximation solution (AS). α = 0.3, ε = 0.001 and (a) x = 0.8;
(b) x = 0.5; (c) x = 0.2; (d) x = 0.
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Figure 2 The exact solution (ES) and its approximation solution (AS). α = 0.4, x = 0 and (a) ε = 0.00001;
(b) ε = 0.0001; (c) ε = 0.001; (d) ε = 0.01.

Figure 3 The exact solution (ES) and its approximation solution (AS). α = 0.6, x = 0 and (a) γ = 0.6;
(b) γ = 0.7; (c) γ = 0.8; (d) γ = 0.9.
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Table 1 The executing time for the running time program with different x for Example 1

x 0.8 0.5 0.2 0

t 9.420000 9.526000 9.483000 9.389000

Table 2 The executing time for the running time program with different ε for Example 1

ε 0.00001 0.0001 0.001 0.01

t 9.241000 9.494000 9.531000 9.546000

Table 3 The executing time for the running time program with different γ for Example 1

γ 0.6 0.7 0.8 0.9

t 9.346000 9.508000 9.514000 9.523000

the better the computed approximation is. Moreover, for x = , we can see that the smaller
the parameter γ , the better the computed approximation is.

5 Conclusion
In this paper, we propose a modified kernel method for solving time-fractional inverse
diffusion problem by producing a stable approximation solution. For this regularization
strategy, in the presence of noisy data, we establish and prove the convergence estimates
for the cases  ≤ x <  under the a priori bound assumptions for the exact solution and
the suitable choices of the regularization parameter. From the results of numerical simu-
lations, it seems clear that the proposed method works well for the model problem with
small measurement error.
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