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Abstract
We present a result about an interesting asymptotic property of real two-dimensional
delayed differential systems satisfying certain sufficient conditions. We employ two
previous results, which were obtained using a Razumikhin-type modification of the
Ważewski topological method for retarded differential equations and the method of a
Lyapunov-Krasovskii functional. The result is illustrated by a nontrivial explanatory
example.
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1 Introduction
Various properties of solutions of differential equations with delay were extensively stud-
ied recently. Among others we mention [–] and the references therein. The results con-
tained in this paper are a generalization of previous research published in [–] and
[].

Our aim here is to study the asymptotic behavior of solutions of the following system of
differential equations:

x′(t) = A(t)x(t) +
m∑

k=

Bk(t)x
(
θk(t)

)
+ h

(
t, x(t), x

(
θ(t)

)
, . . . , x

(
θm(t)

))
, ()

where t – θk(t) ≥  are bounded nonconstant delays satisfying limt→∞ θk(t) = ∞, θk(t) are
real functions,

h(t, x, y) =
(
h(t, x, y, . . . , ym), h(t, x, y, . . . , ym)

)

is a real vector function, where x = (x, x), yk = (yk , yk), and

A(t) =
(
aij(t)

)
, Bk(t) =

(
bijk(t)

)
, i, j = , ; k = , . . . , m,

are real square matrices.
In this paper, we introduce an interesting result, which is a combination of two theorems

presented in [], one regarding the instability of solutions, the other one dealing with the
existence of bounded solutions.
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It is supposed that the function h satisfies the Carathéodory conditions on [t,∞) ×
R

(m+), the functions bijk are locally Lebesgue integrable on [t,∞), and the functions θk ,
aij are locally absolutely continuous on [t,∞).

Since we study two-dimensional systems, we use a transformation into complex vari-
ables to simplify the system () into one equation with complex coefficients.

The complex variables are defined as z = x + ix, w = y + iy, . . . , wm = ym + iym. Using
this transformation we get

z′(t) = a(t)z(t) + b(t)z̄(t) +
m∑

k=

[
Ak(t)z

(
θk(t)

)
+ Bk(t)z̄

(
θk(t)

)]

+ g
(
t, z(t), z

(
θ(t)

)
, . . . , z

(
θm(t)

))
, ()

where we assume (J = [t,∞)):
• Ak , Bk ∈ Lloc(J ,C) (i.e. locally Lebesgue integrable complex-valued functions on J) for

k = , . . . , m,
• θk ∈ ACloc(J ,R) (i.e. locally absolutely continuous real-valued functions on J) for

k = , . . . , m,
• a, b ∈ ACloc(J ,C) (i.e. locally absolutely continuous complex-valued functions on J),
• g ∈ K(J ×C

m+,C) (i.e. a complex-valued function which satisfies the Carathéodory
conditions on J ×C

m+).
Obviously, the function g is in general dependent on z̄ as well as on every z̄(θk). However,
the fact that the function g satisfies the Carathéodory conditions enables us to significantly
simplify the notation by using only z, since the validity of the Carathéodory conditions is
not violated by composing with continuous functions z̄, w̄k , and θk .

The relations between the functions are the following:

a(t) =


(
a(t) + a(t)

)
+

i

(
a(t) – a(t)

)
,

b(t) =


(
a(t) – a(t)

)
+

i

(
a(t) + a(t)

)
,

Ak(t) =


(
bk(t) + bk(t)

)
+

i

(
bk(t) – bk(t)

)
,

Bk(t) =


(
bk(t) – bk(t)

)
+

i

(
bk(t) + bk(t)

)
,

g(t, z, w, . . . , wm)

= h

(
t,




(z + z̄),

i

(z – z̄),



(w + w̄), . . . ,

i

(wm – w̄m)
)

+ ih

(
t,




(z + z̄),

i

(z – z̄),



(w + w̄),

i

(w – w̄), . . . ,

i

(wm – w̄m)
)

.

Conversely, putting

a(t) = Re
[
a(t) + b(t)

]
, a(t) = Im

[
b(t) – a(t)

]
,

a(t) = Im
[
a(t) + b(t)

]
, a(t) = Re

[
a(t) – b(t)

]
,

bk(t) = Re
[
Ak(t) + Bk(t)

]
, bk(t) = Im

[
Bk(t) – Ak(t)

]
,
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bk(t) = Im
[
Ak(t) + Bk(t)

]
, bk(t) = Re

[
Ak(t) – Bk(t)

]
,

h(t, x, y, . . . , ym) = Re g(t, x + ix, y + iy, . . . , ym + iym),

h(t, x, y, . . . , ym) = Im g(t, x + ix, y + iy, . . . , ym + iym),

equation () can be written in the real form () as well.
The equivalence of the dynamical invariants and asymptotic properties of the solutions

of the real system () and the complex equation () is shown in [] for the simple case
covering ordinary differential equations.

In this paper we consider () in the case when

lim inf
t→∞

(∣∣a(t)
∣∣ –

∣∣b(t)
∣∣) >  ()

and study the behavior of the solutions of () under this assumption, which generally
means that det A(t) >  for t sufficiently large. This situation corresponds to the case when
the equilibrium point  of the autonomous homogeneous system

x′ = Ax, ()

where A is supposed to be a regular constant matrix, is a center, a focus or a node. Such a
situation has some geometrical aspects, which are used in an analysis of the transformed
equation (). See [] for more details.

Further, we suppose that () satisfies the uniqueness property of solutions.

2 Preliminaries
Throughout this paper we will assume that

lim inf
t→∞

(∣∣a(t)
∣∣ –

∣∣b(t)
∣∣) > , t ≥ θk(t) ≥ t – r for t ≥ t + r, ()

where r >  is a constant, which means that the delays θk are bounded. This is the same
case as considered in []. Similar results for a case different from () were obtained in [].

Then there are numbers T ≥ t + r and μ >  such that

∣∣a(t)
∣∣ >

∣∣b(t)
∣∣ + μ for t ≥ T . ()

Denote

c(t) =
ā(t)b(t)
|a(t)| , γ (t) =

∣∣a(t)
∣∣ +

√∣∣a(t)
∣∣ –

∣∣b(t)
∣∣ ()

and

ϑ(t) =
Re(γ (t)γ ′(t) – c̄(t)c′(t)) – |γ (t)c′(t) – γ ′(t)c(t)|

γ (t) – |c(t)| ,

α(t) =  –
∣∣∣∣
b(t)
a(t)

∣∣∣∣ sgn Re a(t).
()

Moreover, we assume the following conditions to be valid:
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(i) The numbers T ≥ t + r and μ >  satisfy condition ().
(ii) There are functions �,κ,κk : [T ,∞) →R, where � is continuous on [T ,∞), such that

∣∣γ (t)g(t, z, w, . . . , wm) + c(t)ḡ(t, z, w, . . . , wm)
∣∣

≤ κ(t)
∣∣γ (t)z + c(t)z̄

∣∣ +
m∑

k=

κk(t)
∣∣γ

(
θk(t)

)
wk + c

(
θk(t)

)
w̄k

∣∣ + �(t)

for t ≥ T , z, wk ∈C (k = , . . . , m).
(iin) There are numbers Rn ≥  and functions κn,κnk : [T ,∞) → R satisfying the in-

equality

∣∣γ (t)g(t, z, w, . . . , wm) + c(t)ḡ(t, z, w, . . . , wm)
∣∣

≤ κn(t)
∣∣γ (t)z + c(t)z̄

∣∣ +
m∑

k=

κnk(t)
∣∣γ

(
θk(t)

)
wk + c

(
θk(t)

)
w̄k

∣∣

for t ≥ τn ≥ T , |z| +
∑m

k= |wk| > Rn.
(iii) The function β ∈ ACloc([T ,∞),R

–) is such that

θ ′
k(t)β(t) ≤ –λk(t) a.e. on [T ,∞), ()

where λk is given for t ≥ T by

λk(t) = κk(t) +
(∣∣Ak(t)

∣∣ +
∣∣Bk(t)

∣∣) γ (t) + |c(t)|
γ (θk(t)) – |c(θk(t))| . ()

(iiin) The function βn ∈ ACloc([T ,∞),R
–) is such that

θ ′
k(t)βn(t) ≤ –λnk(t) a.e. on [τn,∞), ()

where λnk is given for t ≥ T by

λnk(t) = κnk(t) +
(∣∣Ak(t)

∣∣ +
∣∣Bk(t)

∣∣) γ (t) + |c(t)|
γ (θk(t)) – |c(θk(t))| . ()

(ivn) The function Λn is real locally Lebesgue integrable and the inequalities β ′
n(t) ≥

Λn(t)βn(t), Θn(t) ≥ Λn(t) are satisfied for almost all t ∈ [τn,∞), where Θn is given by
Θn(t) = α(t) Re a(t) + ϑ(t) – κn(t) + mβn(t).

Furthermore, denote

Θ(t) = α(t) Re a(t) + ϑ(t) – κ(t). ()

3 Main results
First of all, we recall the two results from [].

Lemma  Let the assumptions (i), (ii), (iii), (iv) be fulfilled for some τ ≥ T . Suppose
there exist t ≥ τ and ν ∈ (–∞,∞) such that

inf
t≥t

[∫ t

t

Λ(s) ds – ln
(
γ (t) +

∣∣c(t)
∣∣)

]
≥ ν. ()
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If z(t) is any solution of () satisfying

min
θ (t)≤s≤t

∣∣z(s)
∣∣ > R, Δ(t) > Re–ν , ()

where

θ (t) = min
k=,...,m

θk(t),

Δ(t) =
(
γ (t) –

∣∣c(t)
∣∣)∣∣z(t)

∣∣ + β(t) max
θ (t)≤s≤t

∣∣z(s)
∣∣

m∑

k=

∫ t

θk (t)

(
γ (s) +

∣∣c(s)
∣∣)ds,

then

∣∣z(t)
∣∣ ≥ Δ(t)

γ (t) + |c(t)| exp

[∫ t

t

Λ(s) ds
]

()

for all t ≥ t for which z(t) is defined.

Lemma  Let the conditions (i), (ii), (iii) be fulfilled and Λ, θ ′
k (k = , . . . , m) be continuous

functions such that inequality Λ(t) ≤ Θ(t) holds a.e. on [T ,∞), where Θ is defined by ().
Suppose that ξ : [T – r,∞) →R is a continuous function such that

Λ(t) + β(t)
m∑

k=

θ ′
k(t) exp

[
–

∫ t

θk (t)
ξ (s) ds

]
– ξ (t) > �(t)C– exp

[
–

∫ t

T
ξ (s) ds

]
()

for t ∈ [T ,∞] and some constant C > . Then there exists a t > T and a solution z(t) of
() satisfying

∣∣z(t)
∣∣ ≤ C

γ (t) – |c(t)| exp

[∫ t

T
ξ (s) ds

]
()

for t ≥ t.

If we combine the previous two results, we are able to prove the following theorem,
which is the fundamental result of this paper.

Theorem  Assume that the hypotheses (i), (ii), (iin), (iii), (iiin), (ivn) are valid for T ≤ τn,
where  < Rn, n ∈ N, infn∈N Rn = . Suppose that θ ′

k , Λ are continuous functions such that
inequality Θ(t) ≥ Λ(t) is satisfied almost everywhere on [T ,∞), where Θ(t) = α(t) Re a(t) +
ϑ(t) – κ(t). Let ξ : [T – r,∞) → R be a continuous function satisfying the inequality

�(t)C– exp

(
–

∫ t

T
ξ (s) ds

)
< Λ(t) + β(t)

m∑

k=

θ ′
k(t) exp

[
–

∫ t

θk (t)
ξ (s) ds

]
– ξ (t) ()

for some constant C >  and t ∈ [T ,∞). Assume

inf
τn≤s≤t<∞

[∫ t

s
Λn(σ ) dσ – ln

(
γ (t) +

∣∣c(t)
∣∣)

]
≥ ν, ()
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lim sup
t→∞

[∫ t

T

(
Λn(s) – ξ (s)

)
ds + ln

γ (t) – |c(t)|
γ (t) + |c(t)|

]
= ∞, ()

lim
t→∞

[
βn(t) max

θ (t)≤s≤t

exp[
∫ s

T ξ (σ ) dσ ]
γ (s) – |c(s)|

m∑

k=

∫ t

θk (t)

(
γ (s) +

∣∣c(s)
∣∣)ds

]
= , ()

for n ∈ N, where ν ∈ (–∞,∞) and θ (t) = mink=,...,m θk(t). Then there is a solution z(t) of
() with the property

lim
t→∞ min

θ (t)≤s≤t

∣∣z(s)
∣∣ = . ()

Proof Using Lemma  we obtain the existence of T ≤ t and a solution z(t) of () satis-
fying for t ≥ t the inequality

∣∣z(t)
∣∣ ≤ C

γ (t) – |c(t)| exp

[∫ t

T
ξ (s) ds

]
. ()

From () we get

inf
τ≤t<∞

[∫ t

τ

ΛN (s) ds – ln
(
γ (t) +

∣∣c(t)
∣∣)

]
≥ ν > –∞.

Lemma  yields

Ψ (τ )
γ (t) + |c(t)| exp

[∫ t

τ

ΛN (s) ds
]

≤ ∣∣z(t)
∣∣ ()

for τ ≤ t, where Ψ is given by

Ψ (τ ) =
(
γ (τ ) –

∣∣c(τ )
∣∣)∣∣z(τ )

∣∣ + βN (τ ) max
θ (τ )≤s≤τ

∣∣z(s)
∣∣

m∑

k=

∫ τ

θk (τ )

(
γ (s) +

∣∣c(s)
∣∣)ds.

Assume that () does not hold. This implies the existence of ε >  satisfying
lim supt→∞ minθ (t)≤s≤t |z(s)| > ε. We take N ∈N such that max{RN , 

μ
RN e–ν} < ε. Then

max

{
RN ,


μ

RN e–ν

}
< min

θ (τ )≤s≤τ

∣∣z(s)
∣∣ ()

holds for some τ > max{T , τN , t}. Taking () into account we may assume that

∣∣βN (τ )
∣∣C max

θ (τ )≤s≤τ

exp[
∫ s

T ξ (σ ) dσ ]
γ (s) – |c(s)|

m∑

k=

∫ τ

θk (τ )

(
γ (s) +

∣∣c(s)
∣∣)ds <




RN e–ν . ()

Hence, with respect to (), (), (), (), (), and the nonpositiveness of βN , we obtain

(
γ (τ ) –

∣∣c(τ )
∣∣)∣∣z(τ )

∣∣ + βN (τ ) max
θ (τ )≤s≤τ

∣∣z(s)
∣∣

m∑

k=

∫ τ

θk (τ )

(
γ (s) +

∣∣c(s)
∣∣)ds

≥ (
γ (τ ) –

∣∣c(τ )
∣∣)∣∣z(τ )

∣∣ + βN (τ )C max
θ (τ )≤s≤τ

exp[
∫ s

T ξ (σ ) dσ ]
γ (s) – |c(s)|

×
m∑

k=

∫ τ

θk (τ )

(
γ (s) +

∣∣c(s)
∣∣)ds ≥ μ


μ

RN e–ν –



RN e–ν > RN e–ν .
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The inequalities () and () give the estimation

Ψ (τ )
γ (t) + |c(t)| exp

[∫ t

τ

ΛN (s) ds
]

≤ C
γ (t) – |c(t)| exp

[∫ t

T
ξ (s) ds

]
,

which means that

∫ t

T

[
ΛN (s) – ξ (s)

]
ds + ln

γ (t) – |c(t)|
γ (t) + |c(t)| ≤

∫ τ

T
ΛN (s) ds – ln

[
C–Ψ (τ )

]

for τ ≤ t, which is in contradiction to (). The proof is complete. �

Remark  Theorem  covers more general situations than Theorem  in [], where the
different fundamental assumption lim inft→∞(| Im a(t)| – |b(t)|) >  is supposed to hold.
Indeed, if we take for example a(t) ≡  + i and b(t) ≡ i, then condition () in this paper is
satisfied but the condition lim inft→∞(| Im a(t)| – |b(t)|) >  is not valid.

The following nontrivial example was constructed to illustrate an application of the the-
oretical result presented in Theorem .

Example  Consider the two-dimensional system of the nonlinear delayed differential
equations

x′
(t) = x(t) +


t x(t) – x(t) +

m∑

k=


m

e–tx
(
t – e–kt) + e–t , ()

x′
(t) = x(t) + x(t) +


t x(t) –

m∑

k=


m

e–tx
(
t – e–kt). ()

This system can be written in matrix form (), where

A(t) =

(
 + 

t –
  + 

t

)
, Bk(t) =


m

(
e–t 

 e–t

)
, and

h
(
t, x(t), x

(
θ(t)

)
, . . . , x

(
θm(t)

))
=

(
e–t



)
.

Following our approach, we use a transformation into the complex plane and obtain the
delayed differential equation () with complex-valued coefficients,

z′(t) = ( + i)z(t) + iz̄(t) +

t z(t) +

m∑

k=


m

e–t z̄
(
t – e–kt) + e–t , ()

where a(t) ≡  + i, b(t) ≡ i, Ak(t) ≡ , Bk(t) ≡ , θk(t) = t – e–kt for k = , . . . , m,
g(t, z, w, . . . , wm) = 

t z +
∑m

k=


m e–twk + e–t .
Obviously t –  ≤ θk(t) ≤ t and θ ′

k(t) =  + ke–kt ≥  >  for t ≥ .
Suppose t =  and T ≥ . Then γ (t) = |a(t)| +

√|a(t)| – |b(t)| ≡  + 
√

, c(t) =
ā(t)b(t)/|a(t)| ≡ +i

 .
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Further,

∣∣γ (t)g(t, z, w, . . . , wm) + c(t)ḡ(t, z, w, . . . , wm)
∣∣

≤ γ + |c|
γ – |c|


t

∣∣γ (t)z + c(t)z̄
∣∣ +

γ + |c|
γ – |c|

m∑

k=

[


m
e–t∣∣γ

(
θk(t)

)
wk + c

(
θk(t)

)
w̄k

∣∣
]

+ e–t

=
√

√



t

∣∣γ (t)z + c(t)z̄
∣∣ +

√
√


e–t

m

m∑

k=

∣∣γ
(
θk(t)

)
wk + c

(
θk(t)

)
w̄k

∣∣ + e–t .

Thus conditions (i) and (ii) are fulfilled with κ(t) ≡
√


t√

 , κk(t) = e–t√
m

√
 , and �(t) = e–t . To

meet condition (iin), we estimate for Rn = 
n , τn = n, and |z| > Rn

∣∣γ (t)g(t, z, w, . . . , wm) + c(t)ḡ(t, z, w, . . . , wm)
∣∣

≤ γ + |c|
γ – |c|

[

t +

�(t)
Rn

]∣∣γ (t)z + c(t)z̄
∣∣

+
γ + |c|
γ – |c|

m∑

k=

[


m
e–t∣∣γ

(
θk(t)

)
wk + c

(
θk(t)

)
w̄k

∣∣
]

=
√

√


[

t + ne–t

]∣∣γ (t)z + c(t)z̄
∣∣ +

√
√


e–t

m

m∑

k=

∣∣γ
(
θk(t)

)
wk + c

(
θk(t)

)
w̄k

∣∣,

where κn(t) =
√

√
 [ 

t + ne–t] and κnk(t) =
√

√


e–t

m .
Condition (iii) holds with

–λk(t)
(
θ ′

k(t)
)– = –

e–t√
m

√



 + ke–kt ≥ –

e–t√
m

√


= β(t).

Condition (iiin) is satisfied for

βn(t) = –
e–(t–)

m
≤ –

e–t√
m

√


= –λnk(t)
(
θ ′

k(t)
)–.

We get condition (ivn) by setting

�n(t) = Θn(t) =



–
√

√


[

t + ne–t

]
– e–(t–) > .

Further, we put �(t) = Θ(t) = 
 –

√


t√
 .

Then condition () holds for

ξ (t) =



–
√


t

√


–
√

√


e–t

m
– e–t

and ξ (t) >  for t ≥ T = .
Now it is not difficult to verify conditions () and (), since �n(t) –ξ (t) >  and �n(t) >

 for n ∈N. Investigating the factors of the product in parentheses in (), we come to the
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conclusion that

βn = O
(
e–t), exp

[∫ s

T
ξ (σ ) dσ

]
= O

(
e.t)

and

m∑

k=

∫ t

θk (t)

(
γ (s) +

∣∣c(s)
∣∣)ds = O

( m∑

k=

e–kt

)
= O

(
e–t).

Consequently, the product of these factors is asymptotically equal to O(e–δt), where δ > 
and thus condition () is satisfied. All assumptions of Theorem  are fulfilled and we can
conclude that there exist t >  and a solution z(t) of () satisfying () for t ≥ t.

Remark  This result is slightly surprising. However, it is in good agreement with the
well-known fact that introducing delay into an unstable system without delay can cause a
change of behavior of the system. Such situations are described and corresponding results
are formulated e.g. in [].

4 Conclusion
We proved an interesting result about the stability of two-dimensional systems with
bounded delays. Sufficient conditions for the stability of an originally unstable system were
presented. The result is in perfect agreement with the results stated and proved in the es-
tablished literature. An example showed how this result can be used in practice.
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