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Abstract
This paper is concerned with nth-order nonlinear differential equations of the form
(a(t)|x(n–1)(t)|p–2x(n–1)(t))′ + r(t)|x(n–1)(t)|p–2x(n–1)(t) + q(t)|x(g(t))|p–2x(g(t)) = 0 with n ≥ 2.
By discussing the signs of ith-order derivatives of eventually positive solutions, for
i = 1, . . . ,n – 1, and using the generalized Riccati technique and integral averaging
technique, we derive new criteria for oscillation and asymptotic behavior of the
equation. Our results generalize and improve many existing results in the literature.

Keywords: nth-order nonlinear differential equations; asymptotic behavior;
oscillation; p-Laplacian

1 Introduction
In this paper, we study the nth-order nonlinear differential equation with Laplacian and
deviating argument

(
a(t)

∣∣x(n–)(t)
∣∣p–xn–(t)

)′ + r(t)
∣∣xn–(t)

∣∣p–x(n–)(t) + q(t)
∣∣x

(
g(t)

)∣∣p–x
(
g(t)

)
= , (.)

where t ∈ [t,∞). Throughout this paper, we assume the following:
(H) a(t) ∈ C([t,∞), (,∞)), r(t), q(t) ∈ C([t,∞),R), q(t) ≥ , and a′(t) + r(t) ≥ ;
(H) p >  is a real number, g(t) ∈ C([t,∞),R) such that limt→∞ g(t) = ∞.
Asymptotics and oscillation of (.) and related equations have been discussed by many

authors; see [–] and the references therein. In particular in , Zhang et al. [] estab-
lished oscillation criteria for (.) when n ≥  is even via the integral averaging technique
and two kinds of functions H(t, s) and H∗(t, s), employed the comparison technique to dis-
cuss the oscillation of (.) when n ≥  is even and the oscillation and asymptotic behavior
of (.) when n ≥  is odd.

By imposing some additional assumptions, in the present paper we shall discuss the
signs of ith-order derivatives of eventually positive solutions for i = , . . . , n – , and we
establish concrete criteria for the asymptotics and oscillation of (.) for both the even-
order and the odd-order cases, where the deviating arguments may be retarded, advanced,
or mixed. Our results will generalize and improve those in [] and many other papers for
the even-order case and develop new results for the odd-order case.
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By a solution of (.) we mean a nontrivial real-valued function x(t) ∈ Cn–([t,∞),R)
such that a(t)|x(n–)(t)|p–xn–(t) ∈ C([t,∞),R), which satisfies (.). Our attention is re-
stricted to those solutions of (.) that satisfy sup{|x(t)| : t ≥ tx} >  for any tx ≥ t. A so-
lution x(t) of (.) is said to be oscillatory if it is neither eventually positive nor eventually
negative. Otherwise, it is called nonoscillatory. The equation itself is called oscillatory if
all its solutions are oscillatory.

This paper is organized as follows: After this introduction, we present the main results
in Section , followed by illustrative examples in Section . We then introduce some pre-
liminary lemmas in Section , which are used to prove the main results in Section . The
conclusion is drawn in Section .

2 Main results
In this section, we present our main results which provide conditions for every solution
of (.) to be oscillatory on [t,∞) or convergent to  as t → ∞. In order to state the main
theorems, we need the following notation.

For t, T ∈R such that t ≥ T , we define

β(t, T) =
(

a(t) exp

(∫ t

t

r(τ )
a(τ )

dτ

))– 
p–

,

βi(t, T) =
∫ t

T
βi–(s, T) ds,

β∗(t, T) = β
p–
n– (t, T)βn–(t, T),

β∗(t, T) = min
{
βn–(t, T),βn–

(
g(t), T

)}
,

Q(t) = q(t)G(t), G(t) =

{
( gn–(t)

tn– )p–, g(t) ≤ t,
, g(t) > t.

For D = {(t, s) ∈R
 : t ≥ s ≥ }, we define

H =
{

H(t, s) ∈ C(D, [,∞)
)

: H(t, t) = , H(t, s) >  and H ′
s(t, s) ≤  for t > s ≥ 

}
,

[
H ′

s(t, s) + H(t, s)
(

z′
+(s)
z(s)

–
r(s)
a(s)

)]

+
= max

{
H ′

s(t, s) + H(t, s)
(

z′
+(s)
z(s)

–
r(s)
a(s)

)
, 

}
,

where z ∈ C(R, (,∞)) is to be given in Theorem ., z′
+(t) = max{z′(t), }, and [ z′

+(s)
z(s) –

r(s)
a(s) ]+ = max{[ z′

+(s)
z(s) – r(s)

a(s) ], }.
The results in the first theorem are valid for all p > .

Theorem . Let p > . Assume that (H)-(H) and

∫ ∞

t

[exp(
∫ s

t
r(τ )
a(τ ) dτ )

a(s)

] 
p–

ds = ∞ (.)

hold, and either

∫ ∞

t

exp

(∫ s

t

r(τ )
a(τ )

dτ

)
q(s) ds = ∞, (.)
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or

∫ ∞

t

[∫ ∞

v

(
a–(s) exp

(
–

∫ s

t

r(τ )
a(τ )

dτ

)∫ ∞

s
exp

(∫ u

t

r(τ )
a(τ )

dτ

)
q(u) du

) 
p–

ds
]

dv

= ∞. (.)

Furthermore, for sufficiently large T ∈R, one of the following conditions is satisfied:
(a) there exists a z ∈ C(R, (,∞)) such that

lim sup
t→∞

∫ t

T

[
z(s) exp

(∫ s

t

r(τ )
a(τ )

dτ

)
Q(s) –

z′
+(s)

β
p–
n– (s, T)

]
ds = ∞,

(b) there exists a z ∈ C(R, (,∞)) such that

lim sup
t→∞

∫ t

T

[
z(s)Q(s) –


pp

[
z′

+(s)
z(s)

–
r(s)
a(s)

]p

+

z(s)
β

p–
n–(s, T) exp(

∫ s
t

r(τ )
a(τ ) dτ )

]
ds = ∞,

(c) there exist a z ∈ C(R, (,∞)) and an H ∈H such that

lim sup
t→∞


H(t, T)

∫ t

T

[
H(t, s)z(s)Q(s) –

[H ′
s(t, s) + H(t, s)( z′

+(s)
z(s) – r(s)

a(s) )]p
+z(s)

ppβ
p–
n–(s, T)Hp–(t, s) exp(

∫ s
t

r(τ )
a(τ ) dτ )

]
ds

= ∞.

Then:
(i) every solution x(t) of (.) is either oscillatory or tends to zero as t → ∞ when n is

odd, and
(ii) every solution x(t) of (.) is oscillatory when n is even.

The results in the second theorem hold only for g(t) ≥ t or g(t) ≤ t with g ′(t) > .

Theorem . Let p > . Assume that (H)-(H) and (.) hold. If either (.) is satisfied,
or (.) is satisfied and for sufficiently large T ∈R,

βp–
∗ (t, T)

∫ ∞

t
exp

(∫ s

t

r(τ )
a(τ )

dτ

)
q(s) ds > , (.)

then:
(i) every solution x(t) of (.) is either oscillatory or tends to zero as t → ∞ when n is

odd, and
(ii) every solution x(t) of (.) is oscillatory when n is even.

The results in the third theorem hold only for p ≥ .

Theorem . Let p ≥ . Assume that (H)-(H) and (.) hold and either (.) or (.)
is satisfied. Furthermore, for sufficiently large T ∈ R, there exists a z ∈ C(R, (,∞)) such
that one of the following conditions is satisfied:
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(a)

lim sup
t→∞

∫ t

T

[
z(s)Q(s) –

[ z′(s)
z(s) – r(s)

a(s) ]z(s)

(p – ) exp(
∫ s

t
r(τ )
a(τ ) dτ )β∗(s, T)

]
ds = ∞,

(b) there exists an H ∈H such that

lim sup
t→∞


H(t, T)

∫ t

T

[
H(t, s)z(s)Q(s) –

[H ′
s(t, s) + H(t, s)( z′

+(s)
z(s) – r(s)

a(s) )]z(s)

(p – )β∗(s, T) exp(
∫ s

t
r(τ )
a(τ ) dτ )H(t, s)

]
ds

= ∞.

Then:
(i) every solution x(t) of (.) is either oscillatory or tends to zero as t → ∞ when n is

odd, and
(ii) every solution x(t) of (.) is oscillatory when n is even.

3 Examples
In this section, we give two examples to illustrate our main results.

Example  Consider the equation

(

t
∣
∣x(n–)(t)

∣
∣– 

 x(n–)(t)
)′

+ t∣∣x(n–)(t)
∣
∣– 

 x(n–)(t) + t– 

∣
∣x(t – )

∣
∣– 

 x(t – ) = , (.)

where n ≥ , t ∈ [,∞). Here we have:
(i) p = 

 , a(t) = 
t , r(t) = t, q(t) = t– 

 , g(t) = t – ;
(ii) a′(t) + r(t) = – 

t + t > ,

∫ ∞



[exp(
∫ s


r(τ )
a(τ ) dτ )

a(s)

] 
p–

ds =
∫ ∞



(
se( s

 – 
 )) ds = e– ·



∫ ∞



(
se

s

) ds

≥ e– ·


∫ ∞


s ds = ∞;

(iii)
∫ ∞

t
exp(

∫ s


r(τ )
a(τ ) dτ )q(s) ds =

∫ ∞
 e( s

 – 
 )s– 

 ds ≥ e– 


∫ ∞
 s– 

 ds = ∞.
Hence (H)-(H), (.), and (.) hold. For sufficiently large T ∈ [,∞), we set z(t) = 

and have

lim sup
t→∞

∫ t

T

[
z(s) exp

(∫ s

t

r(τ )
a(τ )

dτ

)
Q(s) –

z′
+(s)

β
p–
n– (s, T)

]
ds

= lim sup
t→∞

∫ t

T
e( s

 – 
 )

(
s– 



(
(s – )n–

sn–

) 

)

ds

≥ lim sup
t→∞

e– 


∫ t

T

(
s– 



( ( s
 )n–

sn–

) 

)

ds

= lim sup
t→∞

e– 


∫ t

T


 n–




s 


ds = ∞.

Hence Condition (a) of Theorem . is satisfied.



Zhang et al. Advances in Difference Equations  (2015) 2015:357 Page 5 of 16

By Theorem ., every solution x(t) of (.) is oscillatory or tends to  as t → ∞ when
n is odd, and (.) is oscillatory when n is even.

Remark . In Example  above, we see that a(t) = 
t is strictly decreasing on [,∞); but in

[], we see that its condition (H) requires a′(t) > , so the results in [] are not applicable
to this example.

Example  Consider the equation

(
t
∣∣x(n–)(t)

∣∣x(n–)(t)
)′ –

∣∣x(n–)(t)
∣∣x(n–)(t) + t∣∣x(t + )

∣∣x(t + ) = , (.)

where n ≥ , t ∈ [,∞). Here we have:
(i) p = , a(t) = t, r(t) = –, q(t) = t, and g(t) = t + ;

(ii) a′(t) + r(t) =  > ,

∫ ∞



[exp(
∫ s


r(τ )
a(τ ) dτ )

a(s)

] 
p–

ds =
∫ ∞



(

s

e(– ln s+ln )
) 


ds =

∫ ∞



(

s

) 


ds = ∞;

(iii)
∫ ∞

t
exp(

∫ s


r(τ )
a(τ ) dτ )q(s) ds =

∫ ∞
 exp(

∫ s


–
τ

dτ )s ds =
∫ ∞

 s ds = ∞.
Hence (H)-(H), (.), and (.) hold. With z(t) = 

t we see that for sufficiently large
T ∈ [,∞),

lim sup
t→∞

∫ t

T

[
z(s)Q(s) –

[ z′(s)
z(s) – r(s)

a(s) ]z(s)

(p – ) exp(
∫ s

t
r(τ )
a(τ ) dτ )β∗(s, T)

]
ds

= lim sup
t→∞

∫ t

T
z(s)Q(s) ds = lim sup

t→∞

∫ t

T
s · 

s
ds = lim sup

t→∞

∫ t

T
s ds = ∞.

Hence Condition (a) of Theorem . is satisfied.
By Theorem ., every solution x(t) of (.) is oscillatory or tends to zero as t → ∞

when n is odd, and (.) is oscillatory when n is even.

Remark . In Example  above, we see that r(t) = – <  and g(t) = t +  ≥ t on [,∞).
But in [], we see that its condition (H) requires r(t) > , and in [], its condition (H)
requires g(t) ≤ t, so the results in [, ] are not applicable to this example.

4 Preliminary lemmas
In this section, we present several technical lemmas which will be used in the proofs of
the main results. The first one is on the signs of derivatives of certain classes of functions.

Lemma . ([]) Let f (t) ∈ Cm([t,∞), (,∞)). Assume f (m)(t) is of one sign and not iden-
tically zero on [t,∞) for any t ≥ t. Then there exist a tx ≥ t and an integer  ≤ l ≤ m,
with m + l even for f m(t) ≥  or m + l odd for f m(t) ≤  such that

l >  implies f (i)(t) >  for t ≥ tx, i = , , . . . , l –  and (.)

l ≤ m –  implies (–)l+if (i)(t) >  for t ≥ tx, i = l, l + , . . . , m – . (.)



Zhang et al. Advances in Difference Equations  (2015) 2015:357 Page 6 of 16

The next lemma concerns the signs of derivatives of eventually positive solutions of (.).
In particular, we derive conditions for the following inequalities to hold eventually:

x(j)(t) > , j = , , . . . , n – . (.)

Lemma . Assume that conditions (H)-(H), (.) and either (.) or (.) hold. Let x(t)
be an eventually positive solution of (.). Then there exists a T ∈ R sufficiently large such
that

(
a(t) exp

(∫ t

t

r(τ )
a(τ )

dτ

)∣∣x(n–)(t)
∣∣p–xn–(t)

)′
≤ 

and x(n)(t) <  for t ≥ T . Moreover:
(i) (.) holds when n is even, and

(ii) either (.) holds or limt→∞ x(t) =  when n is odd.

Proof If x(t) is an eventually positive solution of (.), then by (H), there exists a t ∈
[t,∞) such that

x(t) >  and x
(
g(t)

)
> , t ≥ t.

From (.) and (H), we have

(
a(t)

∣
∣x(n–)(t)

∣
∣p–x(n–)(t)

)′ + r(t)
∣
∣x(n–)(t)

∣
∣p–x(n–)(t)

= –q(t)
∣
∣x

(
g(t)

)∣∣p–x
(
g(t)

) ≤ , t ≥ t, (.)

which implies that

(
a(t) exp

(∫ t

t

r(τ )
a(τ )

dτ

)∣
∣x(n–)(t)

∣
∣p–xn–(t)

)′
≤ , t ≥ t. (.)

Then a(t) exp(
∫ t

t
r(τ )
a(τ ) dτ )|x(n–)(t)|p–xn–(t) is strictly decreasing on [t,∞) and eventually

of one sign. So, x(n–)(t) is either eventually positive or eventually negative.
By (.), from the proof of Lemma  in [], we have x(n–)(t) > . Then we can write (.)

in the form

(
a(t) exp

(∫ t

t

r(τ )
a(τ )

dτ

)
(
x(n–)(t)

)p–
)′

≤ , t ≥ t,

which implies that for t ≥ t,

exp

(∫ t

t

r(τ )
a(τ )

dτ

)(
a′(t) + r(t)

)(
x(n–)(t)

)p–

+ exp

(∫ t

t

r(τ )
a(τ )

dτ

)
(p – )a(t)

(
x(n–)(t)

)p–x(n)(t) ≤ .

Thus, x(n)(t) <  eventually.
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From Lemma . with m = n – , there exist a t ∈ [t,∞)T and an integer l,  ≤ l ≤ m
such that (.) and (.) are satisfied. That is,

x(j)(t) >  for t ≥ t, j = , . . . , l – , (.)

(–)l+jx(j)(t) >  for t ≥ t, j = l, l + , . . . , m – , (.)

and x(t) is eventually monotone.
When n is even, by Lemma ., l must be an odd number. By (.) and (.), we can get

x′(t) > . Hence

lim
t→∞ x(t) exists and is positive or lim

t→∞ x(t) = ∞. (.)

In this case, we claim that l = m = n – . Otherwise, we obtain the odd integer l ≤ m –  =
n – . By (.), we get

(–)l+m–x(m–)(t) >  and (–)l+m–x(m–)(t) > . (.)

This means

x(m–)(t) = x(n–)(t) < , x(m–)(t) = x(n–)(t) > , t ∈ [t,∞). (.)

It follows from (.) that there exist a T ≥ t and b >  such that x(g(t)) ≥ b for t ≥ T .
From (.) and (.), and x(n–)(t) >  we have

(
a(t) exp

(∫ t

t

r(τ )
a(τ )

dτ

)(
x(n–)(t)

)p–
)′

≤ –bp– exp

(∫ t

t

r(τ )
a(τ )

dτ

)
q(t). (.)

If (.) holds, by integrating (.) from T to t with t ≥ T we obtain

a(t) exp

(∫ t

t

r(τ )
a(τ )

dτ

)(
x(n–)(t)

)p–

≤ a(T) exp

(∫ T

t

r(τ )
a(τ )

dτ

)(
x(n–)(T)

)p– – bp–
∫ t

T
exp

(∫ s

t

r(τ )
a(τ )

dτ

)
q(s) ds

→ –∞ as t → ∞,

which contradicts the fact that x(n–)(t) >  for t ∈ [t,∞). Hence, l = m = n –  and (.)
holds. If (.) holds, by integrating (.) from t to u with T ≤ t ≤ u we obtain

a(t) exp

(∫ t

t

r(τ )
a(τ )

dτ

)
(
x(n–)(t)

)p–

≥ a(u) exp

(∫ u

t

r(τ )
a(τ )

dτ

)
(
x(n–)(u)

)p– + bp–
∫ u

t
exp

(∫ s

t

r(τ )
a(τ )

dτ

)
q(s) ds

≥ bp–
∫ u

t
exp

(∫ s

t

r(τ )
a(τ )

dτ

)
q(s) ds.
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Taking the limit as u → ∞, we have

x(n–)(t) ≥ b
(

a–(t) exp

(
–

∫ t

t

r(τ )
a(τ )

dτ

)∫ ∞

t
exp

(∫ s

t

r(τ )
a(τ )

dτ

)
q(s) ds

) 
p–

.

Since x(n–)(t) < , integrating the above inequality from t to v with T ≤ t ≤ v we get

–x(n–)(t) ≥ x(n–)(v) – x(n–)(t)

≥ b
∫ v

t

(
a–(s) exp

(
–

∫ s

t

r(τ )
a(τ )

dτ

)∫ ∞

s
exp

(∫ u

t

r(τ )
a(τ )

dτ

)
q(u) du

) 
p–

ds.

Taking the limit as v → ∞, we obtain

–x(n–)(t) ≥ b
∫ ∞

t

(
a–(s) exp

(
–

∫ s

t

r(τ )
a(τ )

dτ

)∫ ∞

s
exp

(∫ u

t

r(τ )
a(τ )

dτ

)
q(u) du

) 
p–

ds.

Since x(n–)(t) > , integrating the above inequality from T to t with t ≥ T , we get

x(n–)(T) ≥ –x(n–)(t) + x(n–)(T)

≥ b
∫ t

T

[∫ ∞

v

(
a–(s) exp

(
–

∫ s

t

r(τ )
a(τ )

dτ

)

×
∫ ∞

s
exp

(∫ u

t

r(τ )
a(τ )

dτ

)
q(u) du

) 
p–

ds
]

dv.

Taking t → ∞, we obtain

∫ ∞

T

[∫ ∞

v

(
a–(s) exp

(
–

∫ s

t

r(τ )
a(τ )

dτ

)∫ ∞

s
exp

(∫ u

t

r(τ )
a(τ )

dτ

)
q(u) du

) 
p–

ds
]

dv

≤ b–x(n–)(T) < ∞,

which contradicts (.). Hence, l = m = n –  and (.) holds.
When n is odd, by Lemma ., l must be an even integer. By (.) and (.), we have either

x′(t) >  or x′(t) < . That means limt→∞ x(t) = c ≥ . We claim that if limt→∞ x(t) 	= , then
l = m = n – . Otherwise, there is the even number l ≤ m –  = n –  such that (.) and
(.) hold. By a similar argument to above, we can reach a contradiction to (.) or (.).
This completes the proof. �

Lemma . Let conditions (H)-(H), (.), and either (.) or (.) hold. Assume x(t)
is an eventually positive solution of (.) satisfying (.) eventually. Then there exists a
T ∈ [t,∞) such that for t ∈ [T ,∞),

x′(t) ≥
(

a(t) exp

(∫ t

t

r(τ )
a(τ )

dτ

)) 
p–

x(n–)(t)βn–(t, T)

and

x(t) ≥
(

a(t) exp

(∫ t

t

r(τ )
a(τ )

dτ

)) 
p–

x(n–)(t)βn–(t, T).
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Proof Since x(t) is an eventually positive solution of (.), by (H), there exists a T ∈ [t,∞)
such that x(t) > , x(g(t)) > , and (.) holds for t ≥ T .

Noting that (a(t) exp(
∫ t

t
r(τ )
a(τ ) dτ )(x(n–)(t))p–)′ <  for t ≥ T , it follows from (.) that

x(n–)(t) = x(n–)(T) +
∫ t

T

(a(s) exp(
∫ s

t
r(τ )
a(τ ) dτ )(x(n–)(s))p–)


p–

(a(s) exp(
∫ s

t
r(τ )
a(τ ) dτ ))


p–

ds

≥
(

a(t) exp

(∫ t

t

r(τ )
a(τ )

dτ

)) 
p–

x(n–)(t)
∫ t

T



(a(s) exp(
∫ s

t
r(τ )
a(τ ) dτ ))


p–

ds

:=
(

a(t) exp

(∫ t

t

r(τ )
a(τ )

dτ

)) 
p–

x(n–)(t)β(t, T).

Integrating the inequality above from T to t for t ≥ T , we get

x(n–)(t) = x(n–)(T) +
∫ t

T
x(n–)(s) ds

≥ x(n–)(T) +
∫ t

T

(
a(s) exp

(∫ s

t

r(τ )
a(τ )

dτ

)) 
p–

x(n–)(s)β(s, T) ds

≥
(

a(t) exp

(∫ t

t

r(τ )
a(τ )

dτ

)) 
p–

x(n–)(t)
∫ t

T
β(s, T) ds

:=
(

a(t) exp

(∫ t

t

r(τ )
a(τ )

dτ

)) 
p–

x(n–)(t)β(t, T).

It is easy to see by induction that

x′(t) ≥
(

a(t) exp

(∫ t

t

r(τ )
a(τ )

dτ

)) 
p–

x(n–)(t)βn–(t, T),

x(t) ≥
(

a(t) exp

(∫ t

t

r(τ )
a(τ )

dτ

)) 
p–

x(n–)(t)βn–(t, T).

This completes the proof. �

Similar to [], Lemma ., we have the following lemma.

Lemma . Let g(u) = Bu – Au
γ +
γ , where A and γ are positive numbers, and B ≥ . Then

g attains its maximum value on [,∞) at u∗ = ( Bγ

A(γ +) )γ , and

max
u∈[,∞)

g = g
(
u∗) =

γ γ

(γ + )γ +
Bγ +

Aγ
.

5 Proofs of main results
In this section, we give proofs for our main results by employing generalized Riccati tech-
niques and integral averaging techniques.
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Proof of Theorem . Suppose to the contrary that (.) has a nonoscillatory solution x(t).
Without loss of generality, we may assume that x(t) is eventually positive. Then, by (H)-
(H), there exists a T ∈ [t,∞) such that for t ≥ T , x(t) > , and Lemmas . and . hold.

When n is odd, from Lemma . we see that (.) holds or limt→∞ x(t) = . If (.) holds,
(.) reduces to

(
a(t)

(
x(n–)(t)

)p–)′ + r(t)
(
xn–(t)

)p– + q(t)
(
x
(
g(t)

))p– = . (.)

Multiplying by exp(
∫ t

t
r(τ )
a(τ ) dτ ) on (.), we have

(
a(t) exp

(∫ t

t

r(τ )
a(τ )

dτ

)(
x(n–)(t)

)p–
)′

+ exp

(∫ t

t

r(τ )
a(τ )

dτ

)
q(t)

(
x
(
g(t)

))p– = . (.)

The rest of the proof is separated into three parts corresponding to conditions (a)-(c),
respectively.

Part I: Assume condition (a) holds. Define

v(t) :=
z(t) exp(

∫ t
t

r(τ )
a(τ ) dτ )a(t)(x(n–)(t))p–

xp–(t)
for t ≥ T .

Then v(t) > . From z(t) > , a(t) > , x(t) > , x(n–)(t) > , and (.), we have

v′(t) =
(

a(t) exp

(∫ t

t

r(τ )
a(τ )

dτ

)(
x(n–)(t)

)p–
)′( z(t)

xp–(t)

)

+
(

exp

(∫ t

t

r(τ )
a(τ )

dτ

)
a(t)

(
x(n–)(t)

)p–
)(

z(t)
xp–(t)

)′

= z(t)
– exp(

∫ t
t

r(τ )
a(τ ) dτ )q(t)(x(g(t)))p–

xp–(t)

+
(

a(t) exp

(∫ t

t

r(τ )
a(τ )

dτ

)(
x(n–)(t)

)p–
)[

z′(t)xp–(t) – z(t)(n)xp–(t)x′(t)
(xp–(t))

]

≤ –z(t) exp(
∫ t

t
r(τ )
a(τ ) dτ )q(t)(x(g(t)))p–

xp–(t)

+
z′

+(t)(a(t) exp(
∫ t

t
r(τ )
a(τ ) dτ )(x(n–)(t))p–)

xn(t)

–
(a(t) exp(

∫ t
t

r(τ )
a(τ ) dτ )(x(n–)(t))p–)z(t)(p – )xp–(t)x′(t)

(xp–(t))

≤ –z(t) exp(
∫ t

t
r(τ )
a(τ ) dτ )q(t)(x(g(t)))n

xp–(t)
+

z′
+(t)(a(t) exp(

∫ t
t

r(τ )
a(τ ) dτ )(x(n–)(t))p–)

xp–(t)
.

By the Kiguradze lemma [], which shows that if a function y(t) satisfies y(i)(t) > , i =
, , , . . . , k, and y(k+)(t) ≤ , then y(t)/y′(t) ≥ t/k, we have

x(t)
x′(t)

≥ t
n – 

.
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Thus, we see that x(t)/tn– is nonincreasing, and when g(t) ≤ t, we get

x(g(t))
x(t)

≥ gn–(t)
tn– .

When g(t) > t, by x′(t) > , we get

x(g(t))
x(t)

≥ .

It follows that
(

x(g(t))
x(t)

)p–

≥ G(t). (.)

Then, by Lemma ., we obtain

v′(t) ≤ –z(t) exp

(∫ t

t

r(τ )
a(τ )

dτ

)
q(t)G(t) +

z′
+(t)

β
p–
n– (t, T)

.

Integrating the above inequality from T to t for t ≥ T , we get

∫ t

T

[
z(s) exp

(∫ s

t

r(τ )
a(τ )

dτ

)
Q(s) –

z′
+(s)

βn
n–(s, T)

]
ds ≤ v(T) – v(t) < v(T).

Taking lim sup on both sides as t → ∞, we obtain a contradiction to condition (b). There-
fore, every solution x(t) of (.) is either oscillatory or tends to zero as t → ∞.

Part II: Assume condition (b) holds. Define

w(t) :=
z(t)a(t)(x(n–)(t))n

xp–(t)
for t ≥ T . (.)

Then w(t) > . From z(t) > , x(t) > , x(n–)(t) > , we have

w′(t) =
(
a(t)

(
x(n–)(t)

)p–)′
(

z(t)
xp–(t)

)
+

(
a(t)

(
x(n–)(t)

)n)
(

z(t)
xp–(t)

)′

= z(t)
–r(t)(xn–(t))p– – q(t)(x(g(t)))p–

xp–(t)

+
(
a(t)

(
x(n–)(t)

)p–)
[

z′(t)xp–(t) – z(t)(n)xp–(t)x′(t)
(xp–(t))

]

≤ –z(t)r(t)(x(n–)(t))p– – z(t)q(t)(x(g(t)))p–

xn(t)
+

z′
+(t)(a(t)(x(n–)(t))p–)

xp–(t)

–
(a(t)(x(n–)(t))p–)z(t)(p – )xp–(t)x′(t)

(xn(t)) . (.)

From (.), we have

w′(t) ≤ – z(t)Q(t) +
[

z′
+(t)
z(t)

–
r(t)
a(t)

]
w(t)

–
(a(t)(x(n–)(t))n)z(t)(p – )xp–(t)x′(t)

(xp–(t)) . (.)
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From Lemma ., we get

–
(a(t)(x(n–)(t))n)z(t)(p – )xp–(t)x′(t)

(xp–(t))

= –
a(t)z(t)(p – )

a
p

p– (t)z
p

p– (t)

a
p
n (t)z

p
p– (t)(x(n–)(t))p

xp(t)
x′(t)

x(n–)(t)

≤ –
(p – )βn–(t, T) exp( 

p–
∫ t

t
r(τ )
a(τ ) dτ )

z


p– (t)

a
p

p– (t)z
p
n (t)(x(n–)(t))p

xp(t)
.

Setting γ = p – , we have

w′(t) ≤ –z(t)Q(t) +
[

z′
+(t)
z(t)

–
r(t)
a(t)

]
w(t)

–
(p – )βn–(t, T) exp( 

p–
∫ t

t
r(τ )
a(τ ) dτ )

z


p– (t)
w

γ +
γ (t)

≤ –z(t)Q(t) +
[

z′
+(t)
z(t)

–
r(t)
a(t)

]

+
w(t)

–
(p – )βn–(t, T) exp( 

n
∫ t

t
r(τ )
a(τ ) dτ )

z


p– (t)
w

γ +
γ (t). (.)

Let

B =
[

z′
+(t)
z(t)

–
r(t)
a(t)

]

+
, A =

(p – )βn–(t, T) exp( 
p–

∫ t
t

r(τ )
a(τ ) dτ )

z


p– (t)
, u = w(t).

Then by Lemma ., we obtain, for all t ≥ T ,

w′(t) ≤ –z(t)Q(t) +


pp

[
z′

+(t)
z(t)

–
r(t)
a(t)

]p

+

z(t)
β

p–
n–(t, T) exp(

∫ t
t

r(τ )
a(τ ) dτ )

.

Integrating the above inequality from T to t for ≥ T , we get

∫ t

T

[
z(s)Q(s) –


pp

[
z′

+(s)
z(s)

–
r(s)
a(s)

]p

+

z(s)
β

p–
n–(s, T) exp(

∫ s
t

r(τ )
a(τ ) dτ )

]
ds

≤ w(T) – w(t) < w(T).

By taking lim sup on both sides as t → ∞, we obtain a contradiction to condition (c).
Therefore, every solution x(t) of (.) is either oscillatory or tends to zero as t → ∞.

Part III: Assume condition (c) holds. From (.) we have, for H ∈H∗ and t ≥ T ,

∫ t

T
H(t, s)z(s)Q(s) ds ≤ –

∫ t

T
H(t, s)w′(s) ds +

∫ t

T
H(t, s)w(s)

[
z′

+(s)
z(s)

–
r(s)
a(s)

]
ds

–
∫ t

T
H(t, s)

(p – )βn–(s, T) exp( 
p–

∫ s
t

r(τ )
a(τ ) dτ )

z


p– (s)
w

γ +
γ (s) ds.



Zhang et al. Advances in Difference Equations  (2015) 2015:357 Page 13 of 16

By integration by parts we obtain

–
∫ t

T
H(t, s)w′(s) ds = H(t, T)w(T) +

∫ t

T
H ′

s(t, s)w(s) ds.

It follows that
∫ t

T
H(t, s)z(s)Q(s) ds ≤ H(t, T)w(T) +

∫ t

T

[
H ′

s(t, s) + H(t, s)
(

z′
+(s)
z(s)

–
r(s)
a(s)

)]

+
w(s) ds

–
∫ t

T
H(t, s)

(p – )βn–(s, T) exp( 
p–

∫ s
t

r(τ )
a(τ ) dτ )

z


p– (s)
w

γ +
γ (s) ds.

Let γ = p – , u = w(s) and

B =
[

H ′
s(t, s) + H(t, s)

(
z′

+(s)
z(s)

–
r(s)
a(s)

)]

+
,

A = H(t, s)
(p – )βn–(s, T) exp( 

p–
∫ s

t
r(τ )
a(τ ) dτ )

z


p– (s)
,

by Lemma . we obtain, for all t ≥ T ,

∫ t

T
H(t, s)z(s)Q(s) ds ≤ H(t, T)w(T) +

∫ t

T

[H ′
s(t, s) + H(t, s)( z′

+(s)
z(s) – r(s)

a(s) )]p
+z(s)

β
p–
n–(s, T)Hp–(t, s)pp exp(

∫ s
t

r(τ )
a(τ ) dτ )

ds.

That is,


H(t, T)

∫ t

T

[
H(t, s)z(s)Q(s) –

[H ′
s(t, s) + H(t, s)( z′

+(s)
z(s) – r(s)

a(s) )]p
+z(s)

ppβ
p–
n–(s, T)Hp–(t, s) exp(

∫ s
t

r(τ )
a(τ ) dτ )

]
ds ≤ w(T).

By taking lim sup on both sides as t → ∞, we obtain a contradiction to condition (d).
Therefore, every solution x(t) of (.) is either oscillatory or tends to zero as t → ∞.

When n is even, from Lemma . we see that only (.) holds. Similarly, we can show
that (.) is oscillatory. We omit the details.

The proof is complete. �

Proof of Theorem . Suppose to the contrary that (.) has a nonoscillatory solution x(t).
Without loss of generality, we may assume that x(t) is eventually positive. Then, by (H)-
(H), there exists a T ∈ [t,∞) such that for t ≥ T , x(t) > , and Lemmas . and . hold.

When n is odd, from Lemma . we see that (.) holds or limt→∞ x(t) = . If (.)
holds, we set φ(t) := a(t) exp(

∫ t
t

r(τ )
a(τ ) dτ )(x(n–)(t))p–. Then φ(t) >  and φ′(t) <  for t ≥ T ,

and limt→∞ φ(t) = ζ ≥ . By (.), it follows that

φ′(t) + exp

(∫ t

t

r(τ )
a(τ )

dτ

)
q(t)

(
x
(
g(t)

))p– = . (.)

Integrating both sides of (.) from t to ∞, we obtain

ζ – φ(t) +
∫ ∞

t
exp

(∫ s

t

r(τ )
a(τ )

dτ

)
q(s)

(
x
(
g(s)

))p– ds = . (.)
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When g(t) ≥ t, we have

ζ – φ(t) +
(
x(t)

)p–
∫ ∞

t
exp

(∫ s

t

r(τ )
a(τ )

dτ

)
q(s) ds < ,

by which we have reached a contradiction if
∫ ∞

t exp(
∫ s

t
r(τ )
a(τ ) dτ )q(s) ds = ∞. If

∫ ∞
t exp(

∫ s
t

r(τ )
a(τ ) dτ )q(s) ds < ∞, we get

φ(t) ≥ (
x(t)

)p–
∫ ∞

t
exp

(∫ s

t

r(τ )
a(τ )

dτ

)
q(s) ds.

By Lemma ., we obtain

βp–
∗ (t, T)

∫ ∞

t
exp

(∫ s

t

r(τ )
a(τ )

dτ

)
q(s) ds

≤ β
p–
n– (t, T)

∫ ∞

t
exp

(∫ s

t

r(τ )
a(τ )

dτ

)
q(s) ds ≤ ,

which is a contradiction to (.).
When g(t) ≤ t and g ′(t) > , by (.), we get

ζ – φ(t) +
(
x
(
g(t)

))p–
∫ ∞

t
exp

(∫ s

t

r(τ )
a(τ )

dτ

)
q(s) ds < ,

by which we have reached a contradiction if
∫ ∞

t exp(
∫ s

t
r(τ )
a(τ ) dτ )q(s) ds = ∞. If

∫ ∞
t exp(

∫ s
t

r(τ )
a(τ ) dτ )q(s) ds < ∞, we get

φ
(
g(t)

) ≥ φ(t) ≥ (
x
(
g(t)

))p–
∫ ∞

t
exp

(∫ s

t

r(τ )
a(τ )

dτ

)
q(s) ds.

By Lemma ., we obtain

βp–
∗ (t, T)

∫ ∞

t
exp

(∫ s

t

r(τ )
a(τ )

dτ

)
q(s) ds

≤ β
p–
n–

(
g(t), T

)∫ ∞

t
exp

(∫ s

t

r(τ )
a(τ )

dτ

)
q(s) ds ≤ ,

which is a contradiction to (.). Therefore, every solution x(t) of (.) is either oscillatory
or tends to zero as t → ∞.

When n is even, from Lemma . we see that only (.) holds. Similarly, we can show
that (.) is oscillatory. We omit the details.

The proof is complete. �

Proof of Theorem . Suppose to the contrary that (.) has a nonoscillatory solution x(t).
Without loss of generality, we may assume that x(t) is eventually positive. Then, by (H)-
(H), there exists a T ∈ [t,∞) such that for t ≥ T , x(t) > , x(g(t)) > , and Lemmas .
and . hold.
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When n is odd, from Lemma . we see that either (.) holds or limt→∞ x(t) = . If (.)
holds, the rest of the proof is separated into two parts corresponding to conditions (a) and
(b), respectively.

Part I: Assume condition (a) holds.
Define w(t) as in (.). By x(t) > , and (.) we obtain

w′(t) ≤ –z(t)Q(t) +
[

z′(t)
z(t)

–
r(t)
a(t)

]
w(t) –

(a(t)z(t)(x(n–)(t))p–)

(xp–(t))
(p – )xp–(t)x′(t)

z(t)a(t)(x(n–)(t))p–

≤ –z(t)Q(t) +
[

z′(t)
z(t)

–
r(t)
a(t)

]
w(t) –

(p – )xp–(t)
z(t)a(t)(x(n–)(t))p–

x′(t)
x(n–)(t)

(
w(t)

).

From this and Lemma ., we get

w′(t) ≤ –z(t)Q(t) + w(t)
[

z′(t)
z(t)

–
r(t)
a(t)

]
–

(p – ) exp(
∫ t

t
r(τ )
a(τ ) dτ )

z(t)
β∗(t, T)

(
w(t)

). (.)

By completing the square for w(t) on the right-hand side, we have

w′(t) ≤ –z(t)Q(t) +
[ z′(t)

z(t) – r(t)
a(t) ]z(t)

(p – ) exp(
∫ t

t
r(τ )
a(τ ) dτ )β∗(t, T)

.

Integrating the above inequality from T to t for t ≥ T , we get

∫ t

T

[
z(s)Q(s) –

[ z′(s)
z(s) – r(s)

a(s) ]z(s)

(p – ) exp(
∫ s

t
r(τ )
a(τ ) dτ )β∗(s, T)

]
ds ≤ w(T) – w(t) < w(T).

Taking lim sup on both sides as t → ∞, we obtain a contradiction to condition (a). There-
fore, every solution x(t) of (.) is either oscillatory or tends to zero as t → ∞.

Part II: Assume condition (b) holds.
Based on (.), the proof is similar to those of Part III of Theorem . and Part I of

Theorem ., and hence it is omitted.
When n is even, from Lemma . we see that only (.) holds. Similarly, we can show

that (.) is oscillatory and hence omit its proof.
The proof is complete. �

6 Conclusions
In this paper, we have discussed the asymptotics and oscillation for nth-order nonlinear
differential equation (.), where the deviation argument g(t) may be retarded, advanced,
or mixed. Under certain assumptions, we have derived a complete characterization of
an eventually positive solution x(t) of (.): there exists T ∈ R such that for all t ≥ T ,
(a(t)|x(n–)(t)|p–xn–(t))′ ≤ , x(n)(t) < , and

(i) x(j)(t) >  (j = , , . . . , n – ) when n is even;
(ii) either x(j)(t) >  (j = , , . . . , n – ) holds or limt→∞ x(t) =  when n is odd.
By using generalized Riccati techniques and integral averaging techniques, we have

proved that under a number of conditions:
(i) every solution x(t) of (.) is oscillatory or tends to zero as t → ∞ when n is odd;

(ii) equation (.) is oscillatory when n is even.
Also, we have given two examples to illustrate the obtained results.
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