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Abstract
In this paper, a class of nonperiodic discrete wave equations with Dirichlet boundary
conditions are obtained by using the center-difference method. It is a strongly
indefinite discrete Hamiltonian system. By using a variant and generalized weak
linking theorem, the existence of the nontrivial time homoclinic solutions for the
system will be obtained. The obtained main results here allow the classical
Ambrosetti-Rabinowitz superlinear condition to be replaced by a general
superquadratic condition. Such a method cannot be used for the corresponding
continuous wave equations, however, it is valid for some general discrete Hamiltonian
systems. Similarly, the existence of homoclinic periodic solutions can also be
considered.
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1 Introduction
Consider a nonlinear wave equation of the form

utt – uxx + au – γ (t)g(t, u) = ,  < x < π , t ∈ R, ()

with the Dirichlet boundary conditions

u(, t) =  = u(π , t). ()

Let Z be the set of all integers and R be the set of all real numbers. For any integers k
and l with k < l, denote [k, l] = {k, k + , . . . , l}. By using the center-difference method for
the space variable x and the time variable t, we can obtain a discrete analog of ()-() of
the form
⎧
⎪⎨

⎪⎩


h �u( iπ

N+ , (n – )h) – ( N+
π

)∇u( (i–)π
N+ , nh) + au( iπ

N+ , nh)
– γ (nh)g(nh, u( iπ

N+ , nh)) = , i ∈ [, N], n ∈ Z,
u( π

N+ , nh) = u( (N+)π
N+ , nh) = , n ∈ Z,

()

where h >  is the time step size, N is a positive integer, and the space step size is π/(N + ).
Let
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u
(

iπ
N + 

, nh
)

= ui
n and γ (nh) = γn,

then we have

{
�ui

n– – δ∇ui–
n + αui

n – γnf (n, ui
n) = , i ∈ [, N], n ∈ Z,

u
n =  = uN+

n , n ∈ Z,
()

where

�ui
n– = ui

n+ – ui
n + ui

n–,

∇ui–
n = ui+

n – ui
n + ui–

n ,

α = ah, δ = h
(

N + 
π

)

,

and

f
(
n, ui

n
)

= hg
(

nh, u
(

iπ
N + 

, nh
))

.

Problem () can also be rewritten by vector and matrix in the form

�Un– + δAUn + αUn – γn∇H(n, Un) = , n ∈ Z, ()

where

Un =
(
u

n, u
n, . . . , uN

n
)T , H(n, Un) =

N∑

i=

∫ ui
n


f (n, s) ds,

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

 –  · · · 
–  – 

· · · · · ·
 –  –
 · · ·  – 

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

N×N

, ()

and

∇H(n, Un) =
(
f
(
n, u

n
)
, f
(
n, u

n
)
, . . . , f

(
n, uN

n
))T .

The aim of this paper is to study the existence of homoclinic solution for discrete wave
equation (), or equivalently (). A homoclinic solution of () is a solution which is asymp-
totic to a constant state as the time variable n → ±∞. In view of the Smale-Šil’nikov-
Birkhoff theorem, the dynamics near transversal homoclinic orbits is chaotic in the sense
of Li-Yorke or Devaney; see [–] and the references therein. So, the research on the ex-
istence of homoclinic solutions plays an important role in the understanding of the com-
plicated dynamical behavior.
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For discrete Hamiltonian systems similar to (), thanks to the variational structure, the
variational methods have contributed greatly to the investigation of the existence of homo-
clinic solutions, many solvability conditions are given. However, to the best of our knowl-
edge, we find that among the related results one or more of the following conditions are
needed:

(P) The linear operator L : (� + δA + αIN ) is positive definite, where IN is the N × N
unit matrix; see [] and [].

(P) The function γ (t)H(t, U) is T-periodic in t, see [–] and [].
(P) In the superquadratic case, most papers need the Ambrosetti-Rabinowitz condi-

tion, that is, there exist constants μ >  and M >  such that

 < μH(t, U) ≤ (∇H(t, U), U
)
, U ∈ RN , |U| ≥ M, t ∈ [, T]; ()

see [] and [].
In , Chen and Ma [] considered the following difference equation:

Lun – ωun = γnfn(un), n ∈ Z, un ∈ R, ()

where L is a Jacobi operator given by Lun = anun+ + an–un– + bnun. Under the assump-
tions that γn, fn(u), an, and bn are T-periodic sequences, they obtained the existence of
homoclinic solution to () with Ambrosetti-Rabinowitz condition replaced by

∣
∣fn(u)

∣
∣≤ b
(
 + |u|p–), ()

where b >  and p >  are constants. In a recent paper, Lin and Zhou [] considered () for
the higher dimensional case n ∈ Zm. By using the Mountain Pass lemma, they obtained
the existence of homoclinic solution to () without periodic conditions on γnfn(u) and with
Ambrosetti-Rabinowitz condition replaced by (). However, they need the operator L – ω

to be positive definite. For the general background of difference equations, one can refer
to the monographs [] and [].

In this paper, we consider () for the case that L = � + δA + αIN is strongly indefi-
nite, without periodic assumptions on γn and H(n, u), and with Ambrosetti-Rabinowitz
condition replaced by (). To the best of our knowledge, this is the first work on homo-
clinic solution without conditions (P)-(P). Without loss of generality, we assume that
f (n, ) =  for n ∈ Z; then {Un} = {} is a solution of (), which is called the trivial solution.
As usual, we say that a solution U = {Un} of () is homoclinic (to ) if lim|n|→∞ Un = .
By using a variant generalized weak linking theorem, we prove the existence of nontrivial
homoclinic solution of () emanating from .

For the continuous wave equation ()-(), to the best of our knowledge, there are not
many results about the existence of homoclinic solution; see [] for the existence of ho-
moclinic traveling wave solution and [] for the homoclinic solution.

This paper is organized as follows. In the next section, we give some preliminary results
which will be used in the proof of the main results. The exact spectrum σ (L) of the linear
operator L in l (defined in Section ) is given. In this case, we can easily give the conditions

 /∈ σ (L), σ (L) ∩ (,∞) 	= ∅ and σ (L) ∩ (–∞, ) 	= ∅. ()
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Our approach is based on an application of a variant and generalized weak linking theorem
for strongly indefinite problem developed by Schechter and Zou [], also see Chen and
Ma []. Thus, a variant generalized weak linking theorem is also given in this section.
To obtain a homoclinic solution of (), some compact condition is needed, so weighted
sequence spaces lp

η are also introduced in this section. In Section , we first make some
assumptions on L, and then we can give an orthogonal decomposition of l according
to L. At last, under some assumptions on γn and f (n, u), our main result is obtained by
using the variant generalized weak linking theorem. Similarly, the existence of homoclinic
periodic solutions for the discrete wave equation of the form

{
�ui

n– – δ∇ui–
n + αui

n – γnf (n, ui
n) = , i, n ∈ Z,

limi→∞ u|i|
n = , n ∈ Z,

()

can also be considered.
As usual, | · | and (·, ·) denote the norm and the inner product in RN , respectively. We

use c to represent positive constants which may change from line to line.

2 Preliminaries
In this section, we recall some basic facts which will be used in the proof of the main result.

2.1 Function spaces
Let

X =
{

U = {Un}n∈Z : Un ∈ RN , n ∈ Z
}

and

lp = lp(Z) =
{

U ∈ X : ‖U‖lp =
(∑

n∈Z

|Un|p
)/p

< ∞
}

.

Then the following embeddings between lp spaces hold (see []):

lp ⊂ lq, ‖U‖lq ≤ ‖U‖lp ,  ≤ p ≤ q ≤ ∞. ()

For p = , l is a Hilbert space with the inner product

〈U , V 〉l =
∑

n∈Z

(Un, Vn), U , V ∈ l.

For a positive real valued bounded sequence η = {ηn :  < ηn ≤ η̄ < ∞}n∈Z , we define the
weighted sequence spaces lp

η :

lp
η =
{

U ∈ X : ‖U‖lpη =
(∑

n∈Z

ηn|Un|p
)/p

< ∞
}

.

For a certain class of weight η, we have the following lemma (see []).
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Lemma  Assume that the positive real valued sequence η = {ηn}n∈Z satisfies lim|n|→∞ ηn =
. Then l ↪→ l

η with compact inclusion.

Define the functional I on l as follows:

I(U) =


∑

n∈Z

(
�Un–, Un

)
+



δ〈AU , U〉l +



α‖U‖

l –
∑

n∈Z

γnH(n, Un). ()

Then I ∈ C(l, R) and, for any U , V ∈ l,

〈
I ′(U), V

〉

l =
∑

n∈Z

(
�Un– + δAUn + αUn – γn∇H(n, Un), Vn

)
, ()

where C(l, R) denotes the set of functionals that are Fréchet differentiable and their
Fréchet derivatives are continuous on l.

Equation () implies that () is the Euler-Lagrange equation for I . Therefore, to find a
nontrivial homoclinic solution of (), one just needs to find a nonzero critical point of the
functional I on l.

2.2 Linking theorem
The abstract critical point theorem plays an important role in proving our main results.
Let E be a Hilbert space with norm ‖ · ‖ and inner product 〈·, ·〉 and have an orthogonal
decomposition E = N ⊕ N⊥, where N ∈ E is a closed and separable subspace. Since N is
separable, we can define a new norm |v|ω satisfying |v|ω ≤ ‖v‖ for all v ∈ N and such that
the topology induced by this norm is equivalent to the weak topology of N on bounded
subset of N . For u = v + w ∈ E with v ∈ N and w ∈ N⊥, we define |u|ω = |v|ω + ‖w‖, then
|u|ω ≤ ‖u‖ for u ∈ E. Particularly, if {un = vn + wn}∞n= ∈ E is | · |ω-bounded and un →|·|ω u,
then vn ⇀ v weakly in N , wn → w strongly in N⊥, un ⇀ v + w weakly in E (see []).

Let E = E– ⊕ E+, z ∈ E+ with ‖z‖ = . For any u ∈ E, we write u = u– ⊕ sz ⊕ w+ with
u– ∈ E–, s ∈ R, w+ ∈ (E– ⊕ Rz)⊥ := E+

 . For R > , let

Q =
{

u = u– + sz|s ∈ R+, u– ∈ E–,‖u‖ < R
}

with p = sz ∈ Q, s > . We define

D =
{

u = sz + w+|s ≥ , w+ ∈ E+
 ,
∥
∥sz + w+∥∥ = s

}
.

For I ∈ C(E, R), define h : [, ] × Q → E is | · |ω-continuous, h(, u) = u, I(h(s, u)) ≤ I(u)
for u ∈ Q, for any (s, u) ∈ [, ] × Q, there is a | · |ω-neighborhood U(s,u) such that

{
u – h(t, u)|(t, u) ∈ U(s,u) ∩ [, ] × Q

}⊂ Efin,

where Efin denotes various finite-dimensional subspaces of E whose exact dimension are
irrelevant and depend on (s, u). Denote

� =
{

h|h : [, ] × Q → E
}

,

then � 	= ∅ since id ∈ �.
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The variant weak linking theorem is the following.

Lemma  (see []) The family of C-functional {Iλ} has the form

Iλ(u) = J(u) – λK(u) for λ ∈ [, ].

Assume that
(a) K(u) ≥ , u ∈ E, I = I ;
(b) J(u) → ∞ or K(u) → ∞ as ‖u‖ → ∞;
(c) Iλ is | · |ω-upper semicontinuous, I ′

λ is weakly sequentially continuous on E -
moreover, Iλ maps bounded sets to bounded sets;

(d) sup∂Q Iλ ≤ infD Iλ for λ ∈ [, ].
Then for almost all λ ∈ [, ], there exists a sequence {un} such that

sup
n

‖un‖ < ∞, I ′
λ(un) → , Iλ(un) → cλ,

where

cλ = inf
h∈�

sup
u∈Q

Iλ
(
h(, u)

) ∈
[
inf
D

Iλ, sup
Q

I
]

.

2.3 Spectrum results
In the following, we give some results as regards the spectrum of operator L = � + δA +
αIN in l, where L : l → l is defined as LU = �Un– + δAUn + αUn for n ∈ Z and U ∈ l.

It is well known that the eigenvalues of A are

ηk =  sin kπ

(N + )
, k = , , . . . , N ,

and there is no other spectrum for A; see []. For any U and V ∈ l, we have

∥
∥–�U

∥
∥

l ≤ ‖U‖l ,
∑

n∈Z

(
–�Un–, Vn

)
=
∑

n∈Z

(�Un,�Vn),

that is, –� is a bounded self-adjoint operator on l, and the spectrum σ (–�) is contained
in [, ]. Further, σ (–�) = [, ]; see []. By direct calculation, it is not hard to see that
–� does not have eigenvalues in l. Therefore, the spectrum of L is σ (L) =

⋃N
k={[–, ] +

δηk + α}.

3 Main results
In this paper, we assume that  lies in a gap of σ (L), that is,

(S) sup(σ (L) ∩ (–∞, )) <  < inf(σ (L) ∩ (,∞)),
where L = � + δA + αIN is defined in Section .

Note that assumption (S) is satisfied if

δ > 
/(

sin π

(N + )
– sin π

(N + )

)
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and

α ∈
(

–δ sin π

(N + )
+ , –δ sin π

(N + )

)

.

Indeed, if this is the case, we see that the two spectrum intervals S = {[–, ] + δη + α}
and S = {[–, ] + δη + α} are disjoint, S ⊂ (–∞, ) and S ⊂ (,∞).

Noting that L is a bounded self-adjoint operator, and by assumption (S), we have the
following assertion (see []).

There exist a closed subspace N of l and a constant β >  such that
(i) L(N) ⊂ N ;

(ii) 〈LU , U〉l ≥ β‖U‖
l , ∀U ∈ N ;

(iii) 〈LU , U〉l ≤ –β‖U‖
l , ∀U ∈ N⊥.

Setting E– = N⊥ and E+ = N , it follows that L(E+) = E+, L(E–) = E– and that l = E+ ⊕ E–.
Throughout this paper, for any U ∈ l, we always denote by U+ and U– the vectors in l

with U = U+ + U–, U+ ∈ E+ and U– ∈ E–. Evidently,

±〈LU±, U±〉
l ≥ β

∥
∥U±∥∥

l , ∀U± ∈ E±.

Therefore, we have

〈
L
(
U+ + U–), U+ – U–〉

l ≥ β
∥
∥U+ + U–∥∥

l ,

which together with ‖U+ + U–‖l = ‖U+ – U–‖l implies

∥
∥L
(
U+ + U–)∥∥

l ≥ β
∥
∥U+ + U–∥∥

l .

For all U , V ∈ l, U = U+ + U– and V = V + + V –, we can define an equivalent inner product
〈·, ·〉 and the corresponding norm ‖ · ‖ in l by

〈U , V 〉 =
〈
LU+, V +〉

l –
〈
LU–, V –〉

l and ‖U‖ = 〈U , U〉/,

respectively. Therefore, I defined in () can be rewritten as

I(U) =


(∥
∥U+∥∥ –

∥
∥U–∥∥) –

∑

n∈Z

γnH(n, Un).

In order to apply Lemma , we consider the family of functional defined by

Iλ(U) =


∥
∥U+∥∥ – λ

(


∥
∥U–∥∥ +

∑

n∈Z

γnH(n, Un)
)

. ()

Then Iλ ∈ C(l, R) and for any U , V ∈ l,

〈
I ′
λ(U), V

〉
=
〈
U+, V +〉 – λ

(
〈
U–, V –〉 +

∑

n∈Z

γn
(∇H(n, Un), Vn

)
)

. ()

To continue the discussion, we make the following assumptions:
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(A) f (n, u) is continuous in u, f (n, u) = o(|u|) as |u| →  uniformly for n ∈ Z;
(A) there exist constants b >  and p >  such that

∣
∣f (n, u)

∣
∣≤ b

(
 + |u|p–)

uniformly for n ∈ Z and u ∈ R;
(A) F(n, u) ≥  for n ∈ Z and u ∈ R, and

lim|u|→∞
(
F(n, u)/|u|) = ∞

uniformly for n ∈ Z, where F(n, u) =
∫ u

 f (n, s) ds;
(A) there exist constants b >  and q ∈ [p – , (p – )] such that




f (n, u)u – F(n, u) ≥ b|u|q

uniformly for n ∈ Z;
(A) the positive real valued sequence γ = {γn}n∈Z satisfies

∑
n∈Z γ 

n < ∞.
Note that our conditions are different from [] and []. As is shown in the following

examples, our assumptions are reasonable and there are cases in which the well-known
Ambrosetti-Rabinowitz superquadratic condition () is not satisfied.

Example Let

f(n, u) = u ln
(
 + |u|)

and

F(n, u) = |u|p + (p – )|u|p–ε sin(|u|ε/ε
)

+ |u|q,

where p > ,  < ε < p – , and q ∈ (max{, p – }, p]. It is not hard to check that f(n, u) and
F(n, u) satisfy (A)-(A) but do not satisfy the Ambrosetti-Rabinowitz superquadratic
condition.

The condition (A) is easy, for example, we consider that the sequence

γn =

{


nα , n 	= ,
, n = ,

which satisfies the condition
∑

n∈Z γ 
n < ∞ when α > .

Under conditions (A) and (A), it is easy to see that Iλ satisfies conditions (a) and (b)
in Lemma . To see (c), we have the following lemma.

Lemma  Assume that (S) and (A)-(A) hold, then Iλ satisfies condition (c) in Lemma 
for any λ ∈ [, ].

Proof It is easy to see that Iλ maps bounded sets to bounded sets.



Li and Zhang Advances in Difference Equations  (2015) 2015:358 Page 9 of 15

Noting that U (k) = U (k)+ + U (k)– |·|ω→ U = U+ + U– implies that U (k)+ → U+ strongly in l,
U (k)– ⇀ U– weakly in l and U (k) ⇀ U weakly in l. Therefore, lim infk→∞ ‖U (k)–‖ ≥
‖U–‖ and U (k)

n → Un for any n ∈ Z. Using Fatou’s lemma, we know

lim inf
k→∞

∑

n∈Z

γnH
(
n, U (k)

n
)≥
∑

n∈Z

lim inf
k→∞

γnH
(
n, U (k)

n
)

=
∑

n∈Z

γnH(n, Un).

Therefore, lim supk→∞ Iλ(U (k)) ≤ Iλ(U). That is, Iλ is | · |ω-upper semicontinuous.
Let U (k) ⇀ U weakly in l, then U (k)

n → Un for any n ∈ Z and {U (k)} is bounded in l.
Thus, for any W ∈ l with compact support, we have

∑

n∈Z

γn
(∇H
(
n, U (k)

n
)
, Wn
)→
∑

n∈Z

γn
(∇H(n, Un), Wn

)
, k → ∞.

Taking into account that the sequence {γn∇H(n, U (k)
n )}n∈Z is bounded in l, we may replace

W by V ∈ l. Therefore,

〈
I ′
λ

(
U (k)), V

〉→ 〈I ′
λ(U), V

〉
, ∀V ∈ l.

That is, I ′
λ is weakly sequentially continuous on l. �

To continue the discussion, we still need to verify condition (d) in Lemma . Indeed, we
have (see []) the following.

Lemma  Assume that (S) and (A)-(A) hold, then one has the following:
(i) There exists ρ >  independent of λ ∈ [, ] such that

κλ := inf Iλ
(
BρE+) > ,

where BρE+ := {U ∈ E+ : ‖U‖ = ρ}. Moreover, κ = infλ∈[,] κλ > .
(ii) For fixed W ∈ E+ with ‖W‖ =  and any λ ∈ [, ], there exists R > ρ such that

sup Iλ(∂Q) ≤ , where Q := {U := V + sW : s ≥ , V ∈ E–,‖U‖ < R}.

Proof (i) By conditions (A) and (A), we know that for any ε >  there exists cε >  such
that

∣
∣f (n, u)

∣
∣≤ ε|u| + cε |u|p–, n ∈ Z, u ∈ R, ()

which together with (A) implies

∣
∣F(n, u)

∣
∣≤ ε|u| + cε |u|p.

Consequently,

∣
∣H(n, V )

∣
∣≤ ε|V | + cε |V |p, n ∈ Z, V ∈ RN , ()
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where p >  is the parameter in (A). By () and (), for any U ∈ E+ and λ ∈ [, ], we
have

Iλ(U) ≥ 

‖U‖ – γ̄

∑

n∈Z

(
ε|Un| + cε |Un|p

)

≥ 

‖U‖ – cε‖U‖ – cε‖U‖p,

where γ̄ = supn∈Z γn, and c >  is a constant independently with ε, U , and λ. The above
inequality implies the conclusion.

(ii) Suppose by contradiction that there exists U (k) ∈ E– ⊕ R+W such that Iλ(U (k)) > 
for all k and ‖U (k)‖ → ∞ as k → ∞. Set

W (k) = U (k)/
∥
∥U (k)∥∥ = skW + W (k)–.

By (A) and (A), we have

 <
Iλ(U (k))
‖U (k)‖ =



(
s

k – λ
∥
∥W (k)–∥∥) – λ

∑

n∈Z

γn
H(n, U (k)

n )
∥
∥U (k)

∥
∥ ()

≤ 

(
s

k – λ
∥
∥W (k)–∥∥). ()

Therefore,

∥
∥W (k)–∥∥ ≤ λ

∥
∥W (k)–∥∥ < s

k =  –
∥
∥W (k)–∥∥.

It follows that ‖W (k)–‖ ≤ √
 and √

 ≤ sk ≤ .
Going to a subsequence if necessary, we have sk → s ∈ [ √

 , ], W (k) ⇀ W weakly in l

and W (k)
n → Wn for any n ∈ Z as k → ∞. Hence W = sW + W – 	= . Then there exist

n ∈ Z and j ∈ [, N] such that W j
n 	= , where W j

n denotes the jth component of Wn . It
follows that

U (k)j
n = W (k)j

n

∥
∥U (k)∥∥→ ∞, as k → ∞.

Combining (A) and γn > , we have

∑

n∈Z

γn
H(n, U (k)

n )
‖U (k)‖ ≥ γn

F(n, U (k)j
n )

(U (k)j
n )

(U (k)j
n )

‖U (k)‖ → ∞,

as k → ∞, which contradicts (). The proof is completed. �

Applying Lemmas , , and , we immediately obtain the following facts.

Lemma  Under assumptions (S) and (A)-(A), for almost all λ ∈ [, ], there exists a
sequence {U (k)} such that

sup
k

∥
∥U (k)∥∥ < ∞, I ′

λ

(
U (k))→ , Iλ

(
U (k))→ cλ ∈

[
κ , sup

Q̄
I
]
,

where Q and κ are defined in Lemma .
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Lemma  Under the assumptions of Lemma , for almost all λ ∈ [, ], there exists Uλ with
U+

λ 	=  such that

I ′
λ(Uλ) = , Iλ(Uλ) ≤ sup

Q̄
I.

Proof Let {U (k) = U (k)+ + U (k)–} be the sequence obtained in Lemma . Then there exists
a subsequence, still denoted by the same notation, such that U (k) ⇀ U , U (k)+ ⇀ U+ in l,
U (k)

n → Un for any n ∈ Z and

U (k)+ → U+ in l
γ . ()

Step . We show that U (k)+ → U+ in l. By direct calculation, we have

∥
∥U (k)+ – U+∥∥ =

〈
I ′
λ

(
U (k)) – I ′

λ(U), U (k)+ – U+〉

+ λ
∑

n∈Z

γn
(∇H
(
n, U (k)

n
)

– ∇H(n, Un), U (k)+
n – U+

n
)
. ()

By U (k)+ ⇀ U+ in l, we have 〈I ′
λ(U), U (k)+ – U+〉 → ; and by the Hölder inequality, we

obtain

〈
I ′
λ

(
U (k)), U (k) – U

〉≤ ∥∥I ′
λ

(
U (k))∥∥

∥
∥U (k) – U

∥
∥

≤ 

∥
∥U (k) – U

∥
∥ +



∥
∥I ′

λ

(
U (k))∥∥.

By (), (), (), and the Hölder inequality, we have

∑

n∈Z

γn
(∇H
(
n, U (k)

n
)

– ∇H(n, Un), U (k)+
n – U+

n
)

≤ c
∑

n∈Z

γn
(∣
∣U (k)

n
∣
∣ + |Un| +

∣
∣U (k)

n
∣
∣p– + |Un|p–)∣∣U (k)+

n – U+
n
∣
∣

≤ c
(∥
∥U (k)∥∥

l + ‖U‖l +
∥
∥U (k)∥∥p–

l(p–) + ‖U‖p–
l(p–)

)∥
∥U (k)+ – U+∥∥

lγ

≤ c
(∥
∥U (k)∥∥

l + ‖U‖l +
∥
∥U (k)∥∥p–

l + ‖U‖p–
l
)∥
∥U (k)+ – U+∥∥

lγ
→ 

as k → ∞. Inserting the above arguments into (), we obtain

lim
j→∞
∥
∥U (k)+ – U+∥∥ = .

Step . We claim that there exists a constant θ >  such that

lim
k→∞
∥
∥U (k)+∥∥≥ θ . ()

Indeed, if not, then limk→∞ ‖U (k)+‖ = . Therefore,

Iλ
(
U (k))≤ ∥∥U (k)+∥∥ → 

as k → ∞, which contradicts with the fact that Iλ(U (k)) ≥ κ > . Hence () holds.
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By Step  and , we obtain U+ 	= . Consequently, U 	= . It is obvious that

〈
I ′
λ(U), V

〉
= lim

k→∞
〈
I ′
λ

(
U (k)), V

〉
= , ∀V ∈ l.

Applying (A) and Fatou’s lemma, we have

sup
Q̄

I ≥ cλ = lim
k→∞

(

Iλ
(
U (k)) –



〈
I ′
λ

(
U (k)), U (k)〉

)

= lim
k→∞

λ
∑

n∈Z

γn

(


(∇H
(
n, U (k)

n
)
, U (k)

n
)

– H
(
n, U (k)

n
)
)

≥ λ
∑

n∈Z

γn

(


(∇H(n, Un), Un

)
– H(n, Un)

)

= Iλ(U).

Setting Uλ = U , we complete the proof. �

Lemma  Under the assumptions of Lemma , there exist λk →  and a sequence {U (λk )}
with U (λk )+ 	=  such that

I ′
λk

(
U (λk )) = , Iλk

(
U (λk ))≤ sup

Q̄
I.

Moreover, {U (λk )} is bounded.

Proof The existence of {U (λk )} with U (λk )+ 	=  such that

I ′
λk

(
U (λk )) = , Iλk

(
U (λk ))≤ sup

Q̄
I

is the direct consequence of Lemma . To prove the boundedness of {U (λk )}, we argue as
follows.

By (A) and the definition of Iλk and I ′
λk

, we have

sup
Q̄

I ≥ Iλk

(
U (λk )) = λk

∑

n∈Z

γn

(


(∇H
(
n, U (λk )

n
)
, U (λk )

n
)

– H
(
n, U (λk )

n
)
)

≥ cλk
∑

n∈Z

γn
∣
∣U (λk )

n
∣
∣q. ()

By (A) and the Hölder inequality, we obtain

∥
∥U (λk )+∥∥ = λk

∑

n∈Z

γn
(∇H
(
n, U (λk )

n
)
, U (λk )+

n
)

≤ c
∑

n∈Z

γn
(∣
∣U (λk )+

n
∣
∣ +
∣
∣U (λk )

n
∣
∣p–∣∣U (λk )+

n
∣
∣
)

≤ c
(∑

n∈Z

γ 
n

)/(∑

n∈Z

∣
∣U (λk )+

n
∣
∣
)/

+ c
(∑

n∈Z

γ
q

p–
n
∣
∣U (λk )

n
∣
∣q
)(p–)/q(∑

n∈Z

∣
∣U (λk )+

n
∣
∣

q
q–p+

)(q–p+)/q

.
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Since q/(p – ) ≥ , q/(q – p + ) ≥ , and considering (A) and (), we obtain

∥
∥U (λk )+∥∥ ≤ c

∥
∥U (λk )+∥∥. ()

Therefore, ‖U (λk )+‖ ≤ c. Since Iλk (U (λk )) ≥ , we know ‖U (λk )–‖ ≤ ‖U (λk )+‖. The proof is
completed. �

Theorem  If assumptions (S) and (A)-(A) are satisfied, then () (or ()) has at least
one nontrivial homoclinic solution.

Proof Let {U (λk )} be the sequence obtained in Lemma . Noting that {U (λk )} is bounded,
and considering

〈
I ′(U (λk )), V

〉
=
〈
I ′
λk

(
U (λk )), V

〉
+ (λk – )

(
〈
U (λk )–, V –〉 +

∑

n∈Z

γn
(∇H
(
n, U (λk )

n
)
, V
)
)

for any V ∈ l and

I
(
U (λk )) = Iλk

(
U (λk )) + (λk – )

(


∥
∥U (λk )–∥∥ +

∑

n∈Z

γnH
(
n, U (λk )

n
)
)

,

we obtain

lim
k→∞

I ′(U (λk )) = , lim
k→∞

I
(
U (λk ))≤ sup

Q̄
I.

Since {U (λk )} is bounded, up to a sequence, we assume that U (λk ) ⇀ U in l. We claim that
there exists a constant θ >  such that

lim
k→∞
∥
∥U (λk )∥∥≥ θ . ()

Indeed, if not, then limk→∞ ‖U (λk )‖ = . Since I ′
λk

(U (λk )) = , and by (), (), and the
Hölder inequality, we have

∥
∥U (λk )+∥∥ = λk

∑

n∈Z

γn
(∇H
(
n, U (λk )

n
)
, U (λk )+

n
)

≤ c
∑

n∈Z

γn
(
ε
∣
∣U (λk )

n
∣
∣ + cε

∣
∣U (λk )

n
∣
∣p–)∣∣U (λk )+

n
∣
∣

≤ cε
∥
∥U (λk )∥∥

l
∥
∥U (λk )+∥∥

l + cε

∥
∥U (λk )∥∥p–

l
∥
∥U (λk )+∥∥

l , ()

where ε >  is an arbitrarily small number, independently with k, and c >  is a constant
independently with ε and k. Similarly, we have

∥
∥U (λk )–∥∥ ≤ cε

∥
∥U (λk )∥∥

l
∥
∥U (λk )–∥∥

l + cε

∥
∥U (λk )∥∥p–

l
∥
∥U (λk )–∥∥

l . ()

From () and (), we have

∥
∥U (λk )∥∥ ≤ cε

∥
∥U (λk )∥∥

∥
∥U (λk )∥∥ + cε

∥
∥U (λk )∥∥p–∥∥U (λk )∥∥.



Li and Zhang Advances in Difference Equations  (2015) 2015:358 Page 14 of 15

Choosing ε small enough such that cε ≤ /, and noting that ‖U (λk )‖ 	= , we obtain
‖U (λk )‖ ≥ c for some constant c > . That is a contradiction. So () holds. Considering
‖U (λk )+‖ ≥ ‖U (λk )–‖, we obtain

lim
k→∞
∥
∥U (λk )+∥∥≥ θ/.

As for the proof of Step  in Lemma , we can prove that U (λk )+ → U+ in l. Thus U 	= .
Since I ′(U (λk )) → , we have I ′(U) = . The proof is completed. �

Remark  For a general discrete system of the form

LUn = γn∇H(n, Un), n ∈ Z, Un ∈ Rm,

where L is a bounded, self-adjoint, second-order linear difference operator and  /∈ σ (L),
σ (L) ∩ (,∞) 	= ∅ and σ (L) ∩ (–∞, ) 	= ∅, our method is also valid.

Remark  Similarly, we can consider the existence of homoclinic periodic solutions for
the discrete wave equation of the form

{
�ui

n– – δ∇ui–
n + αui

n – γnf (n, ui
n) = , i, n ∈ Z,

limi→∞ u|i|
n = , n ∈ Z.

()

For example, let T be a positive integer. It is well known that the eigenvalue problem of
the form

{
–�un– = λun, n ∈ [, T],
u = uT , u = uT+,

has the eigenvalues

λk =  sin kπ

T
, k ∈ [, T].

In this case, the spectrum of L′ is σ (L′) =
⋃T

k={δ[, ] + α – λk}. Thus, similar results can
be obtained. They will be omitted.

Remark  Recently, the authors in [] considered the existence of periodic and subhar-
monic solutions for the nonlinear difference equations with p-Laplace operator by using
the saddle point theorem. On the other hand, when δ = , the linear part is nonnegative
definite. In [], they discussed a similar problem for a nth-order nonlinear difference
equation.

Remark  It is well known that the difference equations on time scales (see []) and
the fractional finite difference equations (see [] and [] and the listed references) have
been extensively investigated. Clearly, we can also consider similar problems, however, the
matrix and vector methods cannot be used.
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