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Abstract
In this paper, the outer synchronization of stochastic complex networks with
time-varying delay is investigated. A systematic method that allows one to construct
global Lyapunov functions for these systems is provided by employing results from
graph theory and Lyapunov method. By the construction of the Lyapunov function,
some sufficient conditions of pth moment exponential outer synchronization are
given. The theoretic result is also applied to an investigation of the outer
synchronization of stochastic time-varying delayed coupled oscillators on networks.
Finally, a numerical example is examined to illustrate the effectiveness of the results
developed.
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1 Introduction
In the real world, the structure of many coupled systems can be described by complex
networks [, ]. The complex networks, as a fundamental tool in understanding dynami-
cal behavior of real systems, have been gaining increasing recognition. Networks exhibit
complexities in the overall topological properties and dynamical properties of the network
nodes. A series of important research problems have resulted from the complex nature of
networks. Synchronization is one of the typical problems of complex networks, which has
attracted lots of attention. Synchronization of complex networks is widely applied to many
fields, such as neural networks, biological systems, and so on [–].

In fact, there are two kinds of network synchronization. One network synchronization
is concerned with the synchronization among the nodes within a network, which is called
inner synchronization. The other is outer synchronization, which is a synchronization
between two or more complex networks. Li et al. were first to study the complete outer
synchronization problem for two complex networks with identical topological structure
[]. Then in [], the outer synchronization for two complex networks was extended to
the discrete time case. Later on, an increasing number of researchers devoted themselves
to the work about outer synchronization. It is noticed that the outer synchronization be-
tween two nonidentical networks with circumstance noise was investigated in [], which
analyzed both the inner and the outer synchronization between two coupled discrete-
time networks with time delays. In [], the finite-time stochastic outer synchronization
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between two complex dynamical networks with different topological structure was stud-
ied. The authors of [] studied the effect of noise on the outer synchronization of two
unidirectionally coupled complex dynamical networks. Reference [] obtained several
sufficient conditions for the generalized outer synchronization between complex dynam-
ical networks. More research on outer synchronization can be found in [–] and the
references therein.

In real networks, time delays cannot be neglected due to the finite information trans-
mission and processing speeds among the network nodes. Hence, it is reasonable and
necessary to study the effect of time delays which may affect the dynamical behavior of
complex networks. For instance, in [], outer synchronization of uncertain complex de-
layed networks with adaptive coupling was studied. References [] and [] investigated
mixed outer synchronization and finite-time outer synchronization of complex networks
with coupling time-varying delay, respectively. On the other hand, another addition which
exists in nature and man-made systems should also be considered, that is, noise, which is
commonly regarded as a random and persistent disturbance obscuring or reducing the
clarity of the signal. Hence, noise is another important factor affecting the behavior for
dynamical networks. For this reason, synchronization criteria for stochastic systems have
been obtained in the literature [, , , ] by various approaches. Furthermore, it is a
significant task to understand how noise influences the dynamics of complex networks.
For example, [] studied the synchronization between two coupled chaotic systems de-
termined by the distribution of white noise and analytically proved that synchronizability
of coupled chaotic systems could be promoted by white noise. In [], the synchronization
criteria have been established for two nonidentical networks with circumstance noise.

Over the years, lots of efficient synchronization methods for complex networks have
been developed by many researchers. In most of the studies above, the criteria ensuring
synchronization on networks have been derived mainly based on the Lyapunov method.
However, how to construct a global Lyapunov function for the system on networks by
means of the Lyapunov method is a challenge for researchers. Fortunately, [] provided
a systematic method which is on the base of graph theory, which allows us to construct a
global Lyapunov function for large-scale coupled systems. Based on graph theory, a net-
work can be mathematically described by a directed graph consisting of vertices and di-
rected arcs connecting them.

Motivated by the above discussion, outer synchronization of stochastic complex net-
works with time-varying delay (SCNVD) is studied in this paper. Based on graph theory,
SCNVD can be described as a directed graph in which a system of stochastic time-varying
delayed differential equations is assigned at each vertex, and the directed arcs indicate
interconnections and interactions among vertex systems. A systematic method to con-
struct a global Lyapunov function for the SCNVD is provided. Then several sufficient cri-
teria for pth moment exponential outer synchronization of SCNVD will be established by
constructing a global Lyapunov function and utilizing stochastic stability theory. More-
over, the theoretic result will be applied to an investigation of the outer synchronization
of stochastic time-varying delayed coupled oscillators on networks.

The rest of the paper is organized as follows. In the next section, some basic concepts
and results on graph theory, our mathematical model of the SCNVD and some preliminary
results are introduced. In Section , a systematic method to construct a global Lyapunov
function for the SCNVD based on the Lyapunov method and graph theory is given, and the
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sufficient criteria for the outer synchronization are derived. In Section , we will introduce
stochastic time-varying delayed coupled oscillators on networks and present the sufficient
conditions of the outer synchronization. In Section , a numerical simulation is given to
show the effectiveness of the theoretical results.

Notation Throughout the paper, unless otherwise specified, we will employ the follow-
ing notations. Let R and R

n be the set of real numbers and n-dimensional Euclidean
space, respectively. We have R


+ = [, +∞), L = {, , . . . , L}. Let (�,F ,F,P) be a complete

probability space with filtration F = Ft≥ satisfying the usual conditions, and B(·) be the
one-dimensional Brownian motion defined on the space. The mathematical expectation
with respect to the given probability measure P is denoted E(·). Let | · | denote the Eu-
clidean norm for vectors or the trace norm for matrices. Denote by C([–τ , ],Rn) the
space of continuous functions x : [–τ , ] → R

n with norm |x| = sup–τ≤t≤ |x(t)|. Write
C,(Rn × R


+;R

+) for the family of all nonnegative functions V (x, t) on R
n × R


+ that are

continuously twice differentiable in x and once in t. If A is a vector or matrix, its transpose
is denoted by AT . I stands for the identity matrix of appropriate dimensions.

2 Preliminaries
In this section, we will give some useful preliminaries and a model description.

2.1 Basic concepts on graph theory
Since the complex network considered in this paper is built on a directed graph, it is nec-
essary to recall some concepts and results on graph theory in this subsection.

A directed graph G = (V , E) contains a set V = {, , . . . , N} of vertices and a set of E of
arcs (i, j) leading from initial vertex i to terminal vertex j. A subgraph H of G is said to be
spanning if H and G have the same vertex set. A graph G is weighted if each arc (j, i) is
assigned a positive weight aij. In our convention, aij >  if and only if there exists an arc
from vertex j to vertex i in G , and we call A = (aij)N×N as the weight matrix. The weight
W (G) of G is the product of the weights on all its arcs. A directed path P in G is a subgraph
with distinct vertices {i, i, . . . , is} such that its set of arcs is {(ik , ik+) : k = , , . . . , s – }.
If is = i, we call P a directed cycle. A connected subgraph T is a tree if it contains no
cycles. A tree T is rooted at vertex i, called the root, if i is not a terminal vertex of any
arcs, and each of the remaining vertices is a terminal vertex of exactly one arc. A subgraph
Q is unicyclic if it is a disjoint union of rooted trees whose roots form a directed cycle.
A digraph G is strongly connected if, for any pair of distinct vertices, there exists a directed
path from one to the other. Denote the digraph with weight matrix A as (G, A). A weighted
digraph (G, A) is said to be balanced if W (C) = W (–C) for all directed cycles C . Here, –C
denotes the reverse of C and is constructed by reversing the direction of all arcs in C . For
a unicyclic graph Q with cycle CQ, let Q̃ be the unicyclic graph obtained by replacing CQ
with –CQ. Suppose that (G, A) is balanced, then W (Q) = W (Q̃).

Here we show a lemma which will be used in the proofs of our main results.

Lemma . [] Assume N ≥ . Let ci denote the cofactor of the ith diagonal element of L.
Then the following identity holds:

N∑

i,j=

ciaijFij(xi, xj) =
∑

Q∈Q
w(Q)

∑

(s,r)∈E(CQ)

Frs(xr , xs),
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where Fij(xi, xj),  ≤ i, j ≤ N , are arbitrary functions, Q is the set of all spanning unicyclic
graph of (G, A), w(Q) is the weight of Q, and CQ denotes the directed cycle of Q. Here ci =
∑

T ∈Ti
w(T ), i = , , . . . , N , where Ti is the set of all spanning trees T of (G, A) that are

rooted at vertex i and w(T ) is the weight of T . In particular, if (G, A) is strongly connected,
then ci >  for  ≤ i ≤ n.

2.2 Model formulation
In this paper, we describe the SCNVD as a weighted diagraph (G, A). We first have L (≥ )
individual networks and describe them on a digraph G .

We first assume that dynamical system in the kth vertex is described by

dxk(t) =
[
fk

(
xk(t), t

)
+ gk

(
xk

(
t – τk(t)

)
, t

)]
dt, (.)

where xk(t) = (x()
k , x()

k , . . . , x(mk )
k )T ∈ R

mk is the state of the kth vertex, fk and gk : Rmk ×
R


+ → R

mk are continuously differentiable nonlinear vector functions, and τk(t) : R
+ →

[, τ ] stands for the time delay of the kth vertex system.
Second, consider the dispersal factor and the time delays result from dispersal. The dis-

persal from the hth vertex to the kth vertex is represented by the function Hkh : Rmk ×
R


+ → R

mk . Here Hkh ≡  if and only if there exists no dispersal from the hth vertex to the
kth vertex in G . Also, τ (kh)(t) : R

+ → [, τ ] reflects the transmissible time from vertex h to
vertex k. Thus time-varying delayed complex networks can be described as follows:

dxk(t) =

[
fk

(
xk(t), t

)
+ gk

(
xk

(
t – τk(t)

)
, t

)

+
L∑

h=

Hkh
(
xh

(
t – τ (kh)(t)

)
, t

)
]

dt, k ∈ L. (.)

To realize the outer synchronization between two complex networks, we refer to the sys-
tem (.) as the drive network, and the response network is given by the following:

dyk(t) =

[
fk

(
yk(t), t

)
+ gk

(
yk

(
t – τk(t)

)
, t

)
+

L∑

h=

Hkh
(
yh

(
t – τ (kh)(t)

)
, t

)
]

dt

+ σ
(
yk(t) – xk(t)

)
dB(t), k ∈ L. (.)

Define ek = yk – xk to be the kth error state vector between networks (.) and (.); then
one gets the following error system:

dek(t) =

[
fk

(
yk(t), t

)
– fk

(
xk(t), t

)
+ gk

(
yk

(
t – τk(t)

)
, t

)

– gk
(
xk

(
t – τk(t)

)
, t

)
+

L∑

h=

(
Hkh

(
yh

(
t – τ (kh)(t)

)
, t

)

– Hkh
(
xh

(
t – τ (kh)(t)

)
, t

))
]

dt + σ ek(t) dB(t). (.)
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Here the functions fk , gk , and Hkh satisfy the global Lipschitz condition. Based on the the-
ory of stochastic differential equation, the error system (.) possesses a unique solution.
Assume that, for any initial condition ek() = yk() – xk(), the error system (.) has a
unique solution ek(t, ek()) = φ(t), where φ(t) is a continuous function on [–τ , ]. Obvi-
ously, ek(t, ) ≡  is a trivial solution for the error system (.). Throughout this paper, the
following hypothesis and definitions are needed to derive our main results.

Assumption . Assume that functions τk(t) and τ (kh)(t), k, h ∈ L are differentiable and
theirs derivative are bounded by a constant τ̄ ∈ [, ).

Definition . The network (.) is said to reach pth moment exponentially outer syn-
chronization (ME-synchronization) with network (.), if for any initial state φ, we have

lim sup
t→∞


t

ln
(
E

∣∣e(t,φ)
∣∣p) < , i ∈ L. (.)

Definition . Function Vk(ek , t) ∈ C,(Rmk ×R

+;R

+) is called vertex-Lyapunov function
for the system (.), if the following assumptions hold:

(A) There exist positive constants p ≥ , αk , βk , such that

αk|ek|p ≤ Vk(ek , t) ≤ βk|ek|p. (.)

(A) There exist positive constants σk , ηk , εkh, akh, and a function Fkh(ek , eh) such that

LVk(ek , t) ≤ –σk|ek|p + ηk
∣∣ek

(
t – τk(t)

)∣∣p +
L∑

h=

εkh
∣∣ek

(
t – τ (hk)(t)

)∣∣p

+
L∑

h=

akhFkh
(
ek

(
t – τ (hk)(t)

)
, eh

(
t – τ (kh)(t)

))
, (.)

where the differential operator LVk(ek , t) associated with the kth vertex system is defined
by

LVk(ek , t) =
∂Vk(ek , t)

∂t
+

∂Vk(ek , t)
∂ek

[
fk

(
yk(t), t

)
– fk

(
xk(t), t

)

+ gk
(
yk

(
t – τk(t)

)
, t

)
– gk

(
xk

(
t – τk(t)

)
, t

)

+
L∑

h=

(
Hkh

(
yh

(
t – τ (kh)(t)

)
, t

)
– Hkh

(
xh

(
t – τ (kh)(t)

)
, t

))
]

+



trace
(
σ ek(t)

)T V ′′
eeσ ek(t). (.)

(A) Along each directed cycle CQ of the weighted digraph (G, A), we have

∑

(h,k)∈E(CQ)

Fkh(ek , eh) ≤  (.)

for all ek ∈R
mk , eh ∈R

mh .
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3 Main results
We investigate outer synchronization of SCNVD in this section, and our main results for
the outer synchronization criteria of SCNVD are presented.

3.1 Lyapunov-type theorem
Theorem . Suppose that the error system (.) admits vertex-Lyapunov functions
Vk(ek , t), and digraph (G, A) is strongly connected, in which A = (akh)L×L. If

ηk +
L∑

h=

εkh < σk( – τ̄ ), (.)

then the network (.) and (.) will reach ME-synchronization.

Proof Let the construction of the Lyapunov function for the error system (.) be in the
form of

V (e, t) =
L∑

k=

ckVk(ek , t), (.)

in which ck is the cofactor of the kth diagonal element of Laplacian matrix of digraph
(G, A). It is obvious from Lemma . that ck > , because the digraph (G, A) is strongly
connected.

Using (.), we obtain

V (e, t) =
L∑

k=

ckVk(ek , t) ≤
L∑

k=

ckβk|ek|p ≤
( L∑

k=

ckβk

)
|e|p

and

V (e, t) ≥
L∑

k=

ckαk|ek|p

=
L∑

j=

cjαj

L∑

k=

[
ckαk∑L
i= ciαi

(|ek|
) p



]

≥
L∑

j=

cjαj

[ L∑

k=

ckαk∑L
i= ciαi

(|ek|
)
] p



≥
( L∑

k=

ckαk

)– p
 (

min
≤k≤L

{ckαk}
) p

 |e|p.

Denote β =
∑L

k= ckβk and α = (
∑L

k= ckαk)– p
 (mink∈L{ckαk}) p

 , then we have

α|e|p ≤ V (e, t) ≤ β|e|p.
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By (.), (.), (.), and Lemma ., we can see that

LV (e, t) =
L∑

k=

ckLVk(ek , t)

≤ –
L∑

k=

ckσk|ek|p +
L∑

k=

ckηk
∣∣ek

(
t – τk(t)

)∣∣p

+
L∑

k,h=

ckεkh
∣∣ek

(
t – τ (hk)(t)

)∣∣p

+
L∑

k,h=

ckakhFkh
(
ek

(
t – τ (hk)(t)

)
, eh

(
t – τ (kh)(t)

))

= –
L∑

k=

ckσk|ek|p +
L∑

k=

ckηk
∣∣ek

(
t – τk(t)

)∣∣p

+
L∑

k,h=

ckεkh
∣∣ek

(
t – τ (hk)(t)

)∣∣p

+
∑

Q∈Q
w(Q)

∑

(h,k)∈E(CQ)

Fkh
(
ek

(
t – τ (hk)(t)

)
, eh

(
t – τ (kh)(t)

))

≤ –
L∑

k=

ckσk|ek|p +
L∑

k=

ckηk
∣∣ek

(
t – τk(t)

)∣∣p

+
L∑

k,h=

ckεkh
∣∣ek

(
t – τ (hk)(t)

)∣∣p.

It is not difficult to see from (.) that there exists a constant γ >  which is sufficiently
small, such that

γβk – σk +
eγ τ

 – τ̄

(
ηk +

L∑

h=

εkh

)
< . (.)

Using the Itô formula and the condition (A), one shows that

E
[
eγ tV

(
e(t), t

)]
= EV

(
φ(), 

)
+ E

∫ t


eγ s[LV

(
e(s), s

)
+ γ V

(
e(s), s

)]
ds

≤ EV
(
φ(), 

)
+

L∑

k=

ck(γβk – σk)E
∫ t


eγ s∣∣ek(s)

∣∣p ds

+
L∑

k=

ckηkE

∫ t


eγ s∣∣ek

(
s – τk(s)

)∣∣p ds

+
L∑

h,k=

ckεkhE

∫ t


eγ s∣∣ek

(
s – τ (hk)(s)

)∣∣p ds.
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By virtue of an integration by substitution and (.), one can obtain

E
[
eγ tV

(
e(t), t

)]

≤ EV
(
φ(), 

)
+

L∑

k=

ck

(
γβk – σk +

ηkeγ τ

 – τ̄
+

L∑

h=

εkh
eγ τ

 – τ̄

)
E

∫ t


eγ s∣∣ek(s)

∣∣p

+
eγ τ

 – τ̄

L∑

k=

ck

(
ηk +

L∑

h=

εkh

)
E

∫ 

–τ

eγ t max
–τ≤s≤

∣∣ek(s)
∣∣p ds

≤ EV
(
φ(), 

)
+

eγ τ

γ ( – τ̄ )

( L∑

k=

ckηk +
L∑

h,k=

ckεkh

)
E|φ|p

≤
[

eγ τ

γ ( – τ̄ )

( L∑

k=

ckηk +
L∑

h,k=

ckεkh

)
+ β

]
E|φ|p. (.)

Then we have

E
[
eγ tα

∣∣e(t)
∣∣p] ≤ E

[
eγ tV

(
e(t), t

)] ≤
[

eγ τ

γ ( – τ̄ )

( L∑

k=

ckηk +
L∑

h,k=

ckεkh

)
+ β

]
E|φ|p.

So, we can easily compute that

E
[∣∣e(t)

∣∣p] ≤ 
α

[
eγ τ

γ ( – τ̄ )

( L∑

k=

ckηk +
L∑

h,k=

ckεkh

)
+ β

]
e–γ t

E|φ|p.

Hence,

lim sup
t→∞


t

lnE
∣∣e(t)

∣∣p ≤ –γ .

That is, the trivial solution of (.) is ME-stable and the pth moment Lyapunov expo-
nent is not greater than –γ , which means the networks (.) and (.) will reach ME-
synchronization. �

Remark . Theorem . shows that the Lyapunov function V (e, t) for the system (.)
can be obtained by the weighted sum of Vk(ek , t). Hence finding the vertex-Lyapunov func-
tion Vk(ek , t) is a key point in the study of the stability for the system (.). In the practical
applications, complex networks are coupled together in regular ways by the simple and
nearly identical dynamical systems whose Lyapunov functions have been obtained. The
Lyapunov function of these systems can be chosen as the Lyapunov function of vertex
systems.

With the help of some properties in graph theory, now some other simple conditions
are discussed. Note that if the digraph (G, A) is balanced, then W (Q) = W (–Q). We can
obtain

L∑

k,h=

ckakhFkh(xk , xh) =



∑

Q∈Q
w(Q)

∑

(k,h)∈E(CQ)

[
Fkh(xk , xh) + Fhk(xh, xk)

]
.
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In this case, the condition (A) is replaced by the following:

∑

(h,k)∈E(CQ)

[
Fkh(ek , eh) + Fhk(eh, ek

] ≤ . (.)

Consequently, we get the following corollary.

Corollary . Suppose that digraph (G, A) is balanced. Then the conclusion of Theorem .
holds if (.) is replaced by (.).

3.2 Coefficients-type theorem
In this subsection, based on the Lyapunov method, a sufficient criterion of exponential
outer synchronization which is easily verifiable is established in the form of coefficients.

Theorem . Suppose that the following conditions hold:
(B) Let p ≥  and the digraph (G, A) is strongly connected. Suppose there are positive

constants αk , βk , such that

eT
k
[
fk

(
yk(t)

)
– fk

(
xk(t)

)] ≤ –αk
∣∣ek(t)

∣∣ (.)

and

∣∣gk
(
yk

(
t – τk(t)

))
– gk(xk

(
t – τk(t)

)∣∣ ≤ βk
∣∣ek

(
t – τk(t)

)∣∣. (.)

(B) There are constants Akh, such that

∣∣Hkh
(
yk

(
t – τ (kh)(t)

))
– Hkh

(
xk

(
t – τ (kh)(t)

))∣∣ ≤ Akh
∣∣eh

(
t – τ (kh)(t)

)∣∣. (.)

(B) Suppose that

βk +
L∑

h=

Akh < σk( – τ̄ ) (.)

holds, where σk = pαk – (p – )βk – (p – )
∑L

h= Akh – p(p – )|σ |.
Then the networks (.) and (.) can reach ME-synchronization.

Proof Take the following function as the Lyapunov function of the kth vertex:

Vk(ek) = |ek|p. (.)

Then it follows easily by (.) and the condition (B) that

LVk(ek)

= p
∣∣ek(t)

∣∣p–eT
k (t)

[
fk

(
yk(t), t

)
– fk

(
xk(t), t

)
+ gk

(
yk

(
t – τk(t)

)
, t

)

– gk
(
xk

(
t – τk(t)

)
, t

)]
+ p

∣∣ek(t)
∣∣p–eT

k (t)
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×
L∑

h=

[(
Hkh

(
yh

(
t – τ (kh)(t)

)
, t

)
– Hkh

(
xh

(
t – τ (kh)(t)

)
, t

))]

+



trace
(
σ ek(t)

)T(
p
∣∣ek(t)

∣∣p–I + p(p – )
∣∣ek(t)

∣∣p–eT
k (t)ek(t)

)
σ ek(t)

≤ –p
∣∣ek(t)

∣∣p–
αk

∣∣ek(t)
∣∣ + p

∣∣ek(t)
∣∣p–eT

k (t)βk
∣∣ek

(
t – τk(t)

)∣∣

+ p
∣∣ek(t)

∣∣p–eT
k (t)

L∑

h=

[(
Hkh

(
yh

(
t – τ (kh)(t)

)
, t

)
– Hkh

(
xh

(
t – τ (kh)(t)

)
, t

))]

+ p(p – )|σ |∣∣ek(t)
∣∣p

=
[
–αkp + p(p – )|σ |]∣∣ek(t)

∣∣p + βkp
∣∣ek(t)

∣∣p–∣∣ek
(
t – τk(t)

)∣∣

+ p
∣∣ek(t)

∣∣p–eT
k (t)

L∑

h=

[(
Hkh

(
yh

(
t – τ (kh)(t)

)
, t

)
– Hkh

(
xh

(
t – τ (kh)(t)

)
, t

))]
. (.)

By using the Young inequality

|a|p|b|q ≤ ε|a|p+q +
q

p + q

[
p

ε(p + q)

] p
q
|b|p+q

for any a, b ∈R and any constants p, q, ε > , we can compute that

∣∣ek(t)
∣∣p–∣∣ek

(
t – τk(t)

)∣∣ ≤ p – 
p

∣∣ek(t)
∣∣p +


p
∣∣ek

(
t – τk(t)

)∣∣p, (.)

and combining with (.), the following can be obtained:

p
∣∣ek(t)

∣∣p–eT
k (t)

L∑

h=

[(
Hkh

(
yh

(
t – τ (kh)(t)

)
, t

)
– Hkh

(
xh

(
t – τ (kh)(t)

)
, t

))]

≤ p
∣∣ek(t)

∣∣p–
L∑

h=

Akh
∣∣eh

(
t – τ (kh)(t)

)
, t)

∣∣

≤ (p – )
L∑

h=

Akh
∣∣ek(t)

∣∣p +
L∑

h=

Akh
∣∣ek

(
t – τ (kh)(t)

)∣∣p. (.)

Then we have

LVk(ek) ≤ [
–αkp + p(p – )|σ |]∣∣ek(t)

∣∣p + (p – )βk
∣∣ek(t)

∣∣p + βk
∣∣ek

(
t – τk(t)

)∣∣p

+ (p – )
L∑

h=

Akh
∣∣ek(t)

∣∣p +
L∑

h=

Akh
∣∣ek

(
t – τ (kh)(t)

)∣∣p

=

[
–αkp + p(p – )|σ | + (p – )βk + (p – )

L∑

h=

Akh

]
∣∣ek(t)

∣∣p

+ βk
∣∣ek

(
t – τk(t)

)∣∣p +
L∑

h=

Akh
∣∣ek

(
t – τ (hk)(t)

)∣∣p

+
L∑

h=

Akh
(∣∣ek

(
t – τ (kh)(t)

)∣∣p –
∣∣ek

(
t – τ (hk)(t)

)∣∣p).
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Denote ηk = βk , εkh = Akh, akh = , and

Fkh
(
ek

(
t – τ (hk)(t)

)
, eh

(
t – τ (kh)(t)

))

=
L∑

h=

Akh
(∣∣eh

(
t – τ (kh)(t))∣∣p –

∣∣eh
(
t – τ (hk)(t)

)∣∣p).

It is easy to see that the conditions in Definition . are satisfied, which means Vk(ek , t)
is the vertex-Lyapunov function. Therefore, by Theorem ., the networks (.) and (.)
will reach ME-synchronization. �

4 Synchronization of stochastic time-varying delayed coupled oscillators on
networks

The phenomenon of synchronization of oscillatory dynamics is observed in a wide variety
of natural systems. In some physical and biological applications, the system of coupling
oscillators with time-varying delay will be studied in this part by the analytical results
established in the previous section.

Now, we give a digraph with L vertices. In the kth vertex there is assigned an oscillator
with time-varying delay described by

ẍk(t) + αkẋk(t) + xk(t) + εkxk
(
t – τk(t)

)
= . (.)

Suppose that Hkh : R×R

+ → R

, k, h ∈ L, represents the influence of vertex h on vertex k.
We have Hkh ≡  if and only if there exists no dispersal from vertex h to vertex k in G .
Hence, we get the following system:

ẍk(t) + αkẋk(t) + xk(t) + εkxk
(
t – τk(t)

)
+

L∑

k=

Hkh
(
xh

(
t – τ (kh)(t)

)
, t

)
= , (.)

which is called the drive system. The response system is described by

ÿk(t) + αkẏ(t) + yk(t) + εkyk
(
t – τk(t)

)
+

L∑

h=

Hkh
(
yh

(
t – τ (kh)(t)

)
, t

)

= σ
(
yk(t) – xk(t)

)
Ḃ(t). (.)

For the convenience of analysis and calculation, let x̄k(t) = ẋk(t) + ηkxk(t), where ηk > .
Then the system (.) can be rewritten in the form of a first order system:

ẋk(t) = x̄k(t) – ηkxk(t),

˙̄xk(t) = (–αk + ηk)x̄k(t) +
(
αkηk – η

k – 
)
xk(t) – εkxk

(
t – τ (t)

)

–
L∑

k=

Hkh
(
xh

(
t – τ (kh)(t)

)
, t

)
.

Denote Xk(t) = (xk(t), x̄k(t))T , Xk(t – τk(t)) = (xk(t – τk(t)), )T , Fk(Xk(t)) = (x̄k(t) – ηxk(t),
(–αk + ηk)x̄k(t) + (αkηk – η

k – )xk)T , Gk(Xk(t – τk(t))) = (, εkxk(t – τk(t)))T , H̄kh(Xk(t)) =
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(, –Hkh(xh(t – τ (kh)(t)), t))T . Then the system (.) is rewritten as

dXk(t)
dt

= Fk
(
Xk(t)

)
– Gk

(
Xk

(
t – τk(t)

))
+

L∑

h=

H̄kh
(
Xh

(
t – τ (kh)(t)

)
, t

)
. (.)

In a similar way, let ȳk(t) = ẏ(t) + ηyk(t), then the system (.) is rewritten as

dYk(t)
dt

= Fk
(
Yk(t)

)
– Gk

(
Yk

(
t – τk(t)

))
+

L∑

h=

H̄kh
(
Yh

(
t – τ (kh)(t)

)
, t

)

+ σ
(
Yk(t) – Xk(t)

)
dB(t), (.)

where Yk(t) = (yk(t), ȳk(t))T , Yk(t – τk(t)) = (yk(t – τk(t)), )T , Fk(Yk(t)) = (ȳk(t) – ηyk(t),
(–αk + ηk)ȳk(t) + (αkηk – η

k – )yk)T , Gk(Yk(t – τk(t))) = (, εkyk(t – τk(t)))T , H̄kh(Yk(t)) =
(, –Hkh(yh(t – τ (kh)(t)), t))T .

Theorem . Let the digraph (G, A) be strongly connected. Suppose that the following con-
ditions hold:

(C) There are constants Akh > , such that

∣∣Hkh
(
yh

(
t – τ (kh)(t)

))
– Hkh

(
xh

(
t – τ (kh)(t)

))∣∣

≤ Akh
∣∣yh

(
t – τ (kh)(t)

)
– xh

(
t – τ (kh)(t)

)∣∣. (.)

(C) The drive system (.) and the response system (.) satisfy

ηk(αk – ηk) ≤ , ηk ≥ 

αk , εk +

L∑

h=

Akh < σk( – τ̄ ). (.)

Then the drive system (.) and the response system (.) will reach ME-synchronization.

Proof Let Ek(t) = Yk(t) – Xk(t) = (yk(t) – xk(t), ȳk(t) – x̄k(t))T = (ek(t), ēk(t))T . Then the error
system of the drive system (.) and the response system (.) can be rewritten as

dEk(t) dt =

[
Fk

(
Yk(t)

)
– Fk

(
Xk(t)

)
– Gk

(
Yk

(
t – τk(t)

))
+ Gk

(
Xk

(
t – τk(t)

))

+
L∑

h=

H̄kh
(
Yh

(
t – τ (kh)(t)

)
, t

)
–

L∑

h=

H̄kh
(
Xh

(
t – τ (kh)(t)

)
, t

)
]

dt

+ σ
(
Ek(t)

)
dB(t).

Then we will verify that the error system satisfies Theorem ..
From the condition (C), we obtain

ET
k (t)Fk

(
Ek(t), t

)
= ek(t)ēk(t) – ηke

k(t) + (–αk + ηk)ē
k(t)

+
(
αkηk – η

k – 
)
ēk(t)ek(t) – εk ēk(t)ek

(
t – τ (t)

)
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≤ –
(

ηk –


(
αkηk – η

k
)
ε

)
e

k(t)

–
(

αk – ηk –


ε

(
αkηk – η

k
)

+
εk



)
ē

k(t) –
εk


e

k
(
t – τ (t)

)

≤ –
(

ηk –


(
αkηk – η

k
)
ε

)
e

k(t)

–
(

αk – ηk –


ε

(
αkηk – η

k
)

+
εk



)
ē

k(t)

≤ –


ηke

k(t) –


ηk ē

k(t)

= –


ηk

∣∣ek(t)
∣∣. (.)

From this, it is obvious that (.) holds.
Also we have

∣∣Gk
(
Yk

(
t – τk(t)

))
– Gk

(
Xk

(
t – τk(t)

))∣∣ = εkek
(
t – τk(t)

)
,

which means (.) holds.
Hence, from Theorem ., the drive system (.), and the response system (.) we ob-

tain ME-synchronization. �

5 Numerical test
In this section, we will consider a complex network with four vertices as a numerical ex-
ample. The dynamic nature of each vertex can be described as coupled oscillators with
time-varying delay,

ẍk(t) + αkẋk(t) + xk(t) + εkxk
(
t – τk(t)

)
+

L∑

k=

Hkh
(
xh

(
t – τ (kh)(t)

)
, t

)
= ,

k = , , , , (.)

in which

Hkh
(
xh

(
t – τ (kh)(t)

)
, t

)
= θxh(t – τ̄ arctan t), τ̄ = ..

It is not difficult to see that Hkh(xh(t –τ (kh)(t)), t) satisfies the condition (C) in Theorem .
when θ ∈ (, .). So the drive system can be represented as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẍ(t) + αẋ(t) + x(t) + εx(t – .(sin t + )) + θx(t – . arctan t) = ,
ẍ(t) + αẋ(t) + x(t) + εx(t – .(cos t + )) + θx(t – . arctan t) = ,
ẍ(t) + αẋ(t) + x(t) + εx(t – .(sin t + )) + θx(t – . arctan t) = ,
ẍ(t) + αẋ(t) + x(t) + εx(t – .(cos t + )) + θx(t – . arctan t) = ,

(.)

where εk = ., k = , , , . Set α = ., α = α = ., α = ., respectively.
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The response system under the effect of white noise can be represented as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ÿ(t) + αẏ(t) + y(t) + εy(t – .(sin t + )) + θy(t – . arctan t)
= σ (y(t) – x(t))Ḃ(t),

ÿ(t) + αẏ(t) + y(t) + εy(t – .(cos t + )) + θy(t – . arctan t)
= σ (y(t) – x(t))Ḃ(t),

ÿ(t) + αẏ(t) + y(t) + εy(t – .(sin t + )) + θy(t – . arctan t)
= σ (y(t) – x(t))Ḃ(t),

ÿ(t) + αẏ(t) + y(t) + εy(t – .(cos t + )) + θy(t – . arctan t)
= σ (y(t) – x(t))Ḃ(t),

(.)

where εk and αk (k = , , , ) are the same as the parameters in the drive system. σ = . is
the strength of the coupling. To get a feeling of what is going on, the dynamical behaviors
of the systems (.) and (.) can be seen Figures  and .

Figure 1 The dynamical behavior of the system (5.2).

Figure 2 The dynamical behavior of the system (5.3).
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Figure 3 The dynamical behavior of the system (5.4).

Let ek = yk – xk , k = , , , . Then the error system is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ë(t) + .ė(t) + e(t) + .e(t – .(sin t + )) + θe(t – . arctan t)
= .e(t)Ḃ(t),

ë(t) + .ė(t) + e(t) + .e(t – .(cos t + )) + θe(t – . arctan t)
= .e(t)Ḃ(t),

ë(t) + .ė(t) + e(t) + .e(t – .(sin t + )) + θe(t – . arctan t)
= .e(t)Ḃ(t),

ë(t) + .ė(t) + e(t) + .e(t – .(cos t + )) + θe(t – . arctan t)
= .e(t)Ḃ(t).

(.)

The trivial solution of the system (.) is presented in Figure . In fact, we can see clearly
from Figure  that the trivial solution of the system (.) is exponentially stable. The nu-
merical results show the effectiveness and feasibility of the developed results.
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