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Abstract
In this paper, we investigate the dynamics of a discrete-time predator-prey system
with simplified Monod-Haldane functional response. The existence and local stability
of positive fixed point of the discrete dynamical system is analyzed algebraically. It is
shown that the system undergoes a flip bifurcation and a Neimark-Sacker bifurcation
in the interior of R2

+ by using bifurcation theory. Numerical simulation results not only
show the consistence with the theoretical analysis but also display new and
interesting dynamical behaviors, including phase portraits, period-11 orbits, attracting
invariant circle, cascade of period-doubling bifurcation from period-11 leading to
chaos, quasi-periodic orbits, and the sudden disappearance of the chaotic dynamics
and attracting chaotic set. The Lyapunov exponents are numerically computed to
characterize the complexity of the dynamical behaviors.
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1 Introduction
It is well known the Lotka-Voltera predator-prey model is one of the fundamental popu-
lation models; a predator-prey interaction has been described first by two pioneers Lotka
[] and Voltera [] in two independent works. After them, more realistic predator-prey
model were introduced by Holling suggesting three types of functional responses for dif-
ferent species to model the phenomena of predation []. Qualitative analyses of predator-
prey models describe by set of differential equations were studied by many authors [–].
Another possible way to understand a predator-prey interaction is by using discrete-time
models. In recent years, many authors [, , –] have suggested that discrete-time mod-
els governed by difference equations are more appropriate than the continuous ones, es-
pecially when the populations have non-overlapping generations. These models are more
reasonable, showing that the dynamics of the discrete-time predator-prey models can
present a much richer set of patterns than those observed in continuous-time models
and lead to unpredictable dynamic behaviors from a biological point of view. However,
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there are few articles discussing the dynamical behaviors of predator-prey models, which
include bifurcations and chaos phenomena for the discrete-time models. Hence, the dis-
crete version has been an important subject of study in diverse phenomenology from the
mathematical point of view. The authors [, –] obtained the flip bifurcation and Hopf
bifurcation by using the center manifold theorem and bifurcation theory, while in [–],
the authors only showed the flip bifurcation and Hopf bifurcation by using numerical sim-
ulations. But in [–], the authors showed that the system undergoes a flip bifurcation
and/or a Neimark-Sacker (NS) bifurcation by using bifurcation theory. Many important
and interesting research works on bifurcation theory can be found in [, ] and the ref-
erences cited therein.

In this paper, we consider a generalized Gauss-type predator-prey interaction [] when
the prey exhibits group defense that can be modeled by the following system of ordinary
differential equations:

ẋ = xg(x, K) – yp(x),

ẏ = y
(
–d + q(x)

)
,

()

where x and y are functions of time representing population densities of prey and predator,
respectively; K >  is the carrying capacity of the prey and d >  is the death rate of the
predator. The function g(x, K) represents the specific growth rate of the prey in the absence
of predator. A prototype is the logistic growth, g(x, K) = r( – x

K ), with intrinsic growth
rate r. The function p(x) denotes the predator response function and we assume it is of the
simplified Monod-Haldane form, p(x) = mx

β+x . The rate of conversion of prey to predator
is described by q(x). In Gauss’ model, q(x) = cp(x) for some positive constant c.

Without loss of generality, by scaling the parameters, we first write system () in the
specific form []

ẋ = rx
(

 –
x
K

)
–

xy
β + x ,

ẏ = y
(

–d +
αx

β + x

)
,

()

where r, K , d, α, and β are positive parameters. Applying the forward Euler scheme to
system (), we obtain the discrete-time predator–prey system as follows:

H :

(
x
y

)

→
(

x + δ[rx( – x
K ) – xy

β+x ]
y + δ[–dy + αxy

β+x ]

)

, ()

where δ is the step size. In this paper, we only restrict our attention to investigate this
version as a discrete-time dynamical system in the closed first quadrant R

+ by using bi-
furcation theory and center manifold theory (see Section , []). We rigorously prove
that this discrete model possesses the flip bifurcation and the NS bifurcation, respectively.
Meanwhile, numerical simulations are presented not only to illustrate our results with the
theoretical analysis, but also to exhibit the complex dynamical behaviors such as the cas-
cade periodic-doubling bifurcation in periods -orbits, quasi-periodic orbits and chaotic
sets. These results reveal a far richer dynamics of the discrete model compared with the
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continuous model. In particular; we observe that when the prey shows chaotic dynam-
ics, the predator can tend to extinction or to a stable equilibrium. The computations of
the Lyapunov exponents confirm the dynamical behaviors. The analysis and results in this
paper are interesting in mathematics and biology.

This paper is organized as follows. In Section , we discuss the existence and local sta-
bility of positive fixed point for system () in R


+. In Section , we show that there exist

some values of the parameters such that () undergoes the flip bifurcation and the NS bi-
furcation in the interior of R

+. In Section , we present the numerical simulations includ-
ing the bifurcation diagrams, the phase portraits at neighborhood of critical values and
the maximum Lyapunov exponents corresponding to the bifurcation diagrams. Finally a
short discussion is given in Section .

2 Existence and stability of fixed points
In this section, we first determine the existence of the fixed points of system (), then
investigate their stability by the eigenvalues for the Jacobian matrix of () at the fixed point.

It is clear that the fixed points of () satisfy the following equations:

x + δ

[
rx

(
 –

x
K

)
–

xy
β + x

]
= x,

y + δ

[
–dy +

αxy
β + x

]
= y.

()

The fixed point of the greatest interest would be a fixed point interior to the first quad-
rant, so we seek conditions for such a fixed point to exist. From system (), we can see that
if there is an interior fixed point, then the equation

dx – αx + dβ = 

has positive roots, say x∗. Therefore, the first condition is that

�̃ = α – dβ ≥ .

To determine the y value of the fixed point, we merely solve

rx
(

 –
x
K

)
–

xy
β + x = 

for y at the root x∗ and get

y∗ = r
(

 –
x∗

K

)(
β + x∗).

To ensure that y∗ > , however, we must make a second assumption:

x∗ < K .

By a simple algebraic computation, it is straightforward to obtain the following results:
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Lemma .
(i) For all permissible parameter values, system () has two fixed points, E(, ) and

E(K , );
(ii) if �̃ =  and α

d < K , then system () has a unique positive fixed point, E(x∗
, y∗

), where

x∗
 =

α

d
and y∗

 = r
(

 –
x∗


K

)(
β + x∗


);

(iii) if �̃ > , then system () has at most two positive fixed points, E(x∗
 , y∗

 ), E(x∗
, y∗

),
where

x∗
 =

α –
√

�̃

d
and y∗

 = r
(

 –
x∗


K

)
(
β + x∗


);

x∗
 =

α +
√

�̃

d
and y∗

 = r
(

 –
x∗


K

)(
β + x∗


).

More precisely, there are three possibilities.
(iii.a) When K ≤ x∗

 , then system () has no positive fixed points;
(iii.b) when x∗

 < K < x∗
 , then system () has one positive fixed points E(x∗

 , y∗
 );

(iii.c) when x∗
 < x∗

 < K , then system () has two positive fixed points E(x∗
 , y∗

 ) and
E(x∗

, y∗
).

Biologically, the condition �̃ >  is necessary for the persistence of the ecosystem. If
�̃ < , the predator species goes extinct. Mathematically, �̃ =  is a saddle-node bifurca-
tion surface. When the parameters pass from one side of the surface to the other side, the
number of fixed points of the system changes. Figure  shows the distribution of the fixed
points in the space (α,β , d). There is at most two positive fixed point in the region (I), and
on the surface C and no positive fixed point in the region (II) for any choice of K such that
x∗ < K , where surface C = {(α,β , d) : α – dβ = }.

Now we investigate the stability of the fixed points for (). The Jacobian matrix of system
() at a fixed point Ē(x̄, ȳ) is

J(x̄, ȳ) =

(
 + δa –δb

δa  + δb

)

, ()

where

a = r
(

 –
x̄
K

)
+

(–β + x̄)ȳ
(β + x̄) ,

b =
x̄

β + x̄ ,

a =
α(β – x̄)ȳ
(β + x̄) ,

b = –d +
αx̄

β + x̄ .

()



Rana Advances in Difference Equations  (2015) 2015:345 Page 5 of 17

Figure 1 Distribution of fixed point of map (3).

The characteristic equation associated with () is

λ – tr Jλ + det J = , ()

where λ is the eigenvalue of () and

tr J =  + δ(a + b),

det J =  + δ(a + b) + δ(ab + ab).
()

Hence system () is a dissipative dynamical system if and only if

∣∣ + δ(a + b) + δ(ab + ab)
∣∣ < ;

a conservative dynamical system if and only if

∣∣ + δ(a + b) + δ(ab + ab)
∣∣ = ;

and an non-dissipating dynamical system otherwise.
In the following we deduce the local dynamics of the positive fixed point E(x∗, y∗) only

(we left the others). Note that the local stability of the fixed point (x∗, y∗) is determined by
the modules of eigenvalues of the characteristic equation at the fixed point.

The Jacobian matrix due to the linearization of () evaluated at E is given by

J
(
x∗, y∗) =

(
 + δa –δb

δa  + δb

)

()

and the corresponding characteristic equation of () can be written as

F(λ) = λ – tr Jλ + det J = , ()

where a, b, a, b in () and tr J , det J in () are determined by () and () with x̄ and ȳ
replaced by x∗ and y∗, respectively. Therefore, the eigenvalues of () are

λ, =
tr J ± √

(tr J) –  det J


, ()
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where

(tr J) –  det J = δ� and � = (a – b) – ab.

For � < , i.e., (tr J) – det J < , the eigenvalues λ, given by () are complex, and these
can be written as

λ, = μ ± iω, ()

where

μ =
tr J


=  +
δ


(a + b),

ω =
√

 det J – (tr J)


=

δ


√

ab – (a – b).

Using Jury’s criterion [], we have necessary and sufficient condition for local stability
of the fixed point E, which are given in the following proposition.

Proposition . Let E be a positive fixed point of (). Then
(i) it is a sink if one of the following conditions holds:

(i.) � ≥  and δ < –(a+b)–
√

�

ab+ab
;

(i.) � <  and δ < – a+b
ab+ab

;
(ii) it is a source if one of the following conditions holds:

(ii.) � ≥  and δ > –(a+b)+
√

�

ab+ab
;

(ii.) � <  and δ > – a+b
ab+ab

;
(iii) it is non-hyperbolic if one of the following conditions holds:

(iii.) � ≥  and δ = –(a+b)±√
�

ab+ab
;

(iii.) � <  and δ = – a+b
ab+ab

;
(iv) it is a saddle for the other values of parameters except those values in (i)-(iii).

Following Jury’s criterion, we can see that one of the eigenvalues of J(E) is – and the
others are neither  nor – if the term (iii.) of Proposition . holds. Therefore, there may
be a flip bifurcation of the fixed point E if δ varies in the small neighborhood of FBE or
FBE where

FBE =
{

(r, K , d,α,β , δ) ∈ (, +∞) : δ =
–(a + b) –

√
�

ab + ab
,� ≥ 

}
,

or

FBE =
{

(r, K , d,α,β , δ) ∈ (, +∞) : δ =
–(a + b) +

√
�

ab + ab
,� ≥ 

}
.

Also when the term (iii.) of Proposition . holds, we see that the eigenvalues of J(E)
are a pair of conjugate complex numbers with module one. The conditions in the term
(iii.) of Proposition . can be written as the following set:

NSBE =
{

(r, K , d,α,β , δ) ∈ (, +∞) : δ = –
a + b

ab + ab
,� < 

}
,
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and if the parameter δ varies in the small neighborhood of NSBE , then the NS bifurcation
will appear.

The next result is obtained from the above analysis to study the bifurcation of system ().

Proposition . The positive fixed point E loses its stability:
(i) via a flip point when � ≥  and δ = –(a+b)±√

�

ab+ab
;

(ii) via a Neimark-Sacker point when � <  and δ = – a+b
ab+ab

.

3 Bifurcation analysis
In this section, we choose the parameter δ as a bifurcation parameter to study the flip
bifurcation and the Neimark-Sacker bifurcation of E, respectively, by using bifurcation
theory in (see Section  in []; see also [–]).

We first discuss the flip bifurcation of () at E. Suppose that � > , i.e.,

(a – b) – ab > . ()

If

δ = δF =
–(a + b) –

√
�

ab + ab
,

or

δ = δF =
–(a + b) +

√
�

ab + ab
,

then the eigenvalues of () given by () are

λ(δF ) = – and λ(δF ) =  + δF (a + b).

The condition |λ(δF )| 	=  leads to

δF (a + b) 	= –, –. ()

Let x̃ = x – x∗, ỹ = y – y∗, and A(δ) = J(x∗, y∗), we transform the fixed point (x∗, y∗) of
system () into the origin, then system () becomes

(
x̃
ỹ

)

→ A(δ)

(
x̃
ỹ

)

+

(
F(x̃, ỹ, δ)
F(x̃, ỹ, δ)

)

, ()

where

F(x̃, ỹ, δ) =
(

–
δr
K

–
(–β + x∗)δx∗y∗

(β + x∗)

)
x̃ +

(–β + x∗)δ
(β + x∗) x̃ỹ

+
(β – βx∗ + x∗)δy∗

(β + x∗) x̃ +
(βx∗ – x∗)δ

(β + x∗) x̃ỹ + O
(‖X‖),

F(x̃, ỹ, δ) =
α(–β + x∗)δx∗y∗

(β + x∗) x̃ –
α(–β + x∗)δ

(β + x∗) x̃ỹ –
α(β – βx∗ + x∗)δy∗

(β + x∗) x̃

–
α(βx∗ – x∗)δ

(β + x∗) x̃ỹ + O
(‖X‖),

()
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and X = (x̃, ỹ)T . It follows that

B(x, y) =
∑

j,k=

δF(ξ , δ)
δξjδξk

∣∣
∣∣
ξ=

xjyk

=
(

–
δr
K

–
(–β + x∗)δx∗y∗

(β + x∗)

)
xy +

(–β + x∗)δ
(β + x∗) (xy + xy),

B(x, y) =
∑

j,k=

δF(ξ , δ)
δξjδξk

∣
∣∣
∣
ξ=

xjyk

=
α(–β + x∗)δx∗y∗

(β + x∗) xy –
α(–β + x∗)δ

(β + x∗) (xy + xy),

C(x, y, u) =
∑

j,k,l=

δF(ξ , δ)
δξjδξkδξl

∣
∣∣
∣
ξ=

xjykul =
(β – βx∗ + x∗)δy∗

(β + x∗) xyu

–
(–βx∗ + x∗)δ

(β + x∗) (xyu + xyu + xyu),

C(x, y, u) =
∑

j,k,l=

δF(ξ , δ)
δξjδξkδξl

∣∣∣
∣
ξ=

xjykul = –
α(β – βx∗ + x∗)δy∗

(β + x∗) xyu

+
α(–βx∗ + x∗)δ

(β + x∗) (xyu + xyu + xyu),

and δ = δF .
Therefore, B(x, y) =

( B(x,y)
B(x,y)

)
and C(x, y, u) =

( C(x,y,u)
C(x,y,u)

)
are symmetric multilinear vector

functions of x, y, u ∈ R
.

We know that A has simple eigenvalue λ(δF ) = –, and the corresponding eigenspace
Ec is one-dimensional and spanned by an eigenvector q ∈ R

 such that A(δF )q = –q. Let
p ∈ R

 be the adjoint eigenvector, that is, AT (δF )p = –p. By direct calculation we obtain

q ∼ (– – δF b, δF a)T ,

p ∼ (– – δF b, –δF b)T .

In order to normalize p with respect to q, we denote

p = γ(– – δF b, –δF b)T ,

where

γ =


(– – δF b) – δ
F ab

.

It is easy to see 〈p, q〉 = , where 〈·, ·〉 means the standard scalar product in R
 : 〈p, q〉 =

pq + pq.
Following the algorithms given in [], the sign of the critical normal form coefficient

c(δF ), which determines the direction of the flip bifurcation, is given by the following for-
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mula:

c(δF ) =



〈
p, C(q, q, q)

〉
–



〈
p, B

(
q, (A – I)–B(q, q)

)〉
. ()

From the above analysis and the theorem in [, –], we have the following result.

Theorem . Suppose that E(x∗, y∗) is the positive fixed point. If the conditions () and
() hold and c(δF ) 	= , then system () undergoes a flip bifurcation at the fixed point
E(x∗, y∗) when the parameter δ varies in a small neighborhood of δF . Moreover, if c(δF ) > 
(resp., c(δF ) < ), then the period- orbits that bifurcate from E(x∗, y∗) are stable (resp.,
unstable).

We next discuss the existence of a Neimark-Sacker bifurcation by using the NS theorem
in [, –].

It is clear that, for the complex eigenvalues given by (), the condition is (tr J) –  det J <
, which leads to � < , i.e.,

(a – b) – ab < . ()

Let

δ = δNS = –
a + b

ab + ab
,

then we have det J(δNS) = .
For δ = δNS , the eigenvalues of the matrix associated with the linearization of the map

() at (x̃, ỹ) = (, ) are conjugate with modulus , and they are written as

λ, λ̄ = μ(δNS) ± iω(δNS) ()

and

∣
∣λ(δNS)

∣
∣ = ,

d|λ(δ)|
dδ

∣∣
∣∣
δ=δNS

= –



(a + b) 	= . ()

In addition, if tr J(δNS) 	= , –,

δNS(a + b) 	= –, –,

which obviously satisfies

λk(δNS) 	=  for k = , , , . ()

Let q ∈C
 be an eigenvector of A(δNS) corresponding to the eigenvalue λ(δNS) such that

A(δNS)q = λ(δNS)q, A(δNS)q̄ = λ̄(δNS)q̄.
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Also let p ∈C
 be an eigenvector of the transposed matrix AT (δNS) corresponding to its

eigenvalue, that is, λ̄(δNS),

AT (δNS)p = λ̄(δNS)p, AT (δNS)p̄ = λ(δNS)p̄.

By direct calculation we obtain

q ∼ ( + δNSb – λ, δNSa)T ,

p ∼ ( + δNSb – λ̄, –δNSb)T .

In order to normalize p with respect to q, we denote

p = γ( + δNSb – λ̄, –δNSb)T ,

where

γ =


( + δNSb – λ̄) – δ
NSab

.

It is easy to see 〈p, q〉 = , where 〈·, ·〉 means the standard scalar product in C
 : 〈p, q〉 =

p̄q + p̄q.
Any vector X ∈ R

 can be represented for δ near δNS as X = zq + z̄q̄, for some complex z.
Indeed, the explicit formula to determine z is z = 〈p, X〉. Thus, system () can be trans-
formed for sufficiently small |δ| (near δNS) into the following form:

z �→ λ(δ)z + g(z, z̄, δ),

where λ(δ) can be written as λ(δ) = ( + ϕ(δ))eiθ (δ) (where ϕ(δ) is a smooth function with
ϕ(δNS) = ) and g is a complex-valued smooth function of z, z̄, and δ, whose Taylor expres-
sion with respect to (z, z̄) contains quadratic and higher-order terms:

g(z, z̄, δ) =
∑

k+l≥


k!l!

gkl(δ)zkz̄l, with gkl ∈C, k, l = , , . . . .

By symmetric multilinear vector functions, the Taylor coefficients gkl can be expressed
by the formulas

g(δNS) =
〈
p, B(q, q)

〉
, g(δNS) =

〈
p, B(q, q̄)

〉
,

g(δNS) =
〈
p, B(q̄, q̄)

〉
, g(δNS) =

〈
p, C(q, q, q̄)

〉
,

and the coefficient a(δNS), which determines the direction of the appearance of the invari-
ant curve in a generic system exhibiting the NS bifurcation, can be computed via

a(δNS) = Re

(
e–iθ (δNS)g



)
– Re

(
( – eiθ (δNS))e–iθ (δNS)

( – eiθ (δNS))
gg

)
–



|g| –




|g|,

where eiθ (δNS) = λ(δNS).
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Clearly, () and () demonstrate that the transversal condition and the nondegenerate
condition of system () are satisfied. So, summarizing the above discussions, we obtain
the following conclusion.

Theorem . Suppose that E(x∗, y∗) is the positive fixed point. If a(δNS) 	= , then system
() undergoes a Neimark-Sacker bifurcation at the fixed point E when the parameter δ

varies in the small neighborhood of NSBE . Moreover, if a(δNS) <  (resp., > ), then the
NS bifurcation of system () at δ = δNS is supercritical (resp., subcritical) and there exists
a unique closed invariant curve bifurcation from E for δ = δNS , which is attracting (resp.,
repelling).

In Section , we will choose some values of the parameters so as to show the process of
a NS bifurcation for system () in Figures  and  resp. by numerical simulation. Here one
example, which illustrates Theorem ., is given below.

Example . Consider system () with r = , K = ., d = ., α = ., β = , δ = δF =
.. Then (r, K , d,α,β , δ) ∈ FBE and there is a unique positive fixed point (, )
with multipliers λ = –, λ = ., and c(δF ) = –.. Hence, according to Theo-
rem ., the flip bifurcation emerges from the fixed point (, ) at δ = δF .

4 Numerical simulations
In this section, by using numeral simulation, we give the bifurcation diagrams, phase
portraits and Lyapunov exponents of system () to confirm the previous analytic results
and show some new interesting complex dynamical behaviors existing in system (). It is
known that maximum Lyapunov exponents quantify the exponential divergence of ini-
tially close state-space trajectories and frequently are employed to identify chaotic behav-
ior. Since the dynamics of discrete prey-predator model with Holling type I, II, and III
functional response has been examined by many researchers, we will now mainly focus
our attention on the effect of simplified Monod-Haldane functional response. Based on
the previous analysis, we choose the parameter δ as a bifurcation parameter (varied pa-
rameter) and the other model parameters are taken as fixed parameters, unless otherwise
stated; to study the flip bifurcation and the Neimark-Sacker bifurcation, respectively, for
the unique positive fixed point, one can consider the initial condition (x, y) situated in
the basin of attraction of fixed point. Without loss of generality, the bifurcation parameters
are considered in the following cases:

Case (i) varying δ in range . ≤ δ ≤ ., and fixing r = , K = ., d = ., α = .,
β = ;

Case (ii) varying β in range . ≤ β ≤ ., and fixing r = , K = ., d = ., α = .,
δ = ..

For case (i): The bifurcation diagrams of system () in the (δ–x–y) space, the (δ–x) plane
and the (δ – y) plane are given in Figure (a)-(b)-(c). After calculation for the fixed point
E of map (), the NS bifurcation emerges from the fixed point (., .) at δ =
δNS = . and (r, K , d,α,β , δ) ∈ NSBE . It shows the correctness of Proposition ..
For δ = δNS , we have λ, λ̄ = .±.i, |λ| = , |λ̄| = , d|λ(δ)|

dδ
|δ=δNS = . > ,

λNS(a + b) = –. 	= –, –, g = . + .i, g = . – .i,
g = –. + .i, g = . – .i, and a(δNS) = –.. There-
fore, the NS bifurcation is supercritical and it shows the correctness of Theorem ..
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Figure 2 Bifurcation diagrams and maximum Lyapunov exponent for system (3) around E2.
(a) Neimark-Sacker bifurcation diagram of system (3) in (δ – x – y) space, (b)-(c) NS bifurcation diagrams in
(δ – x) and (δ – y) planes, (d) maximum Lyapunov exponents corresponding to (b)-(c), (e) maximum
Lyapunov exponents are superimposed on bifurcation diagrams, (f) local amplification corresponding to (b)
for δ ∈ [1.26141, 1.6309]. The initial value is (x0, y0) = (0.29, 1.62).

From Figure (b)-(c), we observe that the fixed point E of map () is stable for δ <
. and loses its stability at δ = . and an invariant circle appears when
the parameter δ exceeds ., we also observe that there are period-doubling phe-
nomenons. The maximum Lyapunov exponents corresponding to Figure (b)-(c) are com-
puted and plotted in Figure (d), confirming the existence of the chaotic regions and pe-
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Figure 3 Bifurcation diagrams and maximum Lyapunov exponent for system (3) around E2 with
respect to β . (a) NS bifurcation diagram of system (3), (b) maximum Lyapunov exponents corresponding
to (a). The initial value is (x0, y0) = (0.29, 1.62).

riod orbits in the parametric space. From Figure (d), we observe that some Lyapunov
exponents are bigger than , some are smaller than , so there exist stable fixed points
or stable period windows in the chaotic region. In general the positive Lyapunov expo-
nent is considered to be one of the characteristics implying the existence of chaos. The
bifurcation diagrams for x and y together with maximum Lyapunov exponents is pre-
sented in Figure (e). Figure (f ) is the local amplification corresponding to Figure (b)
for δ ∈ [., .].

The phase portraits which are associated with Figure (a) are disposed in Figure , which
clearly depicts the process of how a smooth invariant circle bifurcates from the stable fixed
point (., .). When δ exceeds ., there appears a circular curve en-
closing the fixed point E, and its radius becomes larger with respect to the growth of δ.
When δ increases at certain values, for example, at δ = ., the circle disappears and a
period- orbits appears. As δ is increased further, however, the phase portrait starts to
fold. We see that the circle, after being stretched, shrunk and folded, creates new phenom-
ena due to the breakdown of the closed curve (see at δ = .). For further increasing δ, we
obtain the multiple invariant closed curves brought about by a NS bifurcation of iterates
of the model (), quasi-periodic orbits and attracting chaotic sets. We see that for δ = .
and δ = ., where the strange attractors are produced by the breaking of the invariant
circles, the values of maximal Lyapunov exponent are positive, confirming the existence
of the chaotic sets. In addition, in system () fully developed chaos occurs when δ = ..

For case (ii): Figure  demonstrates the dynamic behavior of the model () when the pa-
rameter β varies. The bifurcation diagram for system () is plotted as a function of the con-
trol parameter β . It turns out that the fixed point E of map () loses its stability through
a NS bifurcation, when β varies around . As β decreases the behavior of this model be-
comes very complicated, including the NS bifurcation and many chaotic bands. The sign
of the maximal Lyapunov exponent confirms the existence of the strange attractor.

In order to observe the complex dynamics, we can vary more parameters of system ().
Since the values of the Lyapunov exponents quantify the chaotic behavior of the discrete
system or at least the sensitive dependence on the initial conditions, so we compute the
maximum Lyapunov exponents of system () and study the dependence of these Lyapunov
exponents on the two real parameters δ and β . The signs of the maximum Lyapunov
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Figure 4 Phase portraits for various values of δ corresponding to Figure 2(a).

exponents of system () for parameters δ ∈ [., .], β ∈ [., .], and δ ∈ [., .],
β ∈ [., .], respectively, and fixing other parameters as in case (ii), are plotted in Fig-
ure . A blue color represents a negative Lyapunov exponent and a red color represents
a positive Lyapunov exponent. Here it is easy to see for which choice of parameters sys-
tem () is showing chaotic motion, and for which one is system () exhibiting periodic or
quasi-periodic movement. For instance, the chaotic situation is on Figure  for values of
parameters δ = ., β = , and the non-chaotic situation is for values of the parameters
δ = ., β = , which are consistent with the signs in Figure . It shows that the dynamics
of system () is chaotic for small values of the parameter β .
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Figure 5 Sign of maximum Lyapunov exponent for system (3) around E2. (a) Sign of maximum
Lyapunov exponents of system (3) covering δ ∈ [0.5, 1.1], β ∈ [0.8, 1.25], and r = 2, K = 1.2, d = 0.25, α = 0.9.
(b) Sign of maximum Lyapunov exponents covering δ ∈ [1.1, 1.74], β ∈ [1.0, 1.25] (red ‘*’ = positive, blue ‘o’ =
negative). The initial value is (x0, y0) = (0.29, 1.62).

Figure 6 Sensitive dependence on the initial conditions for system (3). (a) The two trajectories for
x-coordinate, plotted against number of iterations, red for (x0, y0); blue for (x0 + 0.001, y0). (b) The two
trajectories for y-coordinate, plotted against number of iterations, red for (x0, y0); blue for (x0, y0 + 0.001). The
parameter values are r = 5.5, K = 0.771525, d = 0.3, α = 1.65, β = 1.3, δ = 1.565. The initial value is
(x0, y0) = (0.227, 4.585).

4.1 Sensitive dependence on initial conditions
To demonstrate the sensitivity to initial conditions of the model (), two perturbed trajec-
tories are represented in Figure . At the beginning, the two trajectories are overlapped
and are indistinguishable; but after a number of iterations, the difference between them
builds up rapidly. Figure  shows a sensitive dependence on the initial conditions for x- and
y-coordinate of the two trajectories for the model (), which is plotted against the num-
ber of iterations. The initial perturbation of two trajectories for x-coordinate is  × –,
while the other coordinate is kept to have the same value. For this case the two trajectories
with initial points (x, y) = (., .) and (x + ., y) are computed and plotted
in Figure (a), respectively.

Also, a sensitive dependence on the initial conditions of two trajectories for y-coordinate
of the model () is plotted in Figure (b). The initial conditions of two trajectories for
y-coordinate differ by  × –, while the other coordinate is kept at the same value. In
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Figure , it is shown that the trajectories of system () sensitively depend on the initial
conditions, i.e. complex dynamic behavior occurs with initial perturbation.

5 Discussions
In this paper, we investigated the behaviors of the discrete-time predator-prey system ()
involving group defense with simplified Monod-Haldane functional response and showed
that it has a complex dynamics in the closed first quadrant R

+. We showed that the unique
positive fixed point of () can undergo a flip bifurcation and a NS bifurcation under certain
parametric conditions. Some other basic dynamical properties of system () have been an-
alyzed by means of bifurcation diagrams, phase portraits, Lyapunov exponents, and the
sensitive dependence on the initial conditions. More precisely, as the parameters vary,
system () exhibits a variety of dynamical behaviors, including period- orbits, an in-
variant cycle, a cascade of period-doubling, quasi-periodic orbits, and chaotic sets, which
imply that the predators and prey can coexist in the stable period-n orbits and invariant
cycle. Finally, simulation works showed that in certain regions of the parameter space,
the model () had a great sensitivity to the choice of the initial conditions and parameter
values. These results reveal a far richer dynamics of the discrete model compared to the
continuous model.

Competing interests
The author declares that there is no competing interest regarding the publication of this paper.

Author’s contributions
The author carried out the proof of the main results and approved the final manuscript.

Acknowledgements
The author would like to thank the editor and the referees for their valuable comments and suggestions which led to the
improvement of the paper.

Received: 16 July 2015 Accepted: 27 October 2015

References
1. Lotka, AJ: Elements of Mathematical Biology. Williams & Wilkins, Baltimore (1925)
2. Volterra, V: Variazioni e fluttuazioni del numero di’individui in specie animali conviventi. Mem. R. Accad. Naz. Dei

Lincei, Ser. VI 2, 31-113 (1926)
3. Holling, CS: The functional response of predator to prey density and its role in mimicry and population regulation.

Mem. Entomol. Soc. Can. 45, 1-60 (1965)
4. Brauer, F, Castillo-Chavez, C: Mathematical Models in Population Biology and Epidemiology. Springer, New York

(2001)
5. Murry, JD: Mathematical Biology. Springer, New York (1989)
6. Rosenzweig, ML, MacArthur, RH: Graphical representation and stability conditions of predator-prey interactions. Am.

Nat. 97, 209-223 (1963)
7. Ruan, S, Xiao, D: Global analysis in a predator-prey system with nonmonotonic functional response. SIAM J. Appl.

Math. 61(4), 1445-1472 (2001)
8. Zhu, H, Campbell, SA, Wolkowicz, GSK: Bifurcation analysis of a predator-prey system with nonmonotonic functional

response. SIAM J. Appl. Math. 63, 636-682 (2002)
9. Agiza, HN, Elabbasy, EM, El-Metwally, H, Elasdany, AA: Chaotic dynamics of a discrete prey-predator model with

Holling type II. Nonlinear Anal., Real World Appl. 10, 116-129 (2009)
10. Danca, M, Codreanu, S, Bakó, B: Detailed analysis of a nonlinear prey predator model. J. Biol. Phys. 23, 11-20 (1997)
11. Elsadany, AA, El-Metwally, HA, Elabbasy, EM, Agiza, HN: Chaos and bifurcation of a nonlinear discrete prey-predator

system. Comput. Ecol. Softw. 2(3), 69-180 (2012)
12. Hasan, KA, Hama, MF: Complex dynamics behaviors of a discrete prey-predator model with Beddington-DeAngelis

functional response. Int. J. Contemp. Math. Sci. 7(45), 2179-2195 (2012)
13. He, ZM, Lai, X: Bifurcation and chaotic behavior of a discrete-time predator-prey system. Nonlinear Anal., Real World

Appl. 12, 403-417 (2011)
14. He, ZM, Li, B: Complex dynamic behavior of a discrete-time predator-prey system of Holling-III type. Adv. Differ. Equ.

2014, 180 (2014)
15. Hu, ZY, Teng, ZD, Zhang, L: Stability and bifurcation analysis of a discrete predator-prey model with nonmonotonic

functional response. Nonlinear Anal., Real World Appl. 12, 2356-2377 (2011)
16. Jing, ZJ, Yang, J: Bifurcation and chaos discrete-time predator-prey system. Chaos Solitons Fractals 27, 259-277 (2006)



Rana Advances in Difference Equations  (2015) 2015:345 Page 17 of 17

17. Liu, XL, Xiao, DM: Complex dynamic behaviors of a discrete-time predator-prey system. Chaos Solitons Fractals 32,
80-94 (2007)

18. Ghaziani, RK: Dynamics and bifurcations of a Lotka-Volterra population model. Iran. J. Sci. Technol., Trans. A, Sci. 38A3,
265-279 (2014)

19. Li, B, He, Z: Bifurcations and chaos in a two-dimensional discrete Hindmarsh-Rose model. Nonlinear Dyn. 76, 697-715
(2014)

20. Rana, SMS: Bifurcation and complex dynamics of a discrete-time predator-prey system. Comput. Ecol. Softw. 5(2),
187-200 (2015)

21. Wang, C, Li, X: Stability and Neimark-Sacker bifurcation of a semi-discrete population model. J. Appl. Anal. Comput.
4(4), 419-435 (2014)

22. Li, B, He, Z: 1:2 and 1:4 resonances in a two-dimensional discrete Hindmarsh-Rose model. Nonlinear Dyn. 796,
705-720 (2015)

23. Freedman, HI, Wolkowicz, GSK: Predator-prey systems with group defense: the paradox of enrichment revisited. Bull.
Math. Biol. 48, 493-508 (1986)

24. Kuzenetsov, YA: Elements of Applied Bifurcation Theory, 2nd edn. Springer, New York (1998)
25. Elaydi, SN: An Introduction to Difference Equations. Springer, New York (1996)
26. Guckenheimer, J, Holmes, P: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer,

New York (1983)
27. Robinson, C: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, 2nd edn. CRC Press, Boca Raton (1999)
28. Winggins, S: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (2003)


	Bifurcation and complex dynamics of a discrete-time predator-prey system with simpliﬁed Monod-Haldane functional response
	Abstract
	MSC
	Keywords

	Introduction
	Existence and stability of ﬁxed points
	Bifurcation analysis
	Numerical simulations
	Sensitive dependence on initial conditions

	Discussions
	Competing interests
	Author's contributions
	Acknowledgements
	References


