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Abstract
In this paper, we use the properties of Chebyshev polynomials, elementary methods,
and combinational techniques to study the computational problem of one kind of
convolution sums involving second kind Chebyshev polynomials, and we give an
exact computational method, which expresses the sums as second kind Chebyshev
polynomials. As some applications of our results, we also obtain several new identities
and congruences involving the second kind Chebyshev polynomials, Fibonacci
numbers, and Lucas numbers.
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1 Introduction
For any integer n ≥ , the famous Chebyshev polynomials of the first and second kind
Tn(x) and Un(x) are defined as follows:

Tn(x) =
n


[ n
 ]∑

k=

(–)k (n – k – )!
k!(n – k)!

(x)n–k

and

Un(x) =
[ n

 ]∑

k=

(–)k (n – k)!
k!(n – k)!

(x)n–k ,

where [m] denotes the greatest integer ≤ m.
It is clear that Tn(x) and Un(x) are the second-order linear recurrence polynomials, they

satisfy the recurrence formulas

T(x) = , T(x) = x and Tn+(x) = xTn(x) – Tn–(x) for all n ≥ ,

U(x) = , U(x) = x and Un+(x) = xUn(x) – Un–(x) for all n ≥ .

The general formulas of Tn(x) and Un(x) are

Tn(x) =


[(

x +
√

x – 
)n +

(
x –

√
x – 

)n] ()
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and

Un(x) =



√

x – 

[(
x +

√
x – 

)n+ –
(
x –

√
x – 

)n+]. ()

The generating functions of Tn(x) and Un(x) are

 – xt
 – xt + t =

∞∑

n=

Tn(x)tn (|x| < , |t| < 
)

and


 – xt + t =

∞∑

n=

Un(x)tn (|x| < , |t| < 
)
.

As regards the elementary properties of Chebyshev polynomials, some authors had
studied them, and they obtained many interesting conclusions. For example, Zhang []
proved that for any positive integer k and nonnegative integer n, one has the identity

∑

a+a+···+ak+=n
Ua (x) · Ua (x) · · ·Uak+ (x) =


k · k!

U (k)
n+k(x), ()

where U (k)
n (x) denotes the kth derivative of Un(x) with respect to x, the summation is taken

over all k +-dimension nonnegative integer coordinates (a, a, . . . , ak+) such that a +a +
· · · + ak+ = n.

As some applications of (), Zhang [] obtained some identities involving Fibonacci
numbers and Lucas numbers.

Ma and Zhang [], Li [], Wang and Zhang [], Cesarano [], Lee and Wong [] also
proved a series of identities involving Chebyshev polynomials. Bhrawy et al. (see [–])
and Bircan and Pommerenke [] obtained many important applications of the Chebyshev
polynomials. For an overview of some new work related to the generating functions of
Chebyshev polynomials of the first and the second kind, one may refer to Cesarano [].

It is clear that an interesting problem is whether one can express U (k)
n+k(x) by the second

kind Chebyshev polynomials.
It seems that none had studied this problem yet, at least we have not seen any related

result before. The problem is interesting and important, because it can reveal the inner
relations of the second kind Chebyshev polynomials, and it can also express a complex
sum in a simple form.

This paper, as a note of [], we give an exact computational method, which express
U (k)

n+k(x) by the second Chebyshev polynomials. That is, we shall prove the following main
conclusion.

Theorem For any positive integer k and nonnegative integer n, we have the identity
∑

a+a+···+ak+=n
Ua (x) · Ua (x) · · ·Uak+ (x)

=


k · k!
U (k)

n+k(x) =


k · k!
·
[

(k – )x
 – x · U (k–)

n+k (x) –
n + n(k + ) + k

 – x · U (k–)
n+k (x)

]
,

where ( – x)U ′
n(x) = (n + )Un–(x) – nxUn(x).
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It is clear that this theorem gives an exact computational method, which expresses
U (k)

n+k(x) by Chebyshev polynomials Un(x). From this theorem we may immediately deduce
the following.

Corollary  For any positive integers n ≥ k ≥ , we have the identity

∑

a+a+···+ak+=n
Ua (x) · Ua (x) · · ·Uak+ (x)

=


k · k! · ( – x)k · [R(n, k, x) · Un+k–(x) + S(n, k, x) · Un+k(x)
]
,

where R(n, k, x) and S(n, k, x) are two computable polynomials of n, k, and x with integral
coefficients.

Especially for k =  and , we have the following.

Corollary  For any nonnegative integer n, we have the identity

∑

a+b+c=n

Ua(x) · Ub(x) · Uc(x)

=
(n + )x
( – x) · Un+(x) –

(n + )(n + ) – (n + )(n + )x

( – x) · Un+(x).

Corollary  For any nonnegative integer n, we have the identity

∑

a+b+c+d=n

Ua(x) · Ub(x) · Uc(x) · Ud(x)

=
(n + )((n + n + )x – (n + n + ))

( – x) · Un+(x)

–
x(n + )((n + n + )x – (n + n – ))

( – x) · Un+(x).

It is clear that the left-hand side of () is a polynomial of x with integral coefficients, so
from Corollary  and Corollary  we can also deduce the following.

Corollary  For any nonnegative integer n, we have the congruence

(n + )xUn+(x) – (n + )
(
n +  – (n + )x)Un+(x) ≡ 

(
mod

(
 – x)).

Corollary  For any nonnegative integer n, we have the congruence

(n + )
((

n + n + 
)
x –

(
n + n + 

))
Un+(x)

≡ x(n + )
((

n + n + 
)
x –

(
n + n – 

))
Un+(x)

(
mod

(
 – x)).

As some applications of our results, we find that there are some close relationships
among the Chebyshev polynomials, Fibonacci numbers Fn, and Lucas numbers Ln. These
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sequences are defined as

Fn =
√


[(
 +

√




)n

–
(

 –
√




)n]

and

Ln =
(

 +
√




)n

+
(

 –
√




)n

,

for all integers n ≥ .
It is clear that they also satisfy the second-order linear recurrence formulas Fn+ = Fn+ +

Fn, Ln+ = Ln+ + Ln for all n ≥  with F = , F = , L = , L = . Some papers related to
Fibonacci numbers and Lucas numbers can also be found in [–]. From our results we
can also deduce the following identities.

Corollary  For any positive integers m and n, we have the identity

∑

a+b+c=n

Fm(a+) · Fm(b+) · Fm(c+)

=
(n + )FmFm

F
m

· Fm(n+) –
(n + )(n + )F

m – (n + )(n + )F
m

F
m

· Fm(n+).

Corollary  For any positive integers m and n, we have the identity

∑

a+b+c+d=n

Fm(a+) · Fm(b+) · Fm(c+) · Fm(d+)

=
(n + )F

m((n + n + )L
m – (n + n + ))

F
m

· Fm(n+)

–
FmF

m(n + )((n + n + )L
m – (n + n – ))

F
m

· Fm(n+).

Taking m =  in Corollaries  and  we may immediately deduce the following.

Corollary  For any nonnegative integer n, we have the identities

∑

a+b+c=n

F(a+) · F(b+) · F(c+) =
(n + )


· F(n+) +

(n + )(n – )


· F(n+)

and

∑

a+b+c+d=n

F(a+) · F(b+) · F(c+) · F(d+)

=
(n + )(n + n + )


· F(n+) –

(n + )(n + n + )


· F(n+).

2 Several simple lemmas
In this section, we shall give several simple lemmas, which are necessary in the proofs of
our results. First of all we have the following.



Siyi Advances in Difference Equations  (2015) 2015:355 Page 5 of 8

Lemma  For any positive integers n ≥ k > , we have the identity

U (k)
n (x) =

(k – )x
 – x · U (k–)

n (x) +
(k – )k – n(n + )

 – x · U (k–)
n (x).

Proof It is clear that the second kind Chebyshev polynomials Un(x) satisfy the differential
equation

(
 – x) dy

dx – x
dy
dx

+ n(n + )y =  (n = , , , . . .).

So for any positive integer n ≥ k > , we have

(
 – x)U ′′

n (x) = xU ′
n(x) – n(n + )Un(x). ()

Differentiating () repeatedly (k – ) times we obtain

(
 – x)U (k)

n (x) – (k – )xU (k–)
n (x) – (k – )(k – )U (k–)

n (x)

= xU (k–)
n (x) + (k – )U (k–)(x) – n(n + )U (k–)

n (x)

or

U (k)
n (x) =

(k – )x
 – x · U (k–)

n (x) +
(k – )k – n(n + )

 – x · U (k–)
n (x).

This proves Lemma . �

Lemma  For any positive integers n ≥ k ≥ , we have the identity

U (k)
n (x) =


( – x)k · [R(n, k, x) · Un–(x) + S(n, k, x) · Un(x)

]
,

where R(n, k, x) and S(n, k, x) are two computable polynomials of n, k, and x with integral
coefficients.

Proof We prove Lemma  by complete induction. Note that we have the identity

(
 – x)U ′

n(x) = (n + )Un–(x) – nxUn(x)

or

U ′
n(x) =


( – x)

· [(n + )Un–(x) – nxUn(x)
]
. ()

So Lemma  holds for k = .
Assume that Lemma  holds for all positive integers  ≤ k ≤ m. That is, for all positive

integers  ≤ k ≤ m, we have

U (k)
n (x) =


( – x)k · [Rk(n, k, x) · Un–(x) + Sk(n, k, x) · Un(x)

]
. ()
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Then for k = m + , from (), (), and Lemma  we have

U (m+)
n (x) =

(m + )x
 – x · U (m)

n (x) +
(m – )(m + ) – n(n + )

 – x · U (m–)
n (x)

=


( – x)m+ · [Rm+(n, m + , x) · Un–(x) + Sm+(n, m + , x) · Un(x)
]
.

This proves Lemma  by complete induction. �

Lemma  For any positive integers m and n, we have the identities

Tn
(
Tm(x)

)
= Tmn(x) and Un

(
Tm(x)

)
=

Um(n+)–(x)
Um–(x)

.

Proof See Lemma  in Zhang []. �

3 Proof of the theorem
In this section, we shall complete the proofs of our all results. It is clear that our theorem
follows from () and Lemma . In fact, substituting n by n + k in Lemma  we have

U (k)
n+k(x) =

(k – )x
 – x · U (k–)

n+k (x) +
(k – )k – (n + k)(n + k + )

 – x · U (k–)
n+k (x). ()

Combining identities () and () we may immediately deduce
∑

a+a+···+ak+=n
Ua (x) · Ua (x) · · ·Uak+ (x)

=


k · k!
U (k)

n+k(x) =


k · k!
·
[

(k – )x
 – x · U (k–)

n+k (x) –
n + n(k + ) + k

 – x · U (k–)
n+k (x)

]
.

This proves our theorem.
It is clear that Corollary  follows from our theorem and Lemma .
Now we prove Corollary . Taking k =  in our theorem and noting that ( – x)U ′

n(x) =
(n + )Un–(x) – nxUn(x) we have

∑

a+b+c=n

Ua(x) · Ub(x) · Uc(x)

=


 · !
U ′′

n+(x) =



·
[

x
 – x · U ′

n+(x) –
n + n + 

 – x · Un+(x)
]

=
x

( – x)
·
[

n + 
 – x Un+(x) –

(n + )x
 – x Un+

]
–

(n + )(n + )
( – x)

Un+(x)

=
(n + )x
( – x) · Un+(x) –

(n + )(n + ) – (n + )(n + )x

( – x) · Un+(x).

This proves Corollary .
To prove Corollary , taking k =  in our theorem we have

∑

a+b+c+d=n

Ua(x) · Ub(x) · Uc(x) · Ud(x)

=


 · !
U ()

n+(x) =



·
[

x
 – x · U ′′

n+(x) –
n + n + 

 – x · U ′
n+(x)

]
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=
x

( – x)
·
[

x
 – x U ′

n+(x) –
(n + )(n + )

 – x Un+(x)
]

–
(n + )(n + )

( – x)
U ′

n+(x)

=
x – (n + )(n + )( – x)

( – x) ·
[

n + 
 – x Un+(x) –

(n + )x
 – x Un+(x)

]

–
(n + )(n + )x

( – x) · Un+(x)

=
(n + )((n + n + )x – (n + n + ))

( – x) · Un+(x)

–
x(n + )((n + n + )x – (n + n – ))

( – x) · Un+(x).

This proves Corollary .
Now we prove Corollary . Taking x = 

 in () and (), we note the identities

Tn

(



)
=




[(



+
√




– 
)n

+
(




–
√




– 
)n]

=



[(
 +

√




)n

+
(

 –
√




)n]
=




Ln ()

and

Un

(



)
=




√


 – 

[(



+
√




– 
)n+

–
(




–
√




– 
)n+]

= Fn+. ()

Applying Lemma  and () we also have

Un

(
Tm

(



))
=

Um(n+)–( 
 )

Um–( 
 )

=
Fm(n+)

Fm
. ()

Taking x = Tm( 
 ) in Corollary , applying (), (), and () we have

∑

a+b+c=n

Ua

(
Tm

(



))
· Ub

(
Tm

(



))
· Uc

(
Tm

(



))

=
∑

a+b+c=n

Fm(a+)

Fm
· Fm(b+)

Fm
· Fm(c+)

Fm

=
(n + )Lm

( – L
m) · Fm(n+)

Fm
–

(n + )(n + ) – (n + )(n + )L
m

( – L
m) · Fm(n+)

Fm

or

∑

a+b+c=n

Fm(a+) · Fm(b+) · Fm(c+)

=
(n + )FmFm

F
m

· Fm(n+) –
(n + )(n + )F

m – (n + )(n + )F
m

F
m

· Fm(n+),

where we have used the identities Fm · Lm = Fm and L
m –  =  · F

m.
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Similarly, taking x = Tm( 
 ) in Corollary , from (), (), and () we can also deduce the

identity

∑

a+b+c+d=n

Fm(a+) · Fm(b+) · Fm(c+) · Fm(d+)

=
(n + )F

m((n + n + )L
m – (n + n + ))

F
m

· Fm(n+)

–
FmF

m(n + )((n + n + )L
m – (n + n – ))

F
m

· Fm(n+).

This proves Corollaries  and .
Corollary  follows from Corollary  with m = , L = , F = F = , F = .
This completes the proofs of our all results.
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