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Abstract
In the present paper, we establish a multivariate fuzzy chain rule under generalized
differentiability by extending the corresponding chain rule under H-differentiability.
Based on the result, we discuss the Ulam stability problems of two types of first order
linear partial fuzzy differential equations under generalized differentiability.
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1 Introduction
In , Obloza [] first initiated the study of the Ulam stability problem of differential
equations. Subsequently, Alsina and Ger [] investigated the Hyers-Ulam stability of the
differential equation y′ = y. Further, the stability results of the differential equation y′ = λy
in various abstract spaces have been established by Miura and Takahasi et al. [–]. As of
now, the stability problems of many types of linear differential equations have been sys-
tematically and extensively studied by many authors [–]. Especially, it is worth noting
that several types of partial differential equations have attracted much attention during
last few years [–].

Generally speaking, for an n-order X-valued differential equation (here X denotes a Ba-
nach space with the norm ‖ · ‖)

F
(
t, y, y′, . . . , y(n)) = , t ∈ I,

where I denotes a subinterval of R, we say that it has Hyers-Ulam stability or it is stable in
the sense of Hyers-Ulam if for a given ε >  and an n times strongly differentiable mapping
f : I → X satisfying

∥
∥F

(
t, f , f ′, . . . , f (n))∥∥ ≤ ε

for all t ∈ I , then there exists an exact solution g : I → X of the preceding differential
equation such that ‖f (t) – g(t)‖ ≤ K(ε) for all t ∈ I , where K(ε) depends only on ε and
limε→ K(ε) = . More generally, if the ε and K(ε) are replaced by two control functions
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ϕ and � in t, respectively, then we say that the differential equation mentioned above has
the Hyers-Ulam-Rassias stability or it is stable in the sense of Hyers-Ulam-Rassias.

At present, most of the studies associated with fuzzy differential equations are based on
generalized differentiability, because there are some defects in the original fuzzy differen-
tial equations defined by H-differentiability, i.e., the length of the support or the diame-
ter of the solution is increasing as the time increases. Specifically, Bede and Gal [, ]
proposed the concept of strongly generalized differentiability of a fuzzy number-valued
function by using unilateral derivatives, which enlarged the class of H-differentiable
fuzzy number-valued functions introduced by Puri and Ralescu []. To a certain ex-
tent, such improved differentiability overcomes some shortcomings in the sense of H-
differentiability. In addition, this improvement brings about many new problems, which
are never encountered in the study of classical differential equations. These problems in-
dicate that, under the generalized differentiability, fuzzy differential equations must be
considered by means of new ideas and methods which are different from classical differ-
ential equations. Very often, it is difficult to extend some important results in classical
differential equations to fuzzy environment. Therefore, it is still necessary to study some
similar problems in fuzzy differential equations. Inspired by the study of the Ulam stabil-
ity problems of classical differential equations, the author has recently studied the Ulam
stability of three types of first order linear fuzzy differential equations under generalized
differentiability []. To our knowledge, it is the first paper reported on the Ulam stability
of fuzzy differential equations. As a continuation of our previous work, the aim of this
paper is to discuss the Ulam stability problems of the following first order linear partial
fuzzy differential equations:

b � uy(x, y) ⊕ δ(y) � u(x, y) = a � ux(x, y) ⊕ σ (y) (a, b > ), ()

a � ux(x, y) ⊕ δ(x) � u(x, y) = b � uy(x, y) ⊕ σ (x) (a, b > ), ()

where u and σ are two fuzzy number-valued functions, δ is a real-valued function and the
symbol ‘=’ means identity of membership functions on both sides.

2 Preliminaries
Let N, R, R+, and R– denote the set of all natural numbers, the set of all real numbers,
the set of all positive real numbers, and the set of all negative real numbers, respectively.
Denote by RF the class of fuzzy sets u : R→ [, ] with the following properties:

(i) u is normal, i.e., there exists x ∈R such that u(x) = ;
(ii) u is fuzzy convex, that is, u(λx + ( – λ)y) ≥ min{u(x), u(y)} for any x, y ∈R and

λ ∈ [, ];
(iii) u is upper semicontinuous;
(iv) cl{x ∈R : u(x) > } is compact, where cl denotes the closure of a set.
Usually, the set RF is called the space of fuzzy numbers. If every real number is equiva-

lently represented by its characteristic function, then it is easy to know that R ⊂ RF . For
 < α ≤ , we denote [u]α = {x ∈ R : u(x) ≥ α} and [u] = cl{x ∈ R : u(x) > }. Then it fol-
lows from the conditions (i)-(iv) that the α-level set [u]α is a nonempty compact interval
for all α ∈ [, ] and each u ∈ RF .
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For u, v ∈ RF , λ ∈ R, the addition u ⊕ v and scalar multiplication λ � u can be defined,
levelwise, by

[u ⊕ v]α = [u]α + [v]α and [λ � u]α = λ[u]α

for all α ∈ [, ].
The supremum metric between two fuzzy numbers u and v is defined by

D : RF ×RF →R+ ∪ {},
D(u, v) = sup

α∈[,]
dH

(
[u]α , [v]α

)
,

where dH is the Hausdorff metric. It is well known that the metric space (RF , D) is a com-
plete metric space and the following properties for the metric D are satisfied:

(P) D(u ⊕ w, v ⊕ w) = D(u, v), ∀u, v, w ∈RF ;
(P) D(λ � u,λ � v) = |λ|D(u, v), ∀λ ∈R, u, v ∈ RF ;
(P) D(u ⊕ v, w ⊕ e) ≤ D(u, w) + D(v, e), ∀u, v, w, e ∈RF .
Let u, v ∈ RF . If there exists w ∈RF such that u = v⊕w, then w is called the H-difference

of u and v, and it is denoted by u  v.
Throughout this paper, the symbol ‘’ always stands for the H-difference. In general,

u  v �= u ⊕ (–) � v, (–) � v = –v.
The concept of strongly generalized differentiability was introduced by Bede and Gal

[] and further studied by Chalco-Cano and Román-Flores []. Here we shall extend
this concept to a bivariate fuzzy number-valued function.

Definition . Let D = (a, b) × (c, d) be an open domain, where a, b, c, d ∈R∪{±∞} with
a < b, c < d, and let F : D →RF be a bivariate fuzzy number-valued mapping and (x, y) ∈
D. We say that F is partially differentiable at (x, y) with respect to the variable x if there
exists an element Fx(x, y) ∈RF (or ∂F

∂x |(x,y) ∈RF ) such that either:
(i) for all 
x >  sufficiently small, the H-differences F(x +
x, y)F(x, y), F(x, y)

F(x – 
x, y) exist and the limits (in the metric D)

lim

x→+

F(x + 
x, y)  F(x, y)

x

= lim

x→+

F(x, y)  F(x – 
x, y)

x

= Fx(x, y) =
∂F
∂x

∣∣∣
∣
(x,y)

or
(ii) for all 
x >  sufficiently small, the H-differences F(x, y)  F(x + 
x, y), F(x –


x, y)  F(x, y) exist and the limits (in the metric D)

lim

x→+

F(x, y)  F(x + 
x, y)
–
x

= lim

x→+

F(x – 
x, y)  F(x, y)
–
x

= Fx(x, y) =
∂F
∂x

∣
∣∣
∣
(x,y)

,

where 
x and –
x in the denominators denote 

x · and – 


x ·, respectively.
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Analogously, we can introduce the partial derivative of F (denoted by Fy(x, y) or
∂F
∂y |(x,y)) at (x, y) with respect to the variable y. In general, for any (x, y) ∈D, the partial
derivatives of F with respect to x and y can be abbreviated as Fx (or ∂F

∂x ) and Fy (or ∂F
∂y ),

respectively.

Remark  In essence, the case (i) of Definition . follows from the H-differentiability
introduced by Puri and Ralescu []. Then the presented definition of partial differen-
tiability can be considered as an extension of the H-differentiability of a univariate fuzzy
number-valued function.

A bivariate fuzzy number-valued function F : D → RF is said to be partially (i)-
differentiable (or partially (ii)-differentiable) onD if it is partially differentiable in the sense
(i) (or (ii)) of Definition ..

In the following, we will recall some fundamental theorems of calculus of a univariate
fuzzy number-valued function. Obviously, these results can easily be extended to partial
derivatives of a bivariate fuzzy number-valued function.

Theorem . (Kaleva [], Khastan et al. []) Let F : R+ ∪ {} → RF be a differentiable
fuzzy number-valued mapping and assume that the derivative F ′ is integrable overR+ ∪{}.
For each t ∈R+ ∪ {},

(i) if F is (i)-differentiable, then

F(t) = F() ⊕
∫ t


F ′(s) ds;

(ii) if F is (ii)-differentiable, then

F(t) = F() 
∫ t

a
–F ′(s) ds.

Theorem . (Kaleva []) Let F : R+ ∪{} →RF be continuous. Then for any t ∈R+ ∪{}
the integral H(t) =

∫ t
 F(τ ) dτ is (i)-differentiable and H ′(t) = F(t).

Theorem . (Khastan et al. []) Let F : R+ ∪ {} → RF be continuous. Define the inte-
gral

H(t) := γ 
∫ t


–F(τ ) dτ , t ∈R+ ∪ {},

where γ ∈ RF is such that the preceding H-difference exists on R+ ∪ {}. Then H(t) is (ii)-
differentiable and H ′(t) = F(t).

For a bivariate fuzzy number-valued function F : D →RF , we say that
(i) F satisfies the condition (H) with respect to x if for a given (x, y) ∈ D, the

H-differences F(x + 
x, y)  F(x, y) and F(x, y)  F(x – 
x, y) exist for sufficiently
small 
x > ;

(ii) F satisfies the condition (H) with respect to x if for a given (x, y) ∈D, the
H-differences F(x, y)  F(x + 
x, y) and F(x – 
x, y)  F(x, y) exist for sufficiently
small 
x > .
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Obviously, F satisfies the corresponding condition (H) and (H) with respect to the
second variable y can be defined in a similar way, respectively.

As a direct generalization of Theorem . in [], we can formulate the following mul-
tivariate chain rule under generalized differentiability.

Theorem . Let xi : [a, b] × [c, d] → xi([a, b] × [c, d]) := Ii ⊆ R, i = , , . . . , n, n ∈ N, be
strictly increasing and differentiable functions with respect to each of the variables. Con-
sider U an open subset of Rn such that ×n

i=Ii ⊆ U . Consider f : U →RF a fuzzy continuous
function. Assume that fxi : U →RF , i = , , . . . , n, i.e., the partial (i)- or (ii)-derivative with
respect to xi, exist and are fuzzy continuous. Call z : z(s, t) := f (x, x, . . . , xn). Then ∂z

∂s and
∂z
∂t exist, and

∂z
∂s

=
n∑

i=

∗
∂z
∂xi

� ∂xi

∂s
, ∀s ∈ [a, b],

∂z
∂t

=
n∑

i=

∗
∂z
∂xi

� ∂xi

∂t
, ∀t ∈ [c, d],

where ∂z
∂xi

, i = , , . . . , n, ∂xi
∂s and ∂xi

∂t denote partial (i)- or (ii)-derivatives of z and xi with
respect to xi, s, and t, respectively.

Proof It is a direct consequence of Theorem . in [] when f is partially (i)-differentiable
with respect to xi. So we just need to prove the corresponding results hold true when f is
partially (ii)-differentiable. For simplicity, we only prove the first equality, i.e., ∂z

∂s , the sec-
ond one can be proved in a similar way. Setting s ∈ (a, b). Let (x, x, . . . , xn) ∈ U be fixed
and let 
sxi > , i = , , . . . , n, be small. Now, we set

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α = f (x, x + 
sx, . . . , xn + 
sxn)  f (x + 
sx, x + 
sx, . . . , xn + 
sxn) ∈RF ,

α = f (x, x, x + 
sx, . . . , xn + 
sxn)  f (x, x + 
sx, . . . , xn + 
sxn) ∈RF ,

· · ·
αn = f (x, x, . . . , xn)  f (x, x, . . . , xn + 
sxn) ∈ RF ,

equivalently, we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f (x, x + 
sx, . . . , xn + 
sxn) = α + f (x + 
sx, x + 
sx, . . . , xn + 
sxn),

f (x, x, x + 
sx, . . . , xn + 
sxn) = α + f (x, x + 
sx, . . . , xn + 
sxn),

· · ·
f (x, x, . . . , xn) = αn + f (x, x, . . . , xn + 
sxn).

Summing both sides of the above equalities and using the cancellation law, we get

f (x, x, . . . , xn) =
n∑

i=

∗
αi ⊕ f (x + 
sx, x + 
sx, . . . , xn + 
sxn).
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That is,

f (x, x, . . . , xn)  f (x + 
sx, x + 
sx, . . . , xn + 
sxn) =
n∑

i=

∗
αi.

Since f is partially (ii)-differentiable with respect to xi, the H-differences mentioned above
αi, i = , , . . . , n, exist in RF for small 
sxi > . Define


sxi := φi(s + 
s, t) – φi(s, t), 
s > , i = , , . . . , n.

That is,

φi(s + 
s, t) = xi + 
sxi, xi := φi(s, t).

Since φi(s, ·), i = , , . . . , n, is strictly increasing with respect to s, we know that 
sxi > .
The continuity of φi(s, ·) implies that 
sxi →  as 
s → . Then, by (ii) of Theorem .,
we can infer that

lim

s→+

D

(
f (φ(s, t), . . . ,φn(s, t))  f (φ(s + 
s, t), . . . ,φn(s + 
s, t))

–
s
,

n∑

i=

∗
fxi (x, . . . , xn) � ∂xi(s, t)

∂s

)

= lim

s→+

D

(
f (x, . . . , xn)  f (x + 
sx, . . . , xn + 
sxn)

–
s
,

n∑

i=

∗
fxi (x, . . . , xn) � ∂xi(s, t)

∂s

)

= lim

s→+

D

(∑n
i=

∗
αi

–
s
,

n∑

i=

∗
fxi (x, . . . , xn) � ∂xi(s, t)

∂s

)

≤ lim

s→+

D
(

f (x, x + 
sx, . . . , xn + 
sxn)  f (x + 
sx, x + 
sx, . . . , xn + 
sxn)
–
sx

� 
sx


s
, fx (x, . . . , xn) � ∂x(s, t)

∂s

)

+ lim

s→+

D
(

f (x, x, x + 
sx, . . . , xn + 
sxn)  f (x, x + 
sx, . . . , xn + 
sxn)
–
sx

� 
sx


s
, fx (x, . . . , xn) � ∂x(s, t)

∂s

)
+ · · ·

+ lim

s→+

D
(

f (x, x, . . . , xn–, xn)  f (x, x, . . . , xn–, xn + 
sxn)
–
sxn

� 
sxn


s
,

fxn (x, . . . , xn) � ∂xn(s, t)
∂s

)

= lim

s→+

D
(–

∫ x+
sx
x

fx (τ , x + 
sx, . . . , xn + 
sxn) dτ

–
sx
� 
sx


s
,

fx (x, . . . , xn) � ∂x(s, t)
∂s

)
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+ lim

s→+

D
(–

∫ x+
sx
x

fx (x, τ , x + 
sx, . . . , xn + 
sxn) dτ

–
sx
� 
sx


s
,

fx (x, . . . , xn) � ∂x(s, t)
∂s

)
+ · · ·

+ lim

s→+

D
(–

∫ xn–+
sxn–
xn–

fxn– (x, x, . . . , xn–, τ , xn + 
sxn) dτ

–
sxn–
� 
sxn–


s
,

fxn– (x, . . . , xn) � ∂xn–(s, t)
∂s

)

+ lim

s→+

D
(

fxn (x, x, . . . , xn) � 
sxn


s
, fxn (x, . . . , xn) � ∂xn(s, t)

∂s

)
:= �.

Further, by Lemmas . and . in [], we get

� =
∂x(s, t)

∂s
lim


s→+



sx

D
(∫ x+
sx

x

fx (τ , x + 
sx, . . . , xn + 
sxn) dτ ,


sx � fx (x, . . . , xn)
)

+
∂x(s, t)

∂s
lim


s→+



sx

D
(∫ x+
sx

x

fx (x, τ , x + 
sx, . . . , xn + 
sxn) dτ ,


sx � fx (x, . . . , xn)
)

+ · · ·

+
∂xn–(s, t)

∂s
lim


s→+



sxn–

D
(∫ xn–+
sxn–

xn–

fxn– (x, x, . . . , xn–, τ , xn + 
sxn) dτ ,


sxn– � fxn– (x, . . . , xn)
)

=
n–∑

i=

∂xi(s, t)
∂s

lim

s→+



sxi

D
(∫ xi+
sxi

xi

fxi (x, . . . , xi–, τ , xi+

+ 
sxi+, . . . , xn + 
sxn) dτ ,
∫ xi+
sxi

xi

fxi (x, . . . , xn) dτ

)

≤
n–∑

i=

∂xi(s, t)
∂s

lim

s→+



sxi

∫ xi+
sxi

xi

D
(
fxi (x, . . . , xi–, τ , xi+ + 
sxi+, . . . , xn + 
sxn),

fxi (x, . . . , xn)
)

dτ

≤
n–∑

i=

∂xi(s, t)
∂s

lim

s→+



sxi

(
sup

τi∈[xi ,xi+
sxi]

(
D

(
fxi (x, . . . , xi–, τi, xi+

+ 
sxi+, . . . , xn + 
sxn), fxi (x, . . . , xn)
)))


sxi

≤
n–∑

i=

∂xi(s, t)
∂s

lim

s→+

D
(
fxi

(
x, . . . , xi–, τ ∗

i , xi+ + 
sxi+, . . . , xn + 
sxn
)
, fxi (x, . . . , xn)

)

(
for some τ ∗

i ∈ [xi, xi + 
sxi]
)

= �.



Shen Advances in Difference Equations  (2015) 2015:351 Page 8 of 18

When 
s → +, 
sxi →  for every i = , , . . . , n. Then τ ∗
i → xi. By the continuity of fxi ,

i = , , . . . , n, we conclude that

� =
n–∑

i=

∂xi(s, t)
∂s

lim

s→+

D
(
fxi (x, . . . , xn), fxi (x, . . . , xn)

)

=
n–∑

i=

∂xi(s, t)
∂s

·  = ,

which implies that the first equality holds. The proof of the theorem is now completed.
�

3 Hyers-Ulam-Rassias stability of linear partial fuzzy differential equation (1)
In this section, we shall establish the stability results of the linear partial fuzzy differential
equation () under different differentiability.

3.1 Stability of (1) under partial (i)-differentiability
Theorem . Let σ : R+ ∪ {} → RF be a continuous fuzzy number-valued function and
let u : R×R+ ∪ {} →RF be a bivariate fuzzy number-valued function which has contin-
uous partial (i)-derivatives with respect to each of the variables. Assume that u satisfies the
following inequality:

D
(
b � uy(x, y) ⊕ δ(y) � u(x, y), a � ux(x, y) ⊕ σ (y)

) ≤ ϕ(y) ()

for all x ∈ R and y ∈ R+ ∪ {}, where a, b >  are constants, δ : R+ ∪ {} → R+ is a con-
tinuous function and ϕ : R+ ∪ {} →R+ is a function. Moreover, assume that the following
conditions are satisfied:

(i)
∫ y

 δ(τ ) dτ exists for all y ∈ R+ ∪ {};
(ii)

∫ y
 exp( 

b
∫ ω

 δ(τ ) dτ ) � σ (ω) dω exists for all y ∈R+ ∪ {};
(iii)

∫ ∞
 ϕ(ω) exp( 

b
∫ ω

 δ(τ ) dτ ) dω exists;
(iv) limx→–∞,y→+∞ u(x, y) exists;
(v) the H-difference exp(

∫ y



bδ(τ ) dτ )u(x, y)  

b
∫ y

 exp( 
b
∫ ω

 δ(τ ) dτ ) � σ (ω) dω exists
for each x ∈R and each y ∈R+ ∪ {}.

Then there exists a unique u ∈RF such that

D
(
u(x, y), û(x, y)

) ≤ 
b

exp

(
–


b

∫ y


δ(τ ) dτ

)∫ ∞

y
ϕ(ω) exp

(

b

∫ ω


δ(τ ) dτ

)
dω ()

for all x ∈ R and all y ∈R+ ∪ {}, where

û(x, y) = exp

(
–


b

∫ y


δ(τ ) dτ

)
�

(
u ⊕ 

b

∫ y


exp

(

b

∫ ω


δ(τ ) dτ

)
� σ (ω) dω

)
. ()

Proof First, we introduce a new coordinate (ξ ,η) and choose the following coordinate
transformation:

ξ = x +
a
b

y, η =

b

y. ()
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Setting ũ(ξ ,η) = u(ξ – aη, bη) = u(x, y). By (), we know that the new variable ξ is strictly
increasing with respect to x and y, respectively. Meanwhile, η is strictly increasing in y.
According to Theorem ., it follows from the previous equality that

ux(x, y) = ũξ (ξ ,η) � ∂ξ

∂x
= ũξ (ξ ,η),

uy(x, y) = ũξ (ξ ,η) � ∂ξ

∂y
⊕ ũη(ξ ,η) � ∂η

∂y
=

a
b

� ũξ (ξ ,η) ⊕ 
b

ũη(ξ ,η).

Applying these two equalities to (), we obtain

D
(
ũη(ξ ,η) ⊕ δ̃(η) � ũ(ξ ,η), σ̃ (η)

) ≤ ϕ̃(η) ()

for all ξ ∈ R and all η ∈ R+ ∪ {}, where δ̃ = δ(bη) = δ(y) and σ̃ (η) = σ (bη) = σ (y), ϕ̃(η) =
ϕ(bη) = ϕ(y).

If we set

ξ = λ +
a
b
τ , μ =


b
τ ,

then δ̃(μ) = δ(bμ) = δ(t) and it follows from (i) that

∫ y


δ̃(μ) dμ =


b

∫ by


δ(τ ) dτ ()

exists for all y ∈R+ ∪ {}. Moreover, if we set

ξ = ν +
a
b
τ , ν =


b
ω,

then σ̃ (ν) = σ (bν) = σ (ω) and from () we can infer that

∫ y


exp

(∫ ν


δ̃(μ) dμ

)
� σ̃ (ν) dν =


b

∫ by


exp

(

b

∫ ω


δ(τ ) dτ

)
� σ (ω) dω. ()

From (ii), it can easily be seen that the integral of the left side exists for all y ∈ R+ ∪ {}.
Furthermore, it follows from (iii) that the following integral of the left side exists:

∫ ∞


ϕ̃(ν) exp

(∫ ν


δ̃(μ) dμ

)
dν =


b

∫ ∞


ϕ(ω) exp

(

b

∫ ω


δ(τ ) dτ

)
dω. ()

In view of the inequality (), the conditions (), (), and (), together with Theorem .
in [], imply that, for each fixed ξ ∈R, there exists a unique θ (ξ ) ∈RF such that

D
(

ũ(ξ ,η), exp

(
–

∫ η


δ̃(μ) dμ

)
�

(
θ (ξ ) ⊕

∫ η


exp

(∫ ν


δ̃(μ) dμ

)
� σ̃ (ν) dν

))

≤ exp

(
–

∫ η


δ̃(μ) dμ

)∫ ∞

η

ϕ̃(ν) exp

(∫ ν


δ̃(μ) dμ

)
dν ()

for all η ∈ R+. According to the proof of Theorem . in [], we know that

θ (ξ ) = lim
η→∞

(
exp

(∫ η


δ̃(μ) dμ

)
ũ(ξ ,η) 

∫ η


exp

(∫ ν


δ̃(μ) dμ

)
� σ̃ (ν) dν

)
. ()
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Notice that the conditions (iv), (v) together with the equalities () and () imply that the
H-difference of () exists, and then we conclude that

θ (ξ ) = lim
η→∞

(
exp

(

b

∫ bη


δ(τ ) dτ

)
u(ξ – aη, bη)

 
b

∫ bη


exp

(

b

∫ ω


δ(τ ) dτ

)
� σ (ω) dω

)

is a constant fuzzy number; we write simply u.
By the preceding transformations and the equality (), we can infer that

∫ η


δ̃(μ) dμ =


b

∫ y


δ(τ ) dτ ,

∫ ν


δ̃(μ) dμ =


b

∫ ω


δ(τ ) dτ .

Since ũ(ξ ,η) = u(x, y), and σ̃ (ν) = σ (bν) = σ (ω), ϕ̃(ν) = ϕ(bν) = ϕ(ω), by () and (), ap-
plying these relations to the inequality (), we can obtain the inequality (). �

Remark  Under certain additional conditions, we can show that û(x, y) is a partially (i)-
differentiable solution of the partial fuzzy differential equation (). In fact, it can be seen
from () that û(x, y) depends only on the variable y. So we can easily obtain ûx(x, y) = ̃ = χ.
Now, we consider the partial (i)-derivative of û(x, y) with respect to the variable y. For
simplicity, we set

f (y) := exp

(
–


b

∫ y


δ(τ ) dτ

)
,

g(y) := u ⊕ 
b

∫ y


exp

(

b

∫ ω


δ(τ ) dτ

)
� σ (ω) dω.

By Theorem . in [], it follows that g(y) is (i)-differentiable on R+ ∪ {}. According to
(e) of Theorem  in [], if f (y) � g(y) satisfies the condition (H) on R+ ∪ {}, then we
conclude that û(x, y) = f (y) � g(y) is partial (i)-differentiable with respect to y on R+ ∪ {}
due to f (y) · f ′(y) <  for each y ∈R+ ∪ {}. Therefore, we have

ûy(x, y) =
(
f (y) � g(y)

)′

= f (y) � g ′(y)  (
–f ′(y)

) � g(y)

=

b
σ (y)  

b
δ(y) � û(x, y).

Applying the above relation to the left hand side of (), we obtain

b � ûy(x, y) ⊕ δ(y) � û(x, y)

= b �
(


b
σ (y)  

b
δ(y) � û(x, y)

)
⊕ δ(y) � û(x, y)

= σ (y) = a � ûx(x, y) ⊕ σ (y),

which equals the right hand side of (). That is to say, û(x, y) is a partial (i)-differentiable
solution of the partial fuzzy differential equation ().
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Based on Theorem . and Remark , we can formulate the following theorem.

Theorem . Let σ , δ, and ϕ be given as in Theorem . and let u : R × R+ ∪ {} → RF

be a bivariate fuzzy number-valued function which has continuous partial (i)-derivatives
with respect to each of the variables. Assume that u satisfies the inequality () for all x ∈R

and y ∈R+ ∪{}. If the conditions (i)-(v) given in Theorem . are satisfied, then there exists
a unique u ∈ RF such that the inequality () holds for all x ∈ R and y ∈ R+ ∪ {}, where
û(x, y) is given by (). Furthermore, if û(x, y) fulfills the condition (H) with respect to the
variable y, then û(x, y) is the unique partial (i)-differentiable solution of () satisfying the
inequality ().

In particular, as a direct consequence of Theorem ., the Hyers-Ulam stability of ()
can be established as follows.

Corollary . Let σ , δ, and ϕ be given as in Theorem . and let u : R×R+ ∪ {} → RF

be a bivariate fuzzy number-valued function which has continuous partial (i)-derivatives
with respect to each of the variables. For a given ε > , assume that u satisfies the following
inequality:

D
(
b � uy(x, y) ⊕ δ(y) � u(x, y), a � ux(x, y) ⊕ σ (y)

) ≤ ε ()

for all x ∈ R and y ∈ R+. If the integral
∫ ∞

 exp( 
b
∫ ω

 δ(τ ) dτ ) dω exists and the conditions
(i), (ii), (iv), and (v) given in Theorem . are satisfied, then there exists a unique u ∈ RF

such that

D
(
u(x, y), û(x, y)

) ≤ ε

b
exp

(
–


b

∫ y


δ(τ ) dτ

)∫ ∞

y
exp

(

b

∫ ω


δ(τ ) dτ

)
dω ()

for all x ∈ R and y ∈ R+ ∪ {}, where û(x, y) is given by (). Furthermore, if û(x, y) ful-
fills the condition (H) with respect to the variable y, then û(x, y) is the unique partial (i)-
differentiable solution of () satisfying the inequality ().

3.2 Stability of (1) under partial (ii)-differentiability
Theorem . Let σ : R+ ∪ {} → RF be a continuous fuzzy number-valued function and
let u : R×R+ ∪{} →RF be a bivariate fuzzy number-valued function which has continu-
ous partial (ii)-derivatives with respect to each of the variables. Assume that u satisfies the
inequality () for all x ∈R and y ∈R+ ∪{}, where a, b >  are constants, δ : R+ ∪{} → R–

is a continuous function and ϕ : R+ ∪ {} → R+ is a function. Moreover, assume that the
following conditions are satisfied:

(i)
∫ y

 δ(τ ) dτ exists for all y ∈ R+ ∪ {};
(ii)

∫ y
 exp( 

b
∫ ω

 δ(τ ) dτ ) � σ (ω) dω exists for all y ∈R+ ∪ {};
(iii)

∫ ∞
 ϕ(ω) exp(– 

b
∫ ω

 δ(τ ) dτ ) dω exists;
(iv) limx→–∞,y→+∞ u(x, y) exists.

Then there exists a unique u ∈RF such that

exp

(

b

∫ y


δ(τ ) dτ

)
u(x, y) ⊕ 

b

∫ y


– exp

(∫ ω


δ(τ ) dτ

)
� σ (ω) dω → u ()



Shen Advances in Difference Equations  (2015) 2015:351 Page 12 of 18

as y → ∞. Moreover, if the H-difference

u  
b

∫ y


– exp

(

b

∫ ω


δ(τ ) dτ

)
� σ (ω) dω

exists for each x ∈ R and each y ∈ R+ ∪ {}, then u corresponds to a unique û(x, y) such
that

D
(
u(x, y), û(x, y)

) ≤ 
b

exp

(
–


b

∫ y


δ(τ ) dτ

)∫ ∞

y
ϕ(ω) exp

(
–


b

∫ ω


δ(τ ) dτ

)
dω ()

for all x ∈ R and all y ∈R+ ∪ {}, where

û(x, y) = exp

(
–


b

∫ y


δ(τ ) dτ

)
�

(
u  

b

∫ y


– exp

(

b

∫ ω


δ̃(τ ) dτ

)
�σ (ω) dω

)
. ()

Proof Using the same coordinate transformations as in Theorem ., by Theorem ., we
can obtain the inequality (). Therefore, according to Theorem . in [], for each fixed
ξ ∈R, there exists a unique θ (ξ ) ∈RF such that

exp

(∫ η


δ̃(μ) dμ

)
ũ(ξ ,η) ⊕

∫ η


– exp

(∫ ν


δ̃(μ) dμ

)
� σ̃ (ν) dν → θ (ξ )

as η → ∞, where δ̃, ũ, and σ̃ are given as in Theorem .. Moreover, we have

exp

(

b

∫ bη


δ(τ ) dτ

)
u(ξ – aη, bη)

⊕ 
b

∫ bη


– exp

(

b

∫ ω


δ(τ ) dτ

)
� σ (ω) dω → θ (ξ ) ()

as η → ∞. Notice that every integral of () exists, together with the condition (iv) imply-
ing that θ (ξ ) is a constant fuzzy number; we write simply u. This means that () holds.

Furthermore, if the H-difference u  
b
∫ y

 – exp( 
b
∫ ω

 δ(τ ) dτ )σ (ω) dω exists, by Theo-
rem . in [], then we can infer that

D
(

ũ(ξ ,η), exp

(
–

∫ η


δ̃(μ) dμ

)
�

(
u 

∫ η


– exp

(∫ ν


δ̃(μ) dμ

)
� σ̃ (ν) dν

))

≤ exp

(
–

∫ η


δ̃(μ) dμ

)∫ ∞

η

ϕ̃(ν) exp

(
–

∫ ν


δ̃(μ) dμ

)
dν ()

for all η ∈ R+, where ϕ̃(ν) = ϕ(bν) = ϕ(ω). Using the foregoing relations of coordinate
transformations, it follows from () that the inequality () holds. �

Remark  Under an additional condition, we claim that û(x, y) is a partial (ii)-differen-
tiable solution of the partial fuzzy differential equation (). In fact, it can be seen from
() that û(x, y) depends only on the variable y. So it follows that ûx(x, y) = ̃ = χ. Next,
we shall check the partial (ii)-differentiability of û(x, y) with respect to the variable y. For
convenience, we set

f (y) := exp

(
–


b

∫ y


δ(τ ) dτ

)
,
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g(y) := u  
b

∫ y


– exp

(

b

∫ ω


δ(τ ) dτ

)
� σ (ω) dω.

According to Theorem ., it follows that g(y) is (ii)-differentiable on R+ ∪ {}. By (d) of
Theorem  in [], since f (y) · f ′(y) > , if f (y)�g(y) satisfies the condition (H) onR+ ∪{},
then we conclude that û(x, y) = f (y) � g(y) is partial (ii)-differentiable with respect to y for
each y ∈R+ ∪ {}. Hence, we have

ûy(x, y) =
(
f (y) � g(y)

)′

= f (y) � g ′(y)  (
–f ′(y)

) � g(y)

=

b
σ (y)  

b
δ(y) � û(x, y).

Applying the above relation to (), we get

b � ûy(x, y) ⊕ δ(y) � û(x, y)

= b �
(


b
σ (y)  

b
δ(y) � û(x, y)

)
⊕ δ(y) � û(x, y)

= σ (y) = a � ûx(x, y) ⊕ σ (y),

which implies that û(x, y) is a partial (ii)-differentiable solution of the partial fuzzy differ-
ential equation ().

In view of Theorem . and Remark , a further result of the stability of () can be for-
mulated as follows:

Theorem . Let σ , δ, and ϕ be given as in Theorem . and let u : R × R+ ∪ {} → RF

be a bivariate fuzzy number-valued function which has continuous partial (ii)-derivatives
with respect to each of the variables. Assume that u satisfies the inequality () for all x ∈R

and y ∈ R+ ∪ {}. If the conditions (i)-(iv) given in Theorem . are satisfied, then there
exists an u ∈ RF such that () holds for all x ∈ R and y ∈ R+ ∪ {}. Furthermore, if the
H-difference u  

b
∫ y

 – exp( 
b
∫ ω

 δ(τ ) dτ )σ (ω) dω exists and û(x, y) defined by () fulfills
the condition (H) with respect to the variable y, then û(x, y) is the unique partial (ii)-
differentiable solution of () satisfying the inequality ().

Based on Theorem ., the following Hyers-Ulam stability result of () as a particular
case can be obtained.

Corollary . Let σ , δ, and ϕ be given as in Theorem . and let u : R×R+ ∪ {} → RF

be a bivariate fuzzy number-valued function which has continuous partial (ii)-derivatives
with respect to each of the variables. For a given ε > , assume that u satisfies the inequality
() for all x ∈R and y ∈R+ ∪{}. If the conditions (i)-(iv) given in Theorem . are satisfied,
then there exists an u ∈ RF such that () holds for all x ∈ R and y ∈ R+ ∪ {}. Further-
more, if the H-difference u  

b
∫ y

 – exp( 
b
∫ ω

 δ(τ ) dτ )σ (ω) dω exists and û(x, y) defined
by () fulfills the condition (H) with respect to the variable y, then û(x, y) is the unique
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partial (ii)-differentiable solution of () satisfying the following inequality:

D
(
u(x, y), û(x, y)

) ≤ ε

b
exp

(
–


b

∫ y


δ(τ ) dτ

)∫ ∞

y
exp

(
–


b

∫ ω


δ(τ ) dτ

)
dω

for all x ∈ R and y ∈R+ ∪ {}.

4 Hyers-Ulam-Rassias stability of linear partial fuzzy differential equation (2)
Under some suitable conditions, in this section, we shall discuss the stability of the linear
partial fuzzy differential equation ().

4.1 Stability of (2) under partial (i)-differentiability
Theorem . Let σ : R+ ∪ {} → RF be a continuous fuzzy number-valued function and
let u : R+ ∪ {} ×R →RF be a bivariate fuzzy number-valued function which has contin-
uous partial (i)-derivatives with respect to each of the variables. Assume that u satisfies the
following inequality:

D
(
a � ux(x, y) ⊕ δ(x) � u(x, y), b � uy(x, y) ⊕ σ (x)

) ≤ ϕ(x) ()

for all x ∈ R+ ∪ {} and y ∈ R, where a, b >  are constants, δ : R+ ∪ {} → R+ is a con-
tinuous function and ϕ : R+ ∪ {} →R+ is a function. Moreover, assume that the following
conditions are satisfied:

(i)
∫ x

 δ(τ ) dτ exists for all x ∈ R+ ∪ {};
(ii)

∫ x
 exp( 

a
∫ ω

 δ(τ ) dτ ) � σ (ω) dω exists for all x ∈ R+ ∪ {};
(iii)

∫ ∞
 ϕ(ω) exp( 

a
∫ ω

 δ(τ ) dτ ) dω exists;
(iv) limx→+∞,y→–∞ u(x, y) exists;
(v) the H-difference exp(

∫ x



aδ(τ ) dτ )u(x, y)  

a
∫ x

 exp( 
a
∫ ω

 δ(τ ) dτ ) � σ (ω) dω exists
for each x ∈R+ ∪ {} and each y ∈R.

Then there exists a unique u ∈RF such that

D
(
u(x, y), û(x, y)

) ≤ 
a

exp

(
–


a

∫ x


δ(τ ) dτ

)∫ ∞

x
ϕ(ω) exp

(

a

∫ ω


δ(τ ) dτ

)
dω ()

for all x ∈ R and all y ∈R+, where

û(x, y) = exp

(
–


a

∫ x


δ(τ ) dτ

)
�

(
u ⊕ 

a

∫ x


exp

(

a

∫ ω


δ̃(τ ) dτ

)
� σ (ω) dω

)
. ()

Proof According to Definition ., if we set u(x, y) = v(y, x) for all x ∈R+ ∪ {}, y ∈R, then
we get

ux(x, y) = lim

x→+

u(x + 
x, y)  u(x, y)

x

= lim

x→+

v(y, x + 
x)  v(y, x)

x

= vy(y, x),

uy(x, y) = lim

y→+

u(x, y + 
y)  u(x, y)

y

= lim

y→+

v(y + 
y, x)  v(y, x)

x

= vx(y, x).
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Therefore, the inequality () changes into the following form:

D
(
a � vy(y, x) ⊕ δ(x) � v(y, x), b � vx(y, x) ⊕ σ (x)

) ≤ ϕ(x)

for all x ∈ R+ ∪ {}, y ∈ R. Now, we exchange the roles of the variables x and y in the
preceding inequality, and we obtain

D
(
a � vy(x, y) ⊕ δ(y) � v(x, y), b � vy(x, y) ⊕ σ (y)

) ≤ ϕ(y)

for all x ∈R, y ∈ R+ ∪ {}.
In view of the conditions (i)-(v) and Theorem ., we know that there exists a unique

u ∈RF such that

D
(

v(x, y), exp

(
–


a

∫ y


δ(τ ) dτ

)
�

(
u ⊕ 

a

∫ y


exp

(

a

∫ ω


δ(τ ) dτ

)
� σ (ω) dω

))

≤ 
a

exp

(
–


a

∫ y


δ(τ ) dτ

)∫ ∞

y
ϕ(ω) exp

(

a

∫ ω


δ(τ ) dτ

)
dω

for all x ∈ R, y ∈ R+ ∪ {}. By exchanging the roles of the variables x and y in the above
inequality again, we can infer that the inequality () holds for all x ∈ R+ ∪ {} and all
y ∈ R. �

Remark  Similar to Remark , by a tedious calculation, it can be verified that û(x, y)
defined by () is a partial (i)-differentiable solution of the partial fuzzy differential equa-
tion ().

Based on Theorems . and ., by adding an additional condition, we can obtain the
following result.

Theorem . Let σ , δ, and ϕ be given as in Theorem . and let u : R+ ∪ {} × R → RF

be a bivariate fuzzy number-valued function which has continuous partial (i)-derivatives
with respect to each of the variables. Assume that u satisfies the inequality () for all
x ∈ R+ ∪ {} and y ∈ R. If the conditions (i)-(v) given in Theorem . are satisfied, then
there exists a unique u ∈ RF such that the inequality () holds for all x ∈ R+ ∪ {} and
y ∈ R, where û(x, y) is given by (). Furthermore, if û(x, y) fulfills the condition (H) with
respect to the variable x, then û(x, y) is the unique partial (i)-differentiable solution of ()
satisfying the inequality ().

Especially, the Hyers-Ulam stability of () under partial (i)-differentiability can be in-
duced by Theorem ..

Corollary . Let σ , δ, and ϕ be given as in Theorem . and let u : R+ ∪ {} ×R → RF

be a bivariate fuzzy number-valued function which has continuous partial (i)-derivatives
with respect to each of the variables. For a given ε > , assume that u satisfies the following
inequality:

D
(
a � ux(x, y) ⊕ δ(x) � u(x, y), b � uy(x, y) ⊕ σ (x)

) ≤ ε ()
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for all x ∈ R+ ∪ {} and y ∈ R. If the integral
∫ ∞

 exp( 
a
∫ ω

 δ(τ ) dτ ) dω exists and the con-
ditions (i), (ii), (iv), and (v) given in Theorem . are satisfied, then there exists a unique
u ∈RF such that

D
(
u(x, y), û(x, y)

) ≤ ε

a
exp

(
–


a

∫ x


δ(τ ) dτ

)∫ ∞

x
exp

(

a

∫ ω


δ(τ ) dτ

)
dω ()

for all x ∈ R+ ∪ {} and y ∈ R, where û(x, y) is given by (). Furthermore, if û(x, y) ful-
fills the condition (H) with respect to the variable x, then û(x, y) is the unique partial (i)-
differentiable solution of () satisfying the inequality ().

4.2 Stability of (2) under partial (ii)-differentiability
Theorem . Let σ : R+ ∪ {} → RF be a continuous fuzzy number-valued function and
let u : R+ ∪{}×R →RF be a bivariate fuzzy number-valued function which has continu-
ous partial (ii)-derivatives with respect to each of the variables. Assume that u satisfies the
inequality () for all x ∈R+ ∪{} and y ∈R, where a, b >  are constants, δ : R+ ∪{} → R–

is a continuous function and ϕ : R+ ∪ {} → R+ is a function. Moreover, assume that the
following conditions are satisfied:

(i)
∫ x

 δ(τ ) dτ exists for all x ∈ R+ ∪ {};
(ii)

∫ x
 exp( 

a
∫ ω

 δ(τ ) dτ ) � σ (ω) dω exists for all x ∈ R+ ∪ {};
(iii)

∫ ∞
 ϕ(ω) exp(– 

a
∫ ω

 δ(τ ) dτ ) dω exists;
(iv) limx→+∞,y→–∞ u(x, y) exists.

Then there exists a unique u ∈RF such that

exp

(

a

∫ x


δ(τ ) dτ

)
u(x, y) ⊕ 

a

∫ x


– exp

(∫ ω


δ(τ ) dτ

)
σ (ω) dω → u ()

as x → ∞. Moreover, if the H-difference

u  
a

∫ x


– exp

(

a

∫ ω


δ(τ ) dτ

)
σ (ω) dω

exists for each x ∈ R+ ∪ {} and each y ∈ R, then u corresponds to a unique û(x, y) such
that

D
(
u(x, y), û(x, y)

) ≤ 
a

exp

(
–


a

∫ x


δ(τ ) dτ

)∫ ∞

x
ϕ(ω) exp

(
–


a

∫ ω


δ(τ ) dτ

)
dω ()

for all x ∈ R+ ∪ {} and all y ∈R, where

û(x, y) = exp

(
–


a

∫ x


δ(τ ) dτ

)
�

(
u  

a

∫ x


– exp

(

a

∫ ω


δ̃(τ ) dτ

)
�σ (ω) dω

)
. ()

Proof By Theorem . and using the same argument as in the proof of Theorem ., we
can easily carry out the proof of this theorem. �

Remark  By a tedious calculation, it can also be checked that û(x, y) defined by () is a
partial (ii)-differentiable solution of the partial fuzzy differential equation ().

Using an additional condition and Theorem ., we can obtain the following theorem.
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Theorem . Let σ , δ, and ϕ be given as in Theorem . and let u : R+ ∪ {} ×R → RF

be a bivariate fuzzy number-valued function which has continuous partial (ii)-derivatives
with respect to each of the variables. Assume that u satisfies the inequality () for all
x ∈ R+ ∪ {} and y ∈ R. If the conditions (i)-(iv) given in Theorem . are satisfied, then
there exists an u ∈ RF such that () holds for all x ∈ R+ ∪ {} and y ∈ R. Furthermore,
if the H-difference u  

a
∫ x

 – exp( 
a
∫ ω

 δ(τ ) dτ )σ (ω) dω exists and û(x, y) defined by ()
fulfills the condition (H) with respect to the variable x, then û(x, y) is the unique partial
(ii)-differentiable solution of () satisfying the inequality ().

In particular, as a direct consequence of Theorem ., we can obtain the Hyers-Ulam
stability of () under partial (ii)-differentiability.

Corollary . Let σ , δ, and ϕ be given as in Theorem . and let u : R+ ∪ {} ×R → RF

be a bivariate fuzzy number-valued function which has continuous partial (ii)-derivatives
with respect to each of the variables. For a given ε > , assume that u satisfies the inequal-
ity () for all x ∈ R+ ∪ {} and y ∈ R. If the conditions (i)-(iv) given in Theorem . are
satisfied, then there exists an u ∈ RF such that () holds for all x ∈ R+ ∪ {} and y ∈ R.
Furthermore, if the H-difference u  

a
∫ x

 – exp( 
a
∫ ω

 δ(τ ) dτ )σ (ω) dω exists and û(x, y)
defined by () fulfills the condition (H) with respect to the variable x, then û(x, y) is the
unique partial (ii)-differentiable solution of () satisfying the following inequality:

D
(
u(x, y), û(x, y)

) ≤ ε

a
exp

(
–


a

∫ x


δ(τ ) dτ

)∫ ∞

x
exp

(
–


a

∫ ω


δ(τ ) dτ

)
dω

for all x ∈ R+ ∪ {} and y ∈R.

5 Conclusions
As a continuation of our previous work [], in the present paper, we investigate the Hyers-
Ulam-Rassias stability of two types of first order linear partial fuzzy differential equations
(see () and ()) under generalized differentiability. These results show that, under some
appropriate conditions, if an approximate solution to the given equation satisfying the
specific error is obtained, then the unique exact solution to the corresponding equation
can be formally constructed, and the error can be accurately estimated. In addition, we also
established a multivariate fuzzy chain rule under generalized differentiability in order to
study the stability problems of () and () in the sense of the same differentiability.

In these results obtained in this paper, the coefficient functions δ and σ in () and () are
assumed to be a univariate positive (negative) real-valued function and a univariate fuzzy
number-valued function, respectively. Therefore, it is an open question whether the cor-
responding stability result is still true if the coefficient functions δ and σ are the functions
of two variables. Moreover, it would be interesting to discuss the stability problems of ()
and () in which the coefficient function δ contains a finite number of zeros.
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