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1 Introduction
During the past few decades, the oscillation of differential equations has attracted a great
deal of interest in various fields due to its theoretical and practical applications in natural
sciences and technology. For instance, the oscillation of a building or a machine, the beam
vibration in a synchrotron accelerator, the complicated oscillation in a chemical reaction,
and so on; see, e.g., [, ]. For some related contributions on the oscillation of various
classes of differential equations, we refer the reader to [–] and the references cited
therein. In particular, the oscillatory behavior of second-order damped differential equa-
tions has been studied by many authors due to the fact that such equations arise in the
study of noise, vibration, and harshness (NVH) of vehicles, see, e.g., the paper by Fu et
al. [].

In this paper, we are concerned with the oscillation of a nonlinear second-order damped
differential equation
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where h, q ∈ C([t,∞),R), ψ , f , g ∈ C(R,R), and H ∈ C([t,∞) ×R
,R). We suppose also

that the following hypotheses are satisfied:

(H) r ∈ C([t,∞), (,∞));
(H)  < k ≤ ψ(x) ≤ k for all x �= ;
(H) there exists a constant m >  such that f (y) ≤ myf (y) for all y ∈R;
(H) H(t, y, x)/g(x) ≤ p(t) for t ∈ [t,∞), x, y ∈R, x �= , and p ∈ C([t,∞),R).
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As usual, a solution x of (.) is called oscillatory if the set of its zeros is unbounded from
above; otherwise, it is said to be nonoscillatory. Equation (.) is termed oscillatory if all
its solutions are oscillatory.

In what follows, we present some background details that motivate the study of this pa-
per. Grace and Lalli [], Kirane and Rogovchenko [], Li and Agarwal [], Rogovchenko [],
Rogovchenko and Tuncay [], and Sun [] considered a particular case of (.), namely,
the second-order damped equation

(
r(t)x′(t)
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In particular, Sun [] used a class of functions Y defined in the sequel to establish sev-
eral Kamenev-type (see []) oscillation criteria for (.). Grace [], Grace and Lalli [],
Kirane and Rogovchenko [], Manojlović [], Rogovchenko and Tuncay [], and Tunç
and Avci [] investigated the oscillation of the nonlinear damped differential equations
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Very recently, Salhin et al. [] established several oscillation criteria for (.) by using a
generalized Riccati transformation, some of which we present below for convenience of
the reader.

Theorem . ([], Corollary .) Let assumptions (H)-(H) be fulfilled and assume

(H) g ′(x) exists and g ′(x) ≥ k >  for all x �= .

If there exist functions δ, φ̃ ∈ C([t,∞),R) such that (rδ) ∈ C([t,∞),R),

lim sup
t→∞

∫ t

t

φ̃
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ds = ∞
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,

and φ̃+(t) = max{φ̃(t), }, then (.) is oscillatory.
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Theorem . ([], Corollary .) Let assumptions (H)-(H) hold. Suppose that there
exists a function δ ∈ C([t,∞),R) such that (rδ) ∈ C([t,∞),R) and

lim sup
t→∞


tn–

∫ t

t

(
(t – s)n–

(
Q̃(s) –

mh(s)ρ̃(s)
kkr(s)

)

–
αmk(n – )

k
ρ̃(s)r(s)(t – s)n–

)
ds = ∞

for some integer n >  and α ≥ , where

ρ̃(t) = exp

(
–


mk

∫ t
kδ(s) ds

)

and Q̃ is defined as in Theorem .. Then (.) is oscillatory.

Equations (.), (.), and (.) are special cases of (.). Note that Theorems . and .
are Kamenev-type or Philos-type (see []) criteria for (.). The natural question now is:
Can one apply methods reported in [] to (.) and improve Theorems . and .? The
objective of this paper is to give an affirmative answer to this question.

Now, we introduce a class of functions Y . Let E = {(t, s, l) : t ≤ l ≤ s ≤ t < ∞}. We say
that a function � ∈ C(E,R) belongs to Y , denoted by � ∈ Y , if

(i) �(t, t, l) = , �(t, l, l) = , and �(t, s, l) �=  for l < s < t;
(ii) � has the partial derivative ∂�/∂s in E such that ∂�/∂s is locally integrable with

respect to s in E and satisfies

∂�(t, s, l)
∂s

= φ(t, s, l)�(t, s, l). (.)

Next, we define the operator A[·; l, t] by

A[g; l, t] =
∫ t

l
�(t, s, l)g(s) ds for t ≥ s ≥ l ≥ t and g ∈ C

(
[t,∞),R

)
. (.)

It is obvious that A[·; l, t] is a linear operator and satisfies

A
[
g ′; l, t

]
= –A[gφ; l, t] for g ∈ C([t,∞),R

)
. (.)

In what follows, all functional inequalities are assumed to hold for all t large enough,
unless mentioned otherwise.

2 Oscillation criteria for increasing g
Theorem . Assume conditions (H)-(H) hold. Equation (.) is oscillatory provided
that, for each l ≥ t, there exist three functions � ∈ Y , ρ ∈ C([t,∞), (,∞)), and b ∈
C([t,∞),R) such that

lim sup
t→∞

A
[
ρ(s)Q(s) –

mk

k
r(s)ρ(s)φ; l, t

]
> , (.)
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where
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,

φ = φ(t, s, l) and A are defined by (.) and (.), respectively.

Proof Let x be a nonoscillatory solution of (.). Without loss of generality, we may sup-
pose that x(t) >  for t ≥ t ≥ t. A similar argument holds for the case when x is eventually
negative. Define a generalized Riccati transformation w by

w(t) = ρ(t)
(

r(t)ψ(x(t))f (x′(t))
g(x(t))

+ b(t)
)

, t ≥ t. (.)

Differentiating (.) and using (.), we have
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w(t) + ρ(t)b′(t) + ρ(t)
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From (H) and (.), we conclude that
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Using the inequality

–az + bz ≤ –
a


z +
b

a
, a > , b, z ∈R,
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we get, for t ≥ t,

w′(t) ≤ –ρ(t)Q(t) –
kw(t)

mkr(t)ρ(t)
. (.)

Applying A[·; l, t] (t ≥ l ≥ t) to (.), we obtain

A
[
w′(s); l, t

] ≤ A
[

–ρ(s)Q(s) –
kw(s)

mkr(s)ρ(s)
; l, t

]
.

Combining (.) and the latter inequality, we have, for t ≥ l ≥ t,

A
[
ρ(s)Q(s); l, t

]

≤ A
[

w(s)φ –
kw(s)

mkr(s)ρ(s)
; l, t

]

= A
[
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k
r(s)ρ(s)φ –

(√
k

mkr(s)ρ(s)
w(s) –

√
mkr(s)ρ(s)

k
φ

)

; l, t
]

≤ A
[
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.

Hence

A
[
ρ(s)Q(s) –

mk

k
r(s)ρ(s)φ; l, t

]
≤ 

for t ≥ l ≥ t, which contradicts (.). Therefore, all solutions of (.) are oscillatory. The
proof is complete. �

With an appropriate choice of the functions �, we can obtain a number of oscillation
criteria for (.) by Theorem .. For example, assume that �(t, s, l) = (R(t) – R(s))γ (R(s) –
R(l))β for γ ,β > / and R ∈ C([t,∞),R) satisfying (R(t)–R(s))(R(s)–R(l)) �=  for l < s < t.
By a simple calculation,

φ(t, s, l) = R′(s)
βR(t) – (β + γ )R(s) + γ R(l)

(R(t) – R(s))(R(s) – R(l))
.

Thus, we derive the following oscillation result.

Corollary . Let conditions (H)-(H) be satisfied. If there exist three functions ρ ∈
C([t,∞), (,∞)), b ∈ C([t,∞),R), R ∈ C([t,∞),R), and two constants γ ,β > / such
that (R(t) – R(s))(R(s) – R(l)) �=  for l < s < t and, for all l ≥ t,

lim sup
t→∞

∫ t

l

(
R(t) – R(s)

)γ (
R(s) – R(l)

)β

(
ρ(s)Q(s) –

mk

k
r(s)ρ(s)

×
(

R′(s)
βR(t) – (β + γ )R(s) + γ R(l)

(R(t) – R(s))(R(s) – R(l))

))
ds > ,

where the functions Q and a are the same as in Theorem ., then (.) is oscillatory.
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Letting r(t) = , ρ(t) = , and �(t, s, l) = (t – s)γ (s – l), we have the following criterion.

Corollary . Let conditions (H)-(H) hold. Equation (.) with r(t) =  is oscillatory pro-
vided that, for each l ≥ t, there exist a function b ∈ C([t,∞),R) and a constant γ > /
such that

lim sup
t→∞


tγ +

∫ t

l
(t – s)γ (s – l)Q(s) ds >

mkγ

k(γ – )(γ + )
, (.)

where the functions Q and a are as in Theorem ..

Proof Note that

∫ t

l
(t – s)γ –(t – (γ + )s + γ l

) ds

=
∫ t

l
(t – s)γ –((t – s) – γ (s – l)

) ds

=
∫ t

l
(t – s)γ ds – γ

∫ t

l
(t – s)γ –(s – l) ds + γ 

∫ t

l
(t – s)γ –(s – l) ds

=
∫ t

l
(t – s)γ ds –

∫ t

l
(t – s)γ ds +

γ 

γ – 

∫ t

l
(t – s)γ –(s – l) ds

=
γ

γ – 

∫ t

l
(t – s)γ ds

=
γ

(γ – )(γ + )
(t – l)γ +. (.)

It follows from (.) that

lim sup
t→∞


tγ +

∫ t

l
(t – s)γ (s – l)

(
Q(s) –

mk

k

(
t – (γ + )s + γ l

(t – s)(s – l)

))
ds

= lim sup
t→∞


tγ +

∫ t

l

(
(t – s)γ (s – l)Q(s) –

mk

k
(t – s)γ –(t – (γ + )s + γ l

)
)

ds

= lim sup
t→∞


tγ +

∫ t

l
(t – s)γ (s – l)Q(s) ds –

mkγ

k(γ – )(γ + )
. (.)

Thus, by (.) and (.), we have

lim sup
t→∞


tγ +

∫ t

l
(t – s)γ (s – l)

(
Q(s) –

mk

k

(
t – (γ + )s + γ l

(t – s)(s – l)

))
ds > .

Consequently, (.) with r(t) =  is oscillatory by Corollary .. This completes the proof.
�

Similarly, the following result can be obtained with the choice of r(t) = ρ(t) =  and
�(t, s, l) = (t – s)(s – l)β .

Corollary . Let conditions (H)-(H) hold. Equation (.) with r(t) =  is oscillatory pro-
vided that, for each l ≥ t, there exist a function b ∈ C([t,∞),R) and a constant β > /
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such that

lim sup
t→∞


tβ+

∫ t

l
(t – s)(s – l)βQ(s) ds >

mkβ

k(β – )(β + )
,

where the functions Q and a are as in Theorem ..

Let

D =
{

(t, s) : t ≤ s ≤ t < ∞}
and D =

{
(t, s) : t ≤ s < t < ∞}

.

A function H = H(t, s) ∈ C(D, [,∞)) is said to belong to the function class P, if H(t, t) =
 for t ≥ t, H(t, s) >  for t > s, and H has partial derivatives ∂H/∂s and ∂H/∂t on D

satisfying

∂H
∂t

= h(t, s)
√

H(t, s) and
∂H
∂s

= –h(t, s)
√

H(t, s),

where h and h are locally integrable with respect to t and s, respectively, in D.
Set �(t, s, l) =

√
H(s, l)H(t, s), H, H ∈ P. It follows from (.) that

φ(t, s, l) =



(
h()

 (s, l)√
H(s, l)

–
h()

 (t, s)√
H(t, s)

)
,

where h()
 and h()

 are defined by

∂H

∂s
= h()

 (s, l)
√

H(s, l) and
∂H

∂s
= –h()

 (t, s)
√

H(t, s). (.)

After a simple computation, we have the following result when using Theorem ..

Theorem . Suppose assumptions (H)-(H) are satisfied. If there exist four functions
H, H ∈ P, ρ ∈ C([t,∞), (,∞)), and b ∈ C([t,∞),R) such that, for each l ≥ t,

lim sup
t→∞

∫ t

l
H(s, l)H(t, s)

(
ρ(s)Q(s) –

mk

k
r(s)ρ(s)

(
h()

 (s, l)√
H(s, l)

–
h()

 (t, s)√
H(t, s)

))
ds > ,

where the functions Q and a are defined as in Theorem ., h()
 and h()

 are defined as in
(.), then (.) is oscillatory.

3 Oscillation results for nonmonotonic g
Theorem . Assume conditions (H)-(H) and

(H) g satisfies g(x)/x ≥ k >  for all x �=  and q(t) – p(t) ≥  for t ≥ t.

Equation (.) is oscillatory provided that, for each l ≥ t, there exist three functions � ∈ Y ,
ρ ∈ C([t,∞), (,∞)), and b ∈ C([t,∞),R) such that

lim sup
t→∞

A
[
ρ(s)Q(s) – mkr(s)ρ(s)φ; l, t

]
> , (.)
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where

Q(t) = k
(
q(t) – p(t)

)
– b′(t) –

m


(

k

–

k

)
h(t)
r(t)

+
b(t)

mkr(t)
–

b(t)h(t)
kr(t)

–
mk


r(t)a(t),

a(t) =
ρ ′(t)
ρ(t)

+
b(t)

mkr(t)
–

h(t)
kr(t)

,

φ = φ(t, s, l) and A are defined by (.) and (.), respectively.

Proof As in the proof of Theorem ., suppose x is a nonoscillatory solution of (.) which
satisfies x(t) >  for t ≥ t ≥ t since the case x <  can be treated similarly. We introduce
a generalized Riccati transformation by

w(t) = ρ(t)
(

r(t)ψ(x(t))f (x′(t))
x(t)

+ b(t)
)

, t ≥ t. (.)

Differentiating (.) and using (.), we have, for t ≥ t,

w′(t) =
ρ ′(t)
ρ(t)

w(t) + ρ(t)b′(t) + ρ(t)
(

H(t, x′(t), x(t))
x(t)

–
h(t)f (x′(t))

x(t)
–

q(t)g(x(t))
x(t)

)

– ρ(t)
r(t)ψ(x(t))x′(t)f (x′(t))

x(t)
.

From (H)-(H) and (H), we obtain

w′(t) ≤ ρ ′(t)
ρ(t)

w(t) + ρ(t)b′(t) + ρ(t)
((

p(t) – q(t)
)g(x(t))

x(t)
– h(t)

f (x′(t))
x(t)

)

–
ρ(t)r(t)ψ(x(t))

m
f (x′(t))

x(t)

≤ ρ ′(t)
ρ(t)

w(t) + ρ(t)b′(t) + kρ(t)
(
p(t) – q(t)

)
– ρ(t)h(t)

f (x′(t))
x(t)

–
ρ(t)r(t)ψ(x(t))

m
f (x′(t))

x(t)

=
ρ ′(t)
ρ(t)

w(t) + ρ(t)
(
b′(t) + k

(
p(t) – q(t)

))
+

mρ(t)h(t)
r(t)ψ(x(t))

–
ρ(t)

ψ(x(t))

×
(√

r(t)
m

(
w(t)

r(t)ρ(t)
–

b(t)
r(t)

)
+

h(t)


√
m

r(t)

)

≤ ρ(t)
(

b′(t) + k
(
p(t) – q(t)

)
+

m


(

k

–

k

)
h(t)
r(t)

–
b(t)

mkr(t)
+

b(t)h(t)
kr(t)

)

+ a(t)w(t) –
w(t)

mkr(t)ρ(t)

≤ –ρ(t)Q(t) –
w(t)

mkr(t)ρ(t)
.

The rest of the proof is similar to that of Theorem . and one can get a contradiction to
(.). This completes the proof. �
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In what follows, we derive some corollaries from Theorem . by choosing different
�(t, s, l). If we choose r(t) = , ρ(t) = , and �(t, s, l) = (t – s)γ (s – l), then the following
oscillation result can be obtained.

Corollary . Let conditions (H)-(H) and (H) hold. Equation (.) with r(t) =  is oscil-
latory provided that, for each l ≥ t, there exist a function b ∈ C([t,∞),R) and a constant
γ > / such that

lim sup
t→∞


tγ +

∫ t

l
(t – s)γ (s – l)Q(s) ds >

mkγ

(γ – )(γ + )
,

where the functions Q and a are as in Theorem ..

Proof The proof of this corollary is similar to that of Corollary ., and hence it is omit-
ted. �

Similarly, letting r(t) = , ρ(t) = , and �(t, s, l) = (t – s)(s – l)β , we have the following
result.

Corollary . Let conditions (H)-(H) and (H) be satisfied. Equation (.) with r(t) = 
is oscillatory provided that, for each l ≥ t, there exist a function b ∈ C([t,∞),R) and a
constant β > / such that

lim sup
t→∞


tβ+

∫ t

l
(t – s)(s – l)βQ(s) ds >

mkβ

(β – )(β + )
,

where the functions Q and a are as in Theorem ..

As discussion in Section , we choose �(t, s, l) =
√

H(s, l)H(t, s), then we get the fol-
lowing result.

Theorem . Suppose (H)-(H) and (H) are satisfied. If there exist four functions
H, H ∈ P, ρ ∈ C([t,∞), (,∞)), and b ∈ C([t,∞),R) such that, for each l ≥ t,

lim sup
t→∞

∫ t

l
H(s, l)H(t, s)

(
ρ(s)Q(s) –

mk


r(s)ρ(s)

(
h()

 (s, l)√
H(s, l)

–
h()

 (t, s)√
H(t, s)

))
ds > ,

where the functions Q and a are defined as in Theorem ., h()
 and h()

 are defined by (.),
then (.) is oscillatory.

4 Interval oscillation criteria
Our purpose in this section is to establish some interval oscillation criteria for (.). First
of all, we consider the case where g is an increasing function.

Theorem . Let conditions (H)-(H) hold. Equation (.) is oscillatory provided that, for
each T ≥ t, there exist three functions � ∈ Y , ρ ∈ C([t,∞), (,∞)), b ∈ C([t,∞),R),
and two constants d > c ≥ T such that

A
[
ρ(s)Q(s) –

mk

k
r(s)ρ(s)φ; c, d

]
> ,

where φ, Q, a, and A are defined as in Theorem ..
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Proof The proof is similar to that of Theorem ., where t and l are replaced by d and c,
respectively. Then it can be seen that every solution of (.) has at least one zero in (c, d),
i.e., every solution of (.) has arbitrarily large zeros on [t,∞). The proof is complete. �

From Theorem ., we have the following corollaries by choosing �(d, s, c) = (d – s)γ (s –
c)β and �(d, s, c) =

√
H(s, c)H(d, s), respectively.

Corollary . Let conditions (H)-(H) be satisfied. Assume there exist two functions ρ ∈
C([t,∞), (,∞)), b ∈ C([t,∞),R), two constants γ ,β > /, and two constants d > c ≥ T
such that, for all T ≥ t,

∫ d

c
(d – s)γ (s – c)β

(
ρ(s)Q(s) –

mk

k
r(s)ρ(s)

(
βd – (β + γ )s + γ c

(d – s)(s – c)

))
ds > ,

where the functions Q and a are as in Theorem .. Then (.) is oscillatory.

Corollary . Let conditions (H)-(H) hold. Equation (.) is oscillatory provided that, for
each T ≥ t, there exist four functions H, H ∈ P, ρ ∈ C([t,∞), (,∞)), b ∈ C([t,∞),R),
and two constants d > c ≥ T such that

∫ d

c
H(s, c)H(d, s)

(
ρ(s)Q(s) –

mk

k
r(s)ρ(s)

(
h()

 (s, c)√
H(s, c)

–
h()

 (d, s)√
H(d, s)

))
ds > ,

where the functions Q and a are as in Theorem ., h()
 and h()

 are defined as in (.).

Similarly, we can obtain the following oscillation results when g is a nonmonotonic func-
tion.

Theorem . Assume that conditions (H)-(H) and (H) are satisfied. Equation (.)
is oscillatory provided that, for each T ≥ t, there exist three functions � ∈ Y , ρ ∈
C([t,∞), (,∞)), b ∈ C([t,∞),R), and two constants d > c ≥ T such that

A
[
ρ(s)Q(s) – mkr(s)ρ(s)φ; c, d

]
> ,

where φ, Q, a, and A are the same as in Theorem ..

Corollary . Let (H)-(H) and (H) be satisfied. Assume there exist two functions ρ ∈
C([t,∞), (,∞)), b ∈ C([t,∞),R), two constants d > c ≥ T , and two constants γ ,β > /
such that, for all T ≥ t,

∫ d

c
(d – s)γ (s – c)β

(
ρ(s)Q(s) – mkr(s)ρ(s)

(
βd – (β + γ )s + γ c

(d – s)(s – c)

))
ds > ,

where the functions Q and a are as in Theorem .. Then (.) is oscillatory.

Corollary . Let (H)-(H) and (H) hold. Equation (.) is oscillatory provided that, for
each T ≥ t, there exist four functions H, H ∈ P, ρ ∈ C([t,∞), (,∞)), b ∈ C([t,∞),R),
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and two constants d > c ≥ T such that

∫ d

c
H(s, c)H(d, s)

(
ρ(s)Q(s) –

mk


r(s)ρ(s)

(
h()

 (s, c)√
H(s, c)

–
h()

 (d, s)√
H(d, s)

))
ds > ,

where the functions Q and a are as in Theorem ., h()
 and h()

 are defined by (.).

5 Examples
The following examples illustrate some applications of the results presented in this paper.

Example . For t ≥ t =  and γ > , consider the equation

(
 + x(t)
 + x(t)

x′(t)
 + (x′(t))

)′
+

√
γ

t
x′(t)

 + (x′(t)) +
γ

t

(
x(t) + x(t)

)
=

γ

t x(t) sin x′(t). (.)

Let r(t) = , h(t) = √
γ /t, and q(t) = γ /t. It is not difficult to see that

 ≤ ψ(x) =
 + x

 + x ≤ , k = , k = ,

f (y) =
y

 + y , f (y) ≤ myf (y), m = ,

g(x) = x + x, g ′(x) = x +  ≥ , k = ,

H(t, y, x)
g(x)

=
γ

t
x

 + x sin y ≤ γ

t = p(t).

Therefore, (.) satisfies conditions (H)-(H). Next, we consider the following two cases
separately.

() If we choose ρ(t) = , �(t, s, l) = (t – s)(s – l)β , and b(t) = , then Q(t) = γ /(t) and by
virtue of

lim sup
t→∞


tβ+

∫ t

l
(s – l)β ds

=


β + 
lim sup

t→∞


tβ+ (t – l)β+ =


β + 
,

lim sup
t→∞

–t
tβ+

∫ t

l

(s – l)β

s
ds

= – lim sup
t→∞


tβ

(


β

(
tβ – lβ

)
–

lβ
β – 

(
tβ– – tβ–) + · · · + (–l)β (ln t – ln l)

)

= –


β
= –


β

,

and

lim sup
t→∞

t

tβ+

∫ t

l

(s – l)β

s ds

= lim sup
t→∞


tβ–

(


β – 
(
tβ– – lβ–) –

lβ
β – 

(
tβ– – tβ–)
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+ · · · + (–l)β

(

l

–

t

))

=


β – 
,

we conclude that

lim sup
t→∞


tβ+

∫ t

l
(t – s)(s – l)β γ

s ds

=
γ


lim sup

t→∞


tβ+

∫ t

l

(t – s)(s – l)β

s ds

=
γ


lim sup

t→∞


tβ+

(∫ t

l
(s – l)β ds – t

∫ t

l

(s – l)β

s
ds + t

∫ t

l

(s – l)β

s ds
)

=
γ

β(β – )(β + )
.

Hence, by Corollary ., (.) is oscillatory if γ > β for some β ∈ (/,∞).
On the other hand, if we take α ≥ , n = , and δ(t) = , then Q̃(t) = γ /(t) and

ρ̃(t) = exp

(
–


mk

∫ t
kδ(s) ds

)
= .

Furthermore, we have

lim sup
t→∞


tn–

∫ t

t

(
(t – s)n–

(
Q̃(s) –

mh(s)ρ̃(s)
kkr(s)

)
–

αmk(n – )

k
ρ̃(s)r(s)(t – s)n–

)
ds

= lim sup
t→∞


t

∫ t



(
γ


(t – s)

s – α

)
ds =

γ


�= ∞.

Thus, Theorem . cannot be applied to (.).
() If we choose ρ(t) = t

√
γ

 , �(t, s, l) = (t – s)(s – l)β , and b(t) = , then Q(t) = γ /(t)
and

lim sup
t→∞


tβ+

∫ t

l
(t – s)(s – l)β γ

s ds

=
γ


lim sup

t→∞


tβ+

∫ t

l

(t – s)(s – l)β

s ds

=
γ

β(β – )(β + )
.

Consequently, by Corollary ., (.) is oscillatory if γ > β/ for some β ∈ (/,∞). By
the above discussion, we observe that (.) is oscillatory if γ > / ≈ . (by letting
β = /).

On the other hand, if we take α = , n = , and δ(t) = , then Q̃(t) = γ t
√

γ

 –/, ρ̃(t) =
t

√
γ

 , and

lim sup
t→∞


tn–

∫ t

T

(
(t – s)n–Q̃(s) –

αmk

k
ρ̃(s)r(s)(t – s)n–

)
ds

= lim sup
t→∞


t

∫ t

T

(
γ


(t – s)s

√
γ

 – – s
√

γ



)
ds.



Jiang et al. Advances in Difference Equations  (2015) 2015:354 Page 13 of 14

By a direct computation, we obtain the following results. When  < γ < ,

lim sup
t→∞


t

∫ t

T

(
γ


(t – s)s

√
γ

 – – s
√

γ



)
ds =

γ




 –
√

γ



T
√

γ

 – = φ̃(T),

whereas

lim sup
t→∞

∫ t

t

φ̃
+(s)

ρ̃(s)r(s)
ds =

γ 




( –
√

γ

 )
lim sup

t→∞

∫ t


s

√
γ

 – ds �= ∞.

Therefore, Theorem . cannot be applied to (.) in this case where  < γ < . When
γ ≥ ,

lim sup
t→∞


t

∫ t

T

(
γ


(t – s)s

√
γ

 – – s
√

γ



)
ds = ∞ ≥ φ̃(T).

Define φ̃ by φ̃(t) = t
√

γ

 . We have

lim sup
t→∞

∫ t

t

φ̃
+(s)

ρ̃(s)r(s)
ds = lim sup

t→∞

∫ t


 ds = ∞.

From Theorem ., we conclude that (.) is oscillatory for γ ≥ .

Example . For t ≥ , consider the equation

(
 + x(t)
 + x(t)

x′(t)
)′

+ β sin t
(
x′(t)

)
+

(



β sin t + 
)

(
sin x(t) + x(t)

)

= 
(
sin x(t) + x(t)

)
sin t cos x′(t), (.)

where r(t) = , h(t) = β sin t, q(t) = β sin t/ + , and β > /. Note that




≤ ψ(x) =
 + x

 + x ≤ , k =



, k = ,

f (y) = y, f (y) ≤ myf (y), m = ,

g(x) = sin x + x,
g(x)

x
=

sin x
x

+  ≥ , k = ,

H(t, y, x)
g(x)

=  sin t cos y ≤  = p(t).

Let c =  and d = π . Choosing ρ(t) = , b(t) = , and �(d, s, c) = sin s, we have Q(s) = β sin s,
�(d, s, c)φ(d, s, c) = cos s, and

A
[
ρ(s)Q(s) – mkr(s)ρ(s)φ; c, d

]

=
∫ d

c

(
�(d, s, c)Q(s) – mk�

(d, s, c)φ(d, s, c)
)

ds

=
∫ π


β sin s ds – 

∫ π


cos s ds =

(
β


– 

)
π .

Using Theorem ., we conclude that (.) is oscillatory if β > /.
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