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Abstract
We consider a susceptible-exposed-infected-removed (SEIR) epidemic model with
discontinuous treatment strategies. The treatment rate has at most a finite number of
jump discontinuities in every compact interval. By using Lyapunov theory for
discontinuous differential equations and other techniques on non-smooth analysis,
the basic reproductive numberR0 is proved to be a sharp threshold value which
completely determines the dynamics of the model. IfR0 ≤ 1, then there only exists a
disease-free equilibrium which is globally stable. IfR0 > 1, the disease-free
equilibrium becomes unstable and there exists a unique endemic equilibrium which
is globally stable. The numerical simulations indicate that strengthening treatment
measures after infective individuals reach some level is beneficial to disease control.
Furthermore, we discuss that the disease will die out in a finite time, which is
impossible for the corresponding SEIR model with continuous treatment.

Keywords: latent period; discontinuous treatment; epidemic dynamics; extinction
of disease in finite time

1 Introduction
Infectious diseases can arise if the host’s protective immune mechanisms are compro-
mised and the organism inflicts damage on the host. It shows that the infectious disease
can causes millions of deaths every year. Hence, how to prevent or slow down the trans-
mission of infectious diseases is a very important problem. Many methods for control of
infectious diseases are extensively applied, such as treatment, quarantine, isolation, im-
munity etc. To understand how to control and eradicate infectious disease is also one of
the main goals of mathematical epidemiology. At the same time, well understanding for
dynamic behaviors of infectious disease is a benefit for diseases controlling. Researchers
have proposed many epidemic models to understand the mechanism of disease transmis-
sion (see [–] and the references therein).

Treatment plays a very important role in controlling the spread of diseases such as
HIV/AIDS, tuberculosis, malaria, which are the top three single disease killers in the
world. In recent years, some mathematical models incorporating treatment have been
studied by many researchers (see [–] and the references therein). In [], Wang and
Ruan proposed an epidemic model to simulate the limited resources for the treatment of
patients, which can occur because patients have to be hospitalized but there are limited
beds in hospitals, or there is not enough medicine for treatments. In [], Wang adopted
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a constant treatment, which simulates a limited capacity for treatment. Note that a con-
stant treatment is suitable when the number of infectives is large. Li et al. [] constructed
an SIR epidemic model with nonlinear incidence and treatment. The results show that
a backward bifurcation occurs if the capacity is small and there exist bistable endemic
equilibria if the capacity is low. Recently, Guo et al. considered an SIR epidemic model
with discontinuous treatment strategies. The results show that discontinuous treatment
strategies would be superior to continuous ones []. On the other hand, there are a lot
of infectious diseases (e.g. TB, HIV/AIDS, malaria, SARS etc.) which have latent periods.
That is, a susceptible individual first goes through a latent period after infection before be-
coming infectious. When we use mathematical models to analyze the above-mentioned
diseases, omitting the latent period will lead to some inaccurate results on their transmis-
sion law. Under this circumstance, the epidemic models with latent periods play a very
important role in epidemiology. Some models with latent periods can be called SEI, SEIS,
SEIR or SEIRS type, respectively [–]. In [], the authors studied the global dynamics
of an SEIR model with this saturating contact rate.

This work was intended as an attempt to motivate [] where infective individuals are
removed from the infective class due to the treatment at a discontinuous rate. At the same
time, the latent period is considered in the model. Due to this discontinuous treatment
strategy, the resulting model is a discontinuous system. Some non-smooth analysis tech-
niques [] are used for this system. The paper is organized as follows. In the next sec-
tion, we will construct the model and introduce the main assumptions for a discontinuous
treatment function. In Section , positivity and boundedness of the solution in the sense
of Filippov for the model will be clearly discussed. We obtain the existence of possible
equilibria, the basic reproductive number, and the stability of equilibria in Section . In
Section , we summarize our main results and discuss the possibility of the extinction of
the infectives in a finite time.

2 Model and preliminaries
We consider a model with state variables S, E, I , and R, which represent the number of
susceptible, exposed, infected, and removed individuals, respectively. The infected indi-
viduals will be given a discontinuous treatment. Consider the following SEIR model with
discontinuous treatment:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dS
dt = � – μS – βSI,
dE
dt = βSI – (μ + ε)E,
dI
dt = εE – (μ + α + γ )I – h(I),
dR
dt = γ I + h(I) – μR,

(.)

where � is the growth rate of population, μ is the natural mortality rate, β is the contact
rate, α is the death rate induced by disease, ε and γ are the rates of naturally leaving the
latent stage and infected stage, respectively. The function h(I) = φ(I)I denotes the treat-
ment rate. φ(I) satisfies the following assumptions. Obviously, the treatment rate should
be nondecreasing as the number of infectious individuals is increasing. The following as-
sumption will be needed throughout the paper.

(H) φ : [,∞) → [,∞) is nondecreasing and has at most a finite number of jump dis-
continuities in every compact interval. There is no loss of generality in assuming φ
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is continuous at I = , otherwise we define φ() to be φ(+). Here φ(+) denotes the
right limit of φ(I) as I → +.

Since the variable R does not appear in the first three equations of model (.), we only
need to study the first three equations of model (.), thereby lowering the order of the
system to be studied, i.e.,

⎧
⎪⎪⎨

⎪⎪⎩

dS
dt = � – μS – βSI,
dE
dt = βSI – (μ + ε)E,
dI
dt = εE – (μ + α + γ )I – h(I).

(.)

By the definition of solutions for differential equations with discontinuous right-hand sides
in [, ], we call (S(t), E(t), I(t)) a solution with initial condition

(
S(), E(), I()

)
= (S, E, I), S, E, I ≥  (.)

of model (.) on [, T),  < T ≤ ∞, if it is absolutely continuous on any compact subin-
terval of [, T), and almost everywhere on [, T) (abbreviated to ‘a.e. on [, T)’) satisfies
the following differential inclusion:

⎧
⎪⎪⎨

⎪⎪⎩

dS
dt = � – μS – βSI,
dE
dt = βSI – (μ + ε)E,
dI
dt ∈ εE – (μ + α + γ )I – co[h(I)],

(.)

where co[h(I)] = [h(I – ), h(I + )]. Here, h(I – ) and h(I + ) denote the left limit and the
right limit of the function h(I) at I , respectively.

From (H), it is clear that the set map

(S, E, I) �−→ (
� – μS – βSI,βSI – (μ + ε)E, εE – (μ + α + γ )I – co

[
h(I)

])

is an upper semi-continuous set-valued map with non-empty compact convex values. By
the measurable selection theorem ([], p., Theorem ..), if (S(t), E(t), I(t)) is a solution
of model (.) on [, T), then there is a measurable function m(t) ∈ co[h(I(t))] such that

⎧
⎪⎪⎨

⎪⎪⎩

dS
dt = � – μS – βSI,
dE
dt = βSI – (μ + ε)E,
dI
dt = εE – (μ + α + γ )I – m(t),

a.e. on [, T). (.)

3 Positivity and boundedness
In this section, we will prove that the solutions exist on [, +∞) and are nonnegative. The
main result is as follows.

Theorem . Suppose that assumption (H) holds and let (S(t), E(t), I(t)) be the solution
with initial condition (.) of model (.) on [, T). Then (S(t), E(t), I(t)) is nonnegative and
bounded on [, T).
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Proof By the definition of a solution of (.) in the sense of Filippov, (S(t), E(t), I(t)) must
be a solution to differential inclusion (.). From the first equation of (.), we have

S(t) =
[

S +
∫ t


� exp

(∫ u


μ + βI(ρ) dρ

)

du
]

exp

(

–
∫ t


μ + βI(ρ) dρ

)

>  (.)

for all t ∈ (, T).
According to (H), we have co[h()] = {} and h(I) is continuous at I = . Combining the

continuity of φ at I = , it may be concluded that there exists a positive constant δ such
that φ(I) is continuous as |I| < δ. For this reason, the differential inclusion (.) becomes
the following system of differential equations as |I| < δ:

{
dE
dt = βSI – (μ + ε)E,
dI
dt = εE – (μ + α + γ + φ(I))I.

(.)

We divide this into four cases to discuss the positivity of the solutions for (.).
(i) E = I = .
From (.), we see that E(t) = I(t) =  for all t ∈ [, T).
(ii) E > , I = .
By the continuity of E(t) at t =  and dI

dt |t= = εE > , we conclude E(t) >  and I(t) > 
for all t ∈ (, T). If it is not true, then we can set

t = inf
{

t : E(t) =  or I(t) = 
} ∈ (, T). (.)

If E(t) = , then from dE
dt ≥ –(μ + ε)E for  ≤ t ≤ t we deduce that E(t) ≥ E exp(–(μ +

ε)t) > . This is a contradiction. If I(t) = , then there is a θ such that t – θ >  and
 < I(t) < δ on [t – θ , t). Therefore, the second equation of (.) implies

dI
dt

≥ –
(
μ + α + γ + φ(I)

)
I.

This gives

I(t) ≥ I(t – θ ) exp

(

–
∫ t

t–θ

(
μ + α + γ + φ

(
I(ξ )

))
dξ

)

> .

This is also a contradiction. Hence, E(t) and I(t) are positive for all t ∈ (, T). The same
conclusion can be drawn for the following cases.

(iii) E = , I > .
(iv) E > , I > .
Our next goal is to prove the boundedness of the solutions of model (.).
Under the basis of above proof, adding the three equations of (.) yields

d(S + E + I)
dt

∈ � – μ(S + E + I) – (α + γ )I – co
[
h(I)

]
. (.)

Fix any v ∈ co[h(I)]. When S + E + I > �
μ

, we must have

� – μ(S + E + I) – (α + γ )I – v < . (.)
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For this reason, we have  ≤ S + E + I ≤ max{�
μ

, S + E + I}, that is, (S(t), E(t), I(t)) is
bounded on [, T). By the boundedness and the continuation theorem, we concluded that
the solution (S(t), E(t), I(t)) exists on [, +∞), namely, the solution is global existence. This
completes the proof. �

Remark . For any solution of (.) with nonnegative initial value (.), we have the
following detailed statements, (i), (ii), and (iii).

(i) The solution (S(t), E(t), I(t)) of (.) exists on [, +∞) and S(t) >  (t > ), E(t) ≥ 
(t > ), I(t) ≥  (t > ).

(ii) If E() =  and I() = , then the solution (S(t), E(t), I(t)) of (.) exists on [, +∞),
S(t) >  (t > ), E(t) ≡  (t ≥ ), I(t) ≡  (t ≥ ).

(iii) If one of E() and I() is greater than zero, then the solution (S(t), E(t), I(t)) of (.)
exists on [, +∞) and S(t) >  (t > ), E(t) >  (t > ), I(t) >  (t > ).

4 Stability of equilibria
In this section, we show the stability of the equilibria for model (.). We first discuss the
existence of the equilibria as follows.

An equilibrium of model (.) is, by definition, a constant solution of (.), (S(t), E(t),
I(t)) = (S∗, E∗, I∗), where (S∗, E∗, I∗) satisfies the following system:

⎧
⎪⎨

⎪⎩

 = � – μS∗ – βS∗I∗,
 = βS∗I∗ – (μ + ε)E∗,
 ∈ εE∗ – (μ + α + γ )I∗ – co[h(I∗)].

(.)

Since h() = , it follows that there always exists a disease-free equilibrium P( �
μ

, , ).
Next, we will consider the existence of an endemic equilibrium. By the first and second
equations of (.), we conclude that

S∗ =
�

μ + βI∗ , E∗ =
β�I∗

(μ + βI∗)(μ + ε)
. (.)

Substituting (.) into the third inclusion of (.) yields

εβ�

(μ + ε)(μ + βI∗)
– (μ + α + γ ) ∈ co

[
φ
(
I∗)] =

[
φ
(
I∗ – 

)
,φ

(
I∗ + 

)]
. (.)

Write

g
(
I∗) =

εβ�

(μ + ε)(μ + βI∗)
– (μ + α + γ ) (.)

and let

R =
εβ�

μ(μ + ε)(μ + α + γ + φ())
. (.)

We next claim that R is the basic reproductive number for the model (.) which will
determine the existence of an endemic equilibrium.
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Theorem . Suppose that assumption (H) holds. If R ≤ , then there only exists a
disease-free equilibrium P( �

μ
, , ). If R > , then there exists a unique positive endemic

equilibrium P∗(S∗, E∗, I∗) except P.

Proof As R ≤ , we have g() ≤ φ(). Since g(I) is nonincreasing on I and φ(I) is nonde-
creasing on I . For this reason, the inclusion (.) is only valid at I = . Hence, the model
(.) has a unique disease-free equilibrium as long as R ≤ .

If R > , then g() > φ() ≥ . At the same time, the inequality

I ≥ 
β

[
εβ�

(μ + ε)(μ + α + γ )
– μ

]

implies g(I) ≤ . Therefore, the set

� =
{

I : g(I) ≥ φ(I + ), I > 
}

is bounded and non-empty. We can write

I∗ = sup
{

I : g(I) ≥ φ(I + ), I > 
}

.

It follows easily that

g
(
I∗) ≥ φ

(
I∗ – 

)
and  < I∗ ≤ 

β

[
εβ�

(μ + ε)(μ + α + γ )
– μ

]

. (.)

We claim g(I∗) ∈ [φ(I∗ – ),φ(I∗ + )]. Suppose, contrary to our claim, that

g
(
I∗) > φ

(
I∗ + 

)
= lim

I→I∗+
φ(I).

From (H), there exists a δ >  such that

g
(
I∗ + δ

)
> φ

(
I∗ + δ

)
= φ

(
I∗ + δ + 

)
. (.)

This contradicts the definition of I∗. Thus, we have g(I∗) ∈ [φ(I∗ – ),φ(I∗ + )]. That is
to say, I∗ is a positive solution of the inclusion (.). We proceed to show that I∗ is the
only one positive solution of the inclusion (.). If the inclusion (.) has another positive
solution I∗∗, then there must exist two numbers

η∗ ∈ co
[
φ
(
I∗)] and η∗∗ ∈ co

[
φ
(
I∗∗)], (.)

which satisfy

εβ�

(μ + ε)(μ + βI∗)
– (μ + α + γ ) = η∗ (.)

and

εβ�

(μ + ε)(μ + βI∗∗)
– (μ + α + γ ) = η∗∗. (.)
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Subtracting (.) from (.) gives

εβ�(I∗∗ – I∗)
(μ + ε)(μ + βI∗)(μ + βI∗∗)

= η∗ – η∗∗, (.)

which implies

η∗ – η∗∗

I∗ – I∗∗ < .

This is a contradiction. Hence, I∗ is the unique positive solution of the inclusion (.).
Combining it with (.), we conclude that (S∗, E∗, I∗) is the unique endemic equilibrium
of (.). The proof is completed. �

In the next part, we show the global stability of the disease-free equilibrium and the
endemic equilibrium. We do this in several steps. We first prove their local stability as
follows.

Theorem . Assume (H) holds. The disease-free equilibrium P is locally asymptotically
stable if R < , and is unstable if R > .

Proof We analyze the stability of the disease-free equilibrium by investigating the eigen-
values of the Jacobian matrix of model (.) at P. The matrix is

J(P) =

⎛

⎜
⎝

–μ  –β �
μ

 –(μ + ε) β �
μ

 ε –(μ + α + γ ) – φ()

⎞

⎟
⎠ . (.)

The characteristic equation of J(P) is

(λ + μ)
[

λ +
(
μ + ε + μ + α + γ + φ()

)
λ

+ (μ + ε)
(
μ + α + γ + φ()

)
–

εβ�

μ

]

= . (.)

Equation (.) has three roots λ = –μ < , λ, and λ, where

λ + λ = –
(
μ + ε + μ + α + γ + φ()

)
< ,

λλ = (μ + ε)
(
μ + α + γ + φ()

)
( – R).

(.)

From (.), it is easily seen that both the real parts of λ and of λ are negative when
R < . When R > , one of λ and λ is a number with a positive real part. Thus the
disease-free equilibrium is locally asymptotically stable if R <  and unstable if R > .
Thus, these results establish the theorem. �

We have shown that there exists a positive endemic equilibrium if and only if R >  in
Theorem .. Here, we will establish its local stability.
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Theorem . Suppose that assumption (H) holds. If R > , the endemic equilibrium P∗

of the system (.) is locally asymptotically stable.

Proof The Jacobian matrix of (.) at the endemic equilibrium P∗ = (S∗, E∗, I∗) is

J
(
P∗) =

⎛

⎜
⎝

–μ – βI∗  –βS∗

βI∗ –(μ + ε) βS∗

 ε –(μ + α + γ ) – φ(I∗) – φ′(I∗)I∗

⎞

⎟
⎠ . (.)

Replacing –(μ + α + γ ) – φ(I∗) by εβS∗/(μ + ε) gives

J
(
P∗) =

⎛

⎜
⎝

–μ – βI∗  –βS∗

βI∗ –(μ + ε) βS∗

 ε – εβS∗
μ+ε

– φ′(I∗)I∗

⎞

⎟
⎠ . (.)

The characteristic equation of J(P∗) is

λ + aλ
 + aλ + a = ,

where

a = μ + βI∗ + μ + ε +
εβS∗

μ + ε
+ φ′(I∗)I∗,

a =
(
μ + βI∗)

(

μ + ε +
εβS∗

μ + ε
+ φ′(I∗)I∗

)

+ (μ + ε)φ′(I∗)I∗,

a =
(
μ + βI∗)(μ + ε)φ′(I∗)I∗ + εβS∗I∗.

Since φ is nondecreasing, φ′(I∗) ≥ . This implies a > , a > , a > .
Then

aa – a =
[

μ + βI∗ + μ + ε +
εβS∗

μ + ε
+ φ′(I∗)I∗

]

×
[
(
μ + βI∗)

(

μ + ε +
εβS∗

μ + ε
+ φ′(I∗)I∗

)

+ (μ + ε)φ′(I∗)I∗
]

–
(
μ + βI∗)(μ + ε)φ′(I∗)I∗ + εβS∗I∗

> (μ + ε)
(
μ + βI∗)

(
εβS∗

μ + ε
+ φ′(I∗)I∗

)

–
(
μ + βI∗)(μ + ε)φ′(I∗)I∗ – εβS∗I∗

> .

Hence, all of the Routh-Hurwitz criteria are satisfied. Thus it follows that the endemic
equilibrium P∗ of (.), which exists if R > , is always locally asymptotically stable. The
proof is completed. �

We next prove global stability of the disease-free equilibrium and endemic equilibrium.
We need to use the LaSalle-type invariance principle for the differential inclusion (Theo-
rem  in []) to prove their global stability.
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Let x = S – �
μ

. We obtain the following system analogous to (.):

⎧
⎪⎪⎨

⎪⎪⎩

dx
dt = –μx – βxI – β �

μ
I,

dE
dt = βxI + β �

μ
I – (μ + ε)E,

dI
dt ∈ εE – (μ + α + γ )I – co[φ(I)]I.

(.)

Set

V(x, E, I) =
x


+

�

μ
E +

�

μ

μ + ε

ε
I (.)

and

G(x, E, I) =

⎛

⎜
⎝

–μx – βxI – β �
μ

I
βxI + β �

μ
I – (μ + ε)E

εE – (μ + α + γ )I – co[φ(I)]I

⎞

⎟
⎠ .

For any v = (v, v, v)T ∈ G(x, E, I), there exists an η(t) ∈ co[φ(I)] such that

v =

⎛

⎜
⎝

–μx – βxI – β �
μ

I
βxI + β �

μ
I – (μ + ε)E

εE – (μ + α + γ )I – η(t)I

⎞

⎟
⎠ . (.)

Hence,

∇V(x, E, I) · v =
(

x,
�

μ
,
�(μ + ε)

με

)
⎛

⎜
⎝

–μx – βxI – β �
μ

I
βxI + β �

μ
I – (μ + ε)E

εE – (μ + α + γ )I – η(t)I

⎞

⎟
⎠

= –μx – βxI

+
�(μ + ε)

με

(

β
�

μ

ε

μ + ε
–

(
μ + α + γ + η(t)

)
)

I. (.)

When R ≤ , the nondecreasing of φ implies

β
�

μ

ε

μ + ε
–

(
μ + α + γ + η(t)

) ≤ β
�

μ

ε

μ + ε
–

(
μ + α + γ + φ()

) ≤ .

It shows that V is a Lyapunov function of (.).
Furthermore, when R < , we have

ZV �
{

(x, E, I) ∈R
 : ∇V(x, E, I) · v = , v ∈ G(x, E, I)

}

=
{

(, E, ) : E ≥ 
}

.

When I = , we have dE
dt = –(μ + ε)E, which implies limt→∞ E(t) = . For any l > , we set

V l
 �

{
(x, E, I) ∈ R

 : V(x, E, I) ≤ l
}

.

Hence, the largest weakly invariant subset of ZV ∩ V l
 is the singleton M = {(, , )}.
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When R = , we have

ZV =
{

(, E, ) : E ≥ 
} ∪ {

(, E, I) : η(t) = φ(), I > 
}

.

From the first equation of (.) and x = , it may be concluded that I = . Therefore, we see
that the largest weakly invariant subset of ZV ∩ V l

 is also the singleton M = {(, , )}. By
the LaSalle-type invariance principle, the equilibrium (, , ) of (.) is globally asymp-
totically stable as R ≤ . Summarizing the above analysis, we obtain the following theo-
rem.

Theorem . Suppose that assumption (H) holds. If R ≤ , then the disease-free equi-
librium P of (.) is globally asymptotically stable.

The following theorem states the global stability of the endemic equilibrium P∗.

Theorem . Suppose that assumption (H) holds. IfR > , then the endemic equilibrium
P∗ of (.) is globally asymptotically stable.

Proof Let

V (S, E, I) =
(

S – S∗ – S∗ ln
S
S∗

)

+
(

E – E∗ – E∗ ln
E
E∗

)

+
μ + ε

ε

(

I – I∗ – I∗ ln
I
I∗

)

. (.)

Write

η∗ =

I∗

(
εE∗ – (μ + α + γ )I∗) ∈ co

[
φ
(
I∗)]

and

H(S, E, I) =

⎛

⎜
⎝

� – μS – βSI
βSI – (μ + ε)E

εE – (μ + α + γ )I – co[φ(I)]I

⎞

⎟
⎠ . (.)

For any v = (v, v, v)T ∈ H(S, E, I), there exists an η(t) ∈ co[φ(I)] such that

v =

⎛

⎜
⎝

� – μS – βSI
βSI – (μ + ε)E

εE – (μ + α + γ )I – η(t)I

⎞

⎟
⎠ . (.)

The gradient of V is given by

∇V (S, E, I) =
(

 –
S∗

S
,  –

E∗

E
,
μ + ε

ε

(

 –
I∗

I

))T

.
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Hence

∇V (S, E, I) · v =
(

 –
S∗

S
,  –

E∗

E
,
μ + ε

ε

(

 –
I∗

I

))
⎛

⎜
⎝

� – μS – βSI
βSI – (μ + ε)E

εE – (μ + α + γ )I – η(t)I

⎞

⎟
⎠

= � – μS –
�S∗

S
+ μS∗ + βS∗I – βSI

E∗

E
+ (μ + ε)E∗

– (μ + ε)
EI∗

I
–

(μ + ε)(μ + α + γ + η(t))
ε

(
I – I∗)

= μS∗
(

 –
S
S∗ –

S∗

S

)

+ βS∗I∗
(

 –
S∗

S
–

SE∗I
S∗EI∗ –

EI∗

E∗I

)

+
(μ + ε)

ε

(
η∗ – η(t)

)(
I – I∗). (.)

The monotonicity of φ implies (η∗ – η(t))(I – I∗) ≤ . Thus ∇V (S, E, I) · v ≤ . This shows
that V is a Lyapunov function of (.). Define

ZV =
{

(S, E, I) ∈ R

+ : ∃v ∈ H(S, E, I),∇V (S, E, I) · v = 

}

=
{(

S∗, E∗, I∗)} ∪
{
(
S∗, E, I

)
:

E
E∗ =

I
I∗ ,η∗ = η(t)

}

.

If S = S∗, then the first equation of (.) implies I = I∗. This gives E = E∗. Consequently,
for any l > , the largest weakly invariant subset of ZV ∩ V l of (.) is the singleton
{(S∗, E∗, I∗)}. Here

V l =
{(

S – S∗, E – E∗, I – I∗) ∈R
 : V (S, E, I) ≤ l

}
.

Therefore, P∗ is globally asymptotically stable if R > . This completes the proof. �

Remark . From Theorems .-., we can claim that the basic reproduction number
R is a sharp threshold value and that the global dynamical behaviors of the system (.)
and the outcome of the disease are completely determined. In other words, when R ≤ ,
the disease-free equilibrium P is globally stable so that the disease goes to extinction,
while if R > , the endemic equilibrium P∗ is globally stable so that the disease remains
endemic.

5 Discussion
We have considered an SEIR epidemic model that incorporates the discontinuous treat-
ment strategies. Unlike previous SEIR epidemic models, we are interested in finding the
impact of the adoption of a discontinuous treatment function.

The basic reproductive number R is derived under some reasonable assumptions on
the discontinuous treatment function. It is a sharp threshold parameter which completely
determines the global dynamics of the model (.) and whether the disease goes to ex-
tinction or not. When R ≤ , the disease-free equilibrium is globally stable so that the
disease always dies out, and whenR > , the disease-free equilibrium is unstable while the
endemic equilibrium emerges as the unique positive equilibrium and it is globally stable.
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For making the utility of the concepts more visibly apparent, we present numerical sim-
ulations of solutions of the model (.). We give a treatment function satisfying (H) as
follows:

h(I) =

{
cI, I ≤ I,
cI, I > I,

where  ≤ c < c. It can be used to describe the following case: when the infective indi-
viduals attain some threshold I, we need to strengthen the treatment rate.

Let � = , μ = ., α = ., γ = ., β = ., ε = ., c = , I = , one could
easily see that R = . >  by using (.). Figure  shows that the infective will go to an
endemic level. In addition, the basic reproductive number R is independent of c, but the
different values of c can affect the stability level of the infective. That is to say, larger values
of c can lead to a lower stability level of the infective. It shows that the strengthening of the
treatment rate after the number of infective individuals has increased to some high level
is also a beneficial disease control. Let � = , μ = ., α = ., γ = ., β = .,
ε = ., c = , I = , one easily sees that R = . <  by using (.). We obtain
Figure .

It shows that the disease goes to extinction. This numerical verification supports The-
orem .. In addition, we find that different values of c can affect the peak values of the
infective. Figure  reflects that larger values of c can reduce the peak values of the infec-
tive. Therefore, we can also prevent the spread of disease by increasing the treatment rate
after the number infective individuals reach some high level. From the numerical simula-
tions, strengthening the treatment rate after the infective individuals reach some level is
also effective for disease control, even though we do not take any treatment measures at
the initial time of the disease’s outbreak.

For a system of ordinary differential equations (ODE) with continuous right-hand side,
any solutions cannot attain an equilibrium in a finite time. But an ODE system with dis-
continuous right-hand side can have the possibility that a solution converges to an equilib-
rium in a finite time. Next, we will discuss that the solutions converge to the disease-free
equilibrium. Hence, we must assume the treatment function h(I) in model (.) is discon-
tinuous at I = . Here we give the following assumption.

(H) h(I) : [,∞) → [,∞) is nondecreasing and has at most a finite number of jump dis-
continuities in every compact interval. Furthermore, h() =  and h(I) is discontinu-
ous at I = .

Under the assumption (H), it is easily to see that ( �
μ

, , ) is the disease-free equilibrium
of (.). Let x = S – �

μ
. Then (.) changes into

⎧
⎪⎨

⎪⎩

dx
dt = –μx – βxI – β �

μ
I,

dE
dt = βxI + β �

μ
I – (μ + ε)E,

dI
dt ∈ εE – (μ + α + γ )I – co[h(I)].

(.)

From (.), there exists a measurable function η(t) ∈ co[h(I)] such that
⎧
⎪⎨

⎪⎩

dx
dt = –μx – βxI – β �

μ
I,

dE
dt = βxI + β �

μ
I – (μ + ε)E,

dI
dt = εE – (μ + α + γ )I – η(t).

for a.e. t ∈ [,∞). (.)
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Figure 1 Time series plot of the infective population in symptomatic phase (I) for R0 = 6.6116 > 1.
The top two figures are the solution curves in the green box of the bottom figure. When the solution curves
approach I0 = 30, there appear many oscillations.
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Figure 2 Time series plot of the infective population in symptomatic phase (I) for R0 = 0.8595 < 1.
The top two figures are the solution curves in the green box of the bottom figure. When the solution curves
approach I0 = 30, there appear many oscillations.
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Let V(x, E, I) be the same Lyapunov function as (.). Its derivative along the solutions
of (.) is

dV

dt
= –μx – βxI +

�

μ

(

β
�

μ
–

(μ + ε)(μ + α + γ )
ε

)

I –
�

μ

μ + ε

ε
η(t).

By (H), we know that η(t) ≥ h(+). When εβ�

μ(μ+ε)(μ+α+γ ) ≤ , we have

dV

dt
≤ –

�

μ

μ + ε

ε
h
(
+)

. (.)

Integrating the differential inequality (.) from  to t gives

 ≤ V(x, E, I) ≤ V
(
x(), E(), I()

)
–

�

μ

μ + ε

ε
h
(
+)

t. (.)

Hence, when t > t∗, V(x, E, I) = , this implies (x, E, I) = (, , ), where

t∗ =
με

(μ + ε)�h(+)

( (S() – �
μ

)


+

�

μ
E() +

�

μ

μ + ε

ε
I()

)

.

Consequently, every solution of (.) (S(t), E(t), I(t)) = ( �
μ

, , ) for t ≥ t∗.
From the form of t∗, we find that t∗ is increasing in the initial exposed and infective

individuals but decreasing in the initial treatment rate h(+). If we take more effective
control measures for infectious diseases at the initial time of the diseases’ spread, then the
diseases go to extinction more quickly. The number εβ�

μ(μ+ε)(μ+α+γ ) is just the basic repro-
ductive number of the SEIR model without treatment. The above analysis shows that the
disease can go to extinction in a finite time under a discontinuous treatment strategy.
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