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Abstract
In this paper, based on the properties of L-operator andM-matrix, we develop a
new inequality of L-operator to be effective for non-autonomous stochastic systems.
From the new inequality obtained above, we derive the sufficient conditions ensuring
the global exponential stability of the stochastic non-autonomous impulsive cellular
neural networks with delays. Our conclusions generalize some works published
before. One example is provided to illustrate the superiority of the proposed results.
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1 Introduction
Recently, the dynamical behaviors for cellular neural networks have been popular with
many researchers because of their extensive applications in signal processing, pattern
recognition, optimization problems and many other fields. The stability of networks is
one of the crucial properties in such applications. Delay and impulsive effects exist widely
in many practical models such as population models and neural networks. There are many
works on the dynamic behaviors of various kinds of neural networks with delays or im-
pulses [–]. Furthermore, some real systems are usually affected by external disturbance
with great uncertainty which may be treated as random. In real nervous systems and in
the implementation of artificial networks, Haykin [] has pointed out that the synaptic
transmission is a noisy process which is caused by random fluctuations from the release of
neurotransmitters and other probabilistic factors. Hence, noise must be taken into consid-
eration in the model construction. Among them, stability analysis of different stochastic
systems has been a focused research subject in the literature. Stochastic perturbation is
the main factor that affect the stability of systems including neural networks in performing
the computation. In addition, the results in [] suggested that certain stochastic inputs
can stabilize or destabilize one neural network. This implies that the stability analysis of
stochastic neural networks has primary significance in its design and applications. There-
fore, some results on the stability of neural networks with stochastic perturbations have
been reported [–]. In addition, when we consider long-time dynamic behaviors of a
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system, the parameters of the system frequently vary with time due to the environmental
disturbances. In this case, a non-autonomous neural network model is the best choice for
accurately depicting evolutionary processes of networks. Therefore, it is of great signifi-
cance to study the dynamic behaviors of non-autonomous neural networks [–].

By using a Lyapunov function, the authors of [, ] have investigated the stability of
non-autonomous systems without impulses and obtained the determinant conditions for
asymptotic stability or exponential stability of the corresponding system. However, the
conditions are true only for all t ≥ . Besides, many authors used the linear matrix in-
equality (LMI) and the Lyapunov-Krasovskii functional to study the dynamic behaviors
of various kinds of neural networks and obtained many interesting new results [, , ,
]. However, the results given in LMI form are commonly dependent on the delays. Par-
ticularly, for time-varying delays system [, ], one must require constraint conditions
such as the differentiability of delay functions. The authors of [] considered the stability
and existence of periodic solution to bidirectional associative memory non-autonomous
neural networks with delay and obtained some new results which are given in a function
matrix inequality, but it is not easy to compute by Matlab LMI Control Toolbox. Thus, LMI
technique is ineffective for dealing with the non-autonomous system. In addition to the
methods mentioned before, a differential inequality is also a very useful tool for studying
the dynamic behaviors of differential dynamical systems [, , , –], but many
of the inequalities obtained before cannot be used to investigate the non-autonomous
systems. The authors in [] considered the periodic attractor and dissipativity of non-
autonomous cellular neural networks with delays. The authors of [] investigated the
invariant and attracting sets of neural networks with reaction-diffusion terms. However,
the results in [, ] require the time-varying coefficients to have a common factor. In
practical applications, this condition is very strict and not easy to meet. The authors of []
developed an inequality to investigate the stability of non-autonomous cellular neural net-
works with impulse and time-varying delays, but this inequality cannot handle stochas-
tic non-autonomous neural networks. The authors of [] investigated the exponential
p-stability of stochastic Takagi-Sugeno non-autonomous neural networks with impulses
and time-varying delays, but the conditions imposed on the diffusion coefficient matrix
are very strict. As far as we know, there are no results on the stability of non-autonomous
stochastic neural networks with time delays and impulses except for [].

Motivated by the previous analysis, in this paper, applying the properties of L-operator
and M-matrix, we develop a new inequality of L-operator that is effective for stochas-
tic non-autonomous system. Based on the new inequality of L-operator, we study the
stochastic non-autonomous impulsive cellular neural networks with time-varying delays
and obtain the sufficient conditions for the pth moment exponential stability of the corre-
sponding systems. Our main results do not require common factors of the coefficients of
the system, relax the conditions imposed on the diffusion coefficient matrix, and gener-
alize some early results. One example is provided to demonstrate the effectiveness of the
proposed results.

2 Preliminaries
Let Rm×n be the set of m × n real matrices. Usually E denotes an n × n unit matrix.
Rn denotes the space of n-dimensional real column vectors, | · | denotes Euclidean norm,
N �= {, , . . . , n}, N �= {, , . . .}, R+

�= [, +∞). For M, N ∈ Rm×n or M, N ∈ Rn, the notation
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M ≥ N (M > N ) indicates that each pair of corresponding elements of M and N satisfies
the inequality ‘≥ (>)’. Particularly, M ∈ Rm×n is called a non-negative matrix if M ≥ , and
x ∈ Rn is called a positive vector if x > . Let ρ(M) denote the spectral radius of square
matrix M.

L(R+, R+) denotes the family of all continuous functions h : R+ → R+ satisfying
∫ +∞

 h(t) dt < ∞. C[X, Y ] denotes the space of continuous mappings from X to Y . In partic-
ular, let C �= C[[–τ , ], Rn] denote the family of all Rn-valued functions ϕ which is bounded
continuous and defined on [–τ , ]. The norm of C is defined by ‖ϕ‖ = sup–τ≤θ≤ |ϕ(θ )|.

PC[J , Rn] = {φ : J → Rn|φ(v) is continuous for all but at most countable points v ∈ J and
at these points v ∈ J ,φ(v+) and φ(v–) exist and φ(v) = φ(v+)}, where φ(v–) and φ(v+) de-
note the left-hand and right-hand limits of the function φ(v) at time v, respectively, and
J ⊂ R is an interval. Especially, let PC �= PC[[–τ , ], Rn].

For any x ∈ Rn, φ ∈ C or φ ∈PC , p > , we define

[x]+p =
(|x|p, . . . , |xn|p

)T ,
[
φ(t)

]
τ

=
([

φ(t)
]
τ
, . . . ,

[
φn(t)

]
τ

)T ,
[
φi(t)

]
τ

= sup
–τ≤s≤

∣
∣φi(t + s)

∣
∣, i ∈N ,

and D+φ(t) denotes the upper-right-hand derivative of φ(t) at time t.
(�,F , {Ft}t≥, P) denotes a complete probability space with a filtration {Ft}t≥ sat-

isfying the usual conditions (i.e., it is right continuous and F contains all P-null
sets). Let Cb

F
[[t – τ , t], Rn] (Cb

Ft
[[t – τ , t], Rn]) denote the family of all bounded

F(Ft)-measurable, C[[t – τ , t], Rn]-value random variables φ, let PCb
F

[[t – τ , t], Rn]
(PCb

Ft
[[t – τ , t], Rn]) denote the family of all bounded F(Ft)-measurable, PC[[t –

τ , t], Rn]-value random variables φ, satisfying ‖φ‖p
Lp = supt–τ≤θ≤t E|φ(θ )|p < ∞ for p > ,

where E denotes the expectation of stochastic process.
We study the following stochastic non-autonomous impulsive cellular neural networks

with delays:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dxi(t) = [–ai(t)xi(t) +
∑n

j= bij(t)fj(xj(t)) +
∑n

j= cij(t)gj(xj(t – τij(t))) + Ii(t)] dt
+

∑n
j= σij(t, x(t), x(t – τ (t))) dωj(t), t ≥ t, t 	= tk ,

xi(tk) = Iik(x(t–
k )), t = tk ,

xi(s) = φi(s), t – τ ≤ s ≤ t,

(.)

where i ∈N , and n is the number of units in a neural network; xi(t) is the state variable of
the ith unit at time t; fj(·) and gj(·) are the activation functions of the jth unit at time t and
t – τij(t), respectively; τij(t) is the time-varying delay satisfying  ≤ τij(t) ≤ τ and τ >  at
time t; ai(t) >  is the rate with which the ith unit will reset its potential to the resting state
in isolation when disconnected from the network and external inputs; bij(t), cij(t) denote
the strengths of the jth neuron on the ith unit at time t and t – τij(t), respectively; Ii(t) de-
notes the bias of the ith unit at time t; σ (t, x(t), x(t – τ (t))) = (σij(t, x(t), x(t – τ (t))))n×n

is the diffusion coefficient matrix, and ω(t) = (ω(t), . . . ,ωn(t))T is an n-dimensional
Brownian motion defined on a complete probability space (�,F , {Ft}t≥, P); φ(s) =
(φ(s),φ(s), . . . ,φn(s))T ∈ PCb

F
[[t – τ , t], Rn] is the initial function vector. The impul-

sive function Ik = (Ik , . . . , Ink)T ∈ C[Rn, Rn], and the fixed impulsive moments tk (k ∈ N)
satisfy t < t < t < · · · and limk→∞ tk = ∞.
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Throughout this paper, we assume that fj(·), gj(·), σij(t, ·, ·) satisfy the linear growth
condition and are Lipschitz continuous as well. Therefore, we can know that system
(.) has a unique global solution denoted by x(t) = (x(t), . . . , xn(t))T on t ≥ t and
E(supt≤s≤t |x(t)|r) < ∞ for all t ≥ t and r > .

Definition . System (.) is called globally and exponentially p-stable, if there ex-
ist constants M ≥  and λ >  such that for any two solutions x(t,φ) and x(t,ψ) with
φ,ψ ∈ PCb

F
[[t – τ , t], Rn], respectively, one has

E
∣
∣x(t,φ) – x(t,ψ)

∣
∣p ≤ M‖φ – ψ‖p

Lp e–λ(t–t), t ≥ t.

Furthermore, if x∗ is an equilibrium point of system (.), then we call the equilibrium
point x∗ exponentially p-stable.

Definition . ([]) Let matrix D = (dij)n×n satisfy dij ≤ , i 	= j, then the statement ‘D is
a nonsingular M-matrix’ is equivalent to one of the following conditions.

(i) D = B – M and ρ(B–M) < , where M ≥ , B = diag{b, . . . , bn}.
(ii) All the leading principal minors of D are positive.

(iii) The diagonal elements of D are all positive and there exists a positive vector d such
that Dd >  or DT d > .

For aM-matrix D, from (iii) of Definition ., we know �M(D) �= {z ∈ Rn|Dz > , z > } 	=
φ and satisfies kz + kz ∈ �M(D) for any vectors z, z ∈ �M(D) and scalars k, k > .

For A ∈ Rn×n and |A| 	= , we denote �ρ(A) �= {z ∈ Rn|Az = ρ(A)z}, where ρ(A) is an
eigenvalue of A. Then �ρ(A) includes all positive eigenvectors of A provided that the ma-
trix A has at least one positive eigenvector (see Ref. []).

Lemma . ([]) For αi >  and
∑n

i= αi = , xi ≥ , we have

n∏

i=

xαi
i ≤

n∑

i=

αixi,

where the sign of equality holds if and only if xi = xj for all i, j ∈N .

Lemma . ([]) For ai ≥ , xi ≥ , i ∈N and any integral number p > , we have

( n∑

i=

aixi

)p

≤
( n∑

i=

ai

)p– n∑

i=

aix
p
i .

Lemma . ([]) For an integral number p ≥ , there exists ep(n) >  such that

ep(n)

( n∑

i=

|xi|
) p



≤
n∑

i=

|xi|p, ∀x = (x, . . . , xn)T ∈ Rn.
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3 A new L-operator inequality
Let C,[Rn ×R+; R+] denote the family of non-negative functions V (x, t) on Rn ×R+ which
are once continuously differentiable in t and twice continuously differentiable in x. Asso-
ciated with the system (.), for each V (x, t) ∈ C,[Rn × R+; R+], we define an operator LV
from Rn × Rn × R+ to R by

LV (x, t) = Vt(x, t) + Vx(x, t)
[
–A(t)x(t) + B(t)f

(
x(t)

)
+ C(t)g(y) + I(t)

]

+



trace
[
σ T (t, x, y)Vxxσ (t, x, y)

]
,

y = x
(
t – τ (t)

)
, Vt(x, t) =

∂V (x, t)
∂t

,

Vx(x, t) =
(

∂V (x, t)
∂x

, . . . ,
∂V (x, t)

∂xn

)

, Vxx =
(

∂V (x, t)
∂xi∂xj

)

n×n
.

The differential inequality is the main tool for investigating differential equations.
Therefore, by using the properties of the L-operator and the M-matrix, we introduce a
new inequality of the L-operator that is effective for a stochastic non-autonomous system.

Theorem . Let σ < b ≤ +∞, P = (pij)n×n, pij ≥  for i 	= j, Q = (qij)n×n ≥ , α(t) =
(αij(t))n×n ≥ , β(t) = (βij(t))n×n ≥ , r(t) = (r(t), . . . , rn(t))T ≥  and for any t ≥ σ , there
exists a constant δ >  such that eδ(t–σ )ri(t), αij(t), βij(t), i, j ∈N are integrable functions on
[σ , t]. The functions Vi(x) ∈ C[Rn, R+] satisfy

LVi(x) ≤
n∑

j=

[(
pij + αij(t)

)
Vj

(
x(t)

)
+

(
qij + βij(t)

)
Vj

(
x
(
t – τ (t)

))]
+ ri(t),

t ∈ [σ , b),∀i ∈N . (.)

Suppose that � = –(P + Q) is an M-matrix, we obtain

EVi
(
x(t)

) ≤ zie–λ(t–σ )e
∫ t
σ θ (s) ds, t ∈ [σ , b),∀i ∈N , (.)

provided that EVi(x(t)) < ∞ for all t ∈ [σ , b) and

EVi
(
x(t)

) ≤ zie–λ(t–σ ), t ∈ [σ – τ ,σ ],∀i ∈N , (.)

where λ ∈ (, δ], z ∈ �M(�) with zi ≥ , ∀i ∈N , satisfy

(
λE + P + Qeλτ

)
z < , (.)

and θ (s) = max≤i≤n{∑n
j=(αij(s) + βij(s)eλτ ) zj

zi
+ eλ(s–σ )ri(s)}.

Proof By using the Itô formula, for the solution process x(t) of (.) and Vi(x) ∈ C[Rn, R+],
we can obtain

Vi
(
x(t)

)
= Vi

(
x(σ )

)
+

∫ t

σ

LVi
(
x(s)

)
ds

+
∫ t

σ

∂Vi(x(s))
∂x

σ
(
s, x(s), x

(
s – τ (s)

))
dω(s), t ≥ σ ,∀i ∈N . (.)
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Then we get

EVi
(
x(t)

)
= EVi

(
x(σ )

)
+

∫ t

σ

ELVi
(
x(s)

)
ds, t ≥ σ ,∀i ∈N . (.)

For small enough �t > , we have

EVi
(
x(t + �t)

)
= EVi

(
x(σ )

)
+

∫ t+�t

σ

ELVi
(
x(s)

)
ds, t ≥ σ ,∀i ∈N . (.)

Therefore, from (.), (.), and (.), we have

EVi
(
x(t + �t)

)
– EVi

(
x(t)

)

=
∫ t+�t

t
ELVi

(
x(s)

)
ds

≤
∫ t+�t

t

[ n∑

j=

(
pij + αij(s)

)
EVj

(
x(s)

)
+

n∑

j=

(
qij + βij(s)

)
EVj

(
x
(
s – τ (s)

))
+ ri(s)

]

ds

≤
∫ t+�t

t

[ n∑

j=

(
pij + αij(s)

)
EVj

(
x(s)

)

+
n∑

j=

(
qij + βij(s)

)[
EVj

(
x(s)

)]
τ

+ ri(s)

]

ds, t ≥ σ ,∀i ∈N . (.)

Because EVi(x(t)) < ∞ for all t ∈ [σ , b), we know EVi(x(t)) is continuous. Thus, from
(.), we can obtain

D+
EVi

(
x(t)

) ≤
n∑

j=

[(
pij + αij(t)

)
EVj

(
x(t)

)
+

(
qij + βij(t)

)[
EVj

(
x(t)

)]
τ

]
+ ri(t),

t ∈ [σ , b),∀i ∈N . (.)

Let vi(t) = EVi(x(t)). For proving Theorem ., we only need to prove

vi(t) ≤ zie–λ(t–σ )e
∫ t
σ θ (s) ds, t ∈ [σ , b),∀i ∈N , (.)

provided that

vi(t) ≤ zie–λ(t–σ ), t ∈ [σ – τ ,σ ],∀i ∈N , (.)

holds.
Because � is anM-matrix, we can get a vector z ∈ �M(�) with zi ≥ , i ∈N and �z > ,

that is, (P + Q)z < . From the continuity of the function, we know there exists a constant
λ ∈ (, δ] satisfying (.).

For proving (.), we first of all prove, for any given ε > ,

vi(t) < ( + ε)ze–λ(t–σ )e
∫ t
σ θ (s) ds �= ξi(t), t ∈ [σ , b),∀i ∈N . (.)
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If (.) is not true, given that vi(t) is continuous on [σ , b) and the fact (.) holds, then
there must be a constant t∗ ∈ (σ , b) and m ∈N such that

vm
(
t∗) = ξm

(
t∗), D+vm

(
t∗) ≥ ξ ′

m
(
t∗), (.)

vi(t) ≤ ξi(t), t ∈ [
σ – τ , t∗],∀i ∈N . (.)

By using (.), (.)-(.), zm ≥ , pij ≥  (i 	= j), and Q ≥ , we can get

D+vm
(
t∗) ≤

n∑

j=

[(
pmj + αmj

(
t∗))vj

(
t∗) +

(
qmj + βmj

(
t∗))[vj

(
t∗)]

τ

]
+ rm

(
t∗)

≤
n∑

j=

[(
pmj + αmj

(
t∗))( + ε)zje–λ(t∗–σ )e

∫ t∗
σ θ (s) ds

+
(
qmj + βmj

(
t∗))eλτ ( + ε)zje–λ(t∗–σ )e

∫ t∗
σ θ (s) ds] + rm

(
t∗)

≤
n∑

j=

(
pmj + qmjeλτ

)
( + ε)zje–λ(t∗–σ )e

∫ t∗
σ θ (s) ds

+
n∑

j=

(
αmj

(
t∗) + βmj

(
t∗)eλτ

) zj

zm
( + ε)zme–λ(t∗–σ )e

∫ t∗
σ θ (s) ds

+ eλ(t∗–σ )rm
(
t∗)( + ε)zme–λ(t∗–σ )e

∫ t∗
σ θ (s) ds + rm

(
t∗)[ – ( + ε)zme

∫ t∗
σ θ (s) ds]

< –λ( + ε)zme–λ(t∗–σ )e
∫ t∗
σ θ (s) ds + θ

(
t∗)( + ε)zme–λ(t∗–σ )e

∫ t∗
σ θ (s) ds

= ξ ′
m
(
t∗), (.)

which contradicts the second inequality in (.). Thus, (.) holds. Letting ε → + in
(.), we obtain (.). �

Remark . If α(t) ≡  and β(t) ≡  in (.), we can get Theorem  in [].

4 Application to neural networks
For system (.), some assumptions are given in the following:

(A) For i, j ∈N , ai(t) > , bij(t), cij(t) and Ii(t) are bounded continuous functions defined
on R+.

(A) There are positive constants lj and kj, j ∈N such that

∣
∣fj(r) – fj(s)

∣
∣ ≤ lj|r – s|, ∣

∣gj(r) – gj(s)
∣
∣ ≤ kj|r – s|, ∀r, s ∈ R.

(A) There exist non-negative bounded functions mij(t), nij(t), and hi(t), i, j ∈ N such
that

[
σij(t, v, u) – σij(t, v̄, ū)

] ≤ mij(t)(vj – v̄j) + nij(t)(uj – ūj) + hi(t),

∀u, ū, v, v̄ ∈ Rn, t ≥ t.
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(A) There exist non-negative integrable functions α̂ij(t), β̂ij(t) on [t, t] such that

P(t) ≤ P̂ + α̂(t), Q(t) ≤ Q̂ + β̂(t) and

�̂ = –(̂P + Q̂) is a nonsingular M-matrix,

where P(t) = (pij(t))n×n, pii(t) = –pai(t) + (p – )
∑n

j=(|bij(t)|lj + |cij(t)|kj) + 
 (p – )(p –

)
∑n

j=(mij(t) + nij(t)) + |bii(t)|li + (p– )mii(t) + 
 (p– )(p– ), pij(t) = |bij(t)|lj + (p– )mij(t),

i 	= j, Q(t) = (qij(t))n×n, qij(t) = |cij(t)|kj + (p – )nij(t), α̂(t) = (α̂ij(t))n×n, β̂(t) = (β̂ij(t))n×n,
P̂ = (p̂ij)n×n, p̂ij ≥ , i 	= j, Q̂ = (q̂ij)n×n ≥ , i, j ∈N , p ≥ . Let r̂i(t) = (p – )(nhi(t))

p
 , i ∈N ,

and there exists a constant δ̂ >  such that eδ̂(t–t)r̂i(t) is an integrable function on [t, t].
(A) For any u, v ∈ Rn, there exist matrices Rk = (r(k)

ij )n×n ≥  such that

[
Ik(u) – Ik(v)

]+ ≤ Rk[u – v]+, k ∈ N.

Let R̂k = (r̂(k)
ij )n×n, r̂(k)

ij ≥ r(k)
ij (

∑n
j= r(k)

ij )p–.
(A) The set � =

⋂∞
k=(�ρ(R̂k)) ∩�M(�̂) is nonempty (i.e., � 	= ∅), for a given z ∈ �, the

scalar λ ∈ (, δ̂] satisfies

(
λE + P̂ + Q̂eλτ

)
z < . (.)

(A) There are constants  ≤ μ < λ and b ≥  which satisfy

∫ t

t

θ̂ (s) ds ≤ μ(t – t) + b, (.)

where θ̂ (s) = max≤i≤n{∑n
j=(α̂ij(s) + β̂ij(s)eλτ ) zj

zi
+ eλ(s–t)r̂i(s)}.

(A) There exists a constant γ such that

lnγk

tk – tk–
≤ γ < λ – μ, k ∈N, (.)

where γk ≥ max{,ρ(R̂k)}.

Theorem . Assume that (A)-(A) are all true. Then we know system (.) is exponen-
tially p-stable and the exponential convergent rate is no less than λ – μ – γ .

Proof For any two solutions x(t) and y(t) of system (.) corresponding to initial values
φ(s),ϕ(s) ∈ PCb

F
[[t – τ , t], Rn], respectively. Let zi(t) = xi(t) – yi(t), i ∈ N . Then from

(.), we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dzi(t) = [–ai(t)zi(t) +
∑n

j= bij(t)(fj(xj(t)) – fj(yj(t)))
+

∑n
j= cij(t)(gj(xj(t – τij(t))) – gj(yj(t – τij(t))))] dt

+
∑n

j=(σij(t, x(t), x(t – τ (t))) – σij(t, y(t), y(t – τ (t)))) dωj(t),
t ≥ t, t 	= tk ,

zi(tk) = xi(tk) – yi(tk) = Iik(x(t–
k )) – Iik(y(t–

k )), t = tk ,
zi(s) = φi(s) – ϕi(s), t – τ ≤ s ≤ t.

(.)
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Let Vi(z(t)) = |zi(t)|p, p ≥ , i ∈N . Then we get

∂Vi(z)
∂zi

= p|zi|p– sgn(zi) = p|zi|p–zi,
∂Vi(z)

∂z
i

= p(p – )|zi|p–,

where sgn(·) denotes sign function. Therefore, from (A)-(A), Lemma ., and (.), we
get

LVi(z) = p
∣
∣zi(t)

∣
∣p–zi(t)

{

–ai(t)zi(t) +
n∑

j=

bij(t)
[
fj
(
xj(t)

)
– fj

(
yj(t)

)]

+
n∑

j=

cij(t)
[
gj
(
xj

(
t – τij(t)

))
– gj

(
yj

(
t – τij(t)

))]
}

+



p(p – )|zi|p–
n∑

j=

[
σij

(
t, x(t), x

(
t – τ (t)

))
– σij

(
t, y(t), y

(
t – τ (t)

))]

≤ –pai(t)
∣
∣zi(t)

∣
∣p + p

∣
∣zi(t)

∣
∣p–

n∑

j=

∣
∣bij(t)

∣
∣lj

∣
∣zj(t)

∣
∣

+ p
∣
∣zi(t)

∣
∣p–

n∑

j=

∣
∣cij(t)

∣
∣kj

∣
∣zj

(
t – τij(t)

)∣
∣

+



p(p – )
∣
∣zi(t)

∣
∣p–

n∑

j=

[
mij(t)

∣
∣zj(t)

∣
∣ + nij(t)

∣
∣zj

(
t – τij(t)

)∣∣ + hi(t)
]

≤ –pai(t)
∣
∣zi(t)

∣
∣p +

n∑

j=

|bij|lj
[
(p – )

∣
∣zi(t)

∣
∣p +

∣
∣zj(t)

∣
∣p]

+
n∑

j=

|cij|kj
[
(p – )

∣
∣zi(t)

∣
∣p +

∣
∣zj

(
t – τij(t)

)∣
∣p]

+



(p – )(p – )
n∑

j=

mij(t)
∣
∣zi(t)

∣
∣p

+ (p – )
n∑

j=

mij(t)
∣
∣zj(t)

∣
∣p +




(p – )(p – )
n∑

j=

nij(t)
∣
∣zi(t)

∣
∣p

+ (p – )
n∑

j=

nij(t)
∣
∣zj

(
t – τij(t)

)∣∣p +



(p – )(p – )
∣
∣zi(t)

∣
∣p + (p – )

(
nhi(t)

) p


≤
n∑

j=

[
pij(t)Vj

(
z(t)

)
+ qij(t)Vj

(
z
(
t – τ (t)

))]
+ r̂i(t)

≤
n∑

j=

[(
p̂ij + α̂ij(t)

)
Vj

(
z(t)

)
+

(
q̂ij + β̂ij(t)

)
Vj

(
z
(
t – τ (t)

))]
+ r̂i(t). (.)

For the initial conditions φ(s),ϕ(s) ∈ PCb
F

[[t – τ , t], Rn], we know z(s) = φ(s) – ϕ(s) ∈
PCb

F
[[t – τ , t], Rn]. From the assumption that, for any initial value in PCb

F
[[t –

τ , t], Rn], model (.) has a global solution satisfying E(supt≤s≤t |x(t)|r) < ∞ for all t ≥ t

and r > , we know E(supt≤s≤t |z(t)|r) < ∞ for all t ≥ t and r > . Thus, we know
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EVi(z(t)) < ∞. Since �̂ = –(̂P + Q̂) is an M-matrix and � is nonempty, there must be
a positive vector z ∈ � and a constant λ ∈ (, δ̂] such that (.) holds and

EVi
(
z(t)

) ≤ zi

min≤j≤n{zj}κ‖φ – ϕ‖p
Lp e–λ(t–t), t ∈ [t – τ , t], (.)

where κ >  is a constant such that κ‖φ – ϕ‖p
Lp ≥ .

From (A), (.), (.), and Theorem ., we get

EVi
(
z(t)

) ≤ zi

min≤j≤n{zj}κ‖φ – ϕ‖p
Lp e–λ(t–t)e

∫ t
t

θ̂ (s) ds, t ∈ [t, t). (.)

Assume that the inequalities

EVi
(
z(t)

) ≤ γγ · · ·γm–
zi

min≤j≤n{zj}κ‖φ – ϕ‖p
Lp e–λ(t–t)e

∫ t
t

θ̂ (s) ds,

tm– ≤ t < tm, (.)

hold for all m = , , . . . , k, where γ = . Then, from (.), (A), and Lemma ., we obtain

EVi
(
z(tk)

)
= E

∣
∣xi(tk) – yi(tk)

∣
∣p

= E
∣
∣Iik

(
x
(
t–
k
))

– Iik
(
y
(
t–
k
))∣

∣p

≤ E

( n∑

j=

r(k)
ij

∣
∣zj

(
t–
k
)∣∣

)p

≤
( n∑

j=

r(k)
ij

)p– n∑

j=

r(k)
ij E

∣
∣zj

(
t–
k
)∣∣p

≤
n∑

j=

r̂(k)
ij E

∣
∣zj

(
t–
k
)∣
∣p =

n∑

j=

r̂(k)
ij EVj

(
z
(
t–
k
))

≤ γγ · · ·γk–

n∑

j=

r̂(k)
ij

zj

min≤j≤n{zj}κ‖φ – ϕ‖p
Lp e–λ(tk –t)e

∫ tk
t θ̂ (s) ds

= γγ · · ·γk–ρ(R̂k)
zi

min≤j≤n{zj}κ‖φ – ϕ‖p
Lp e–λ(tk –t)e

∫ tk
t θ̂ (s) ds

≤ γγ · · ·γk–γk
zi

min≤j≤n{zj}κ‖φ – ϕ‖p
Lp e–λ(tk–t)e

∫ tk
t θ̂ (s) ds. (.)

This, together with (.) and γk ≥ , leads to

EVi
(
z(t)

) ≤ γγ · · ·γk–γk
zi

min≤j≤n{zj}κ‖φ – ϕ‖p
Lp e–λ(t–t)e

∫ t
t

θ̂ (s) ds

= γγ · · ·γke
∫ tk

 θ̂ (s) dse–λ(tk–t) zi

min≤j≤n{zj}κ‖φ – ϕ‖p
Lp e–λ(t–tk ),

t ∈ [tk – τ , tk]. (.)
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Let

z̃i = γγ · · ·γke
∫ tk

 θ̂ (s) ds zi

min≤j≤n{zj}κ‖φ – ϕ‖p
Lp , z̃ = (z̃, . . . , z̃n)T ,

Ui
(
z(t)

)
= eλ(tk –t)Vi

(
z(t)

)
,

then we know the vector z̃ ∈ �M(�̂) with z̃i ≥ , i ∈N . From (.), we get

EUi
(
z(t)

) ≤ z̃ie–λ(t–tk ), t ∈ [tk – τ , tk]. (.)

From (.), we obtain

LUi
(
z(t)

) ≤
n∑

j=

[(
p̂ij + α̂ij(t)

)
Uj

(
z(t)

)
+

(
q̂ij + β̂ij(t)

)
Uj

(
z
(
t –τ (t)

))]
+eλ(tk–t)r̂i(t). (.)

Furthermore, we can easily get

θ̆ (s) = max
≤i≤n

{ n∑

j=

(
α̂ij(s) + β̂ij(s)eλτ

) z̃j

z̃i
+ eλ(s–tk )eλ(tk –t)r̂i(s)

}

= max
≤i≤n

{ n∑

j=

(
α̂ij(s) + β̂ij(s)eλτ

) zj

zi
+ eλ(s–t)r̂i(s)

}

= θ̂ (s).

Therefore, from (A), (.), (.), and Theorem ., we get

EUi
(
z(t)

) ≤ z̃ie–λ(t–tk )e
∫ t

tk
θ̂ (s) ds, t ∈ [tk , tk+), (.)

that is,

EVi
(
z(t)

) ≤ γγ · · ·γk–γk
zi

min≤j≤n{zj}κ‖φ – ϕ‖p
Lp e–λ(t–t)e

∫ t
t

θ̂ (s) ds,

t ∈ [tk , tk+). (.)

By using the mathematical induction method, we know

EVi
(
z(t)

) ≤ γγ · · ·γk–
zi

min≤j≤n{zj}κ‖φ – ϕ‖p
Lp e–λ(t–t)e

∫ t
t

θ̂ (s) ds,

t ∈ [tk–, tk), k ∈ N. (.)

From (.), we know γk ≤ eγ (tk –tk–). Then we can use (.) and (.) to get

∣
∣xi(t) – yi(t)

∣
∣p

= EVi
(
z(t)

) ≤ eγ (t–t) · · · eγ (tk––tk–) zi

min≤j≤n{zj}κ‖φ – ϕ‖p
Lp e–λ(t–t)e

∫ t
t

θ̂ (s) ds

≤ zi

min≤j≤n{zj} κ̂‖φ – ϕ‖p
Lp e–(λ–μ–γ )(t–t), ∀t ∈ [t, tk), k ∈ N, (.)

where κ̂ ≥ κ is a proper constant.
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From (.) and Lemma ., we get

E
∣
∣x(t) – y(t)

∣
∣p ≤ 

ep(n)

n∑

i=

E
∣
∣xi(t) – yi(t)

∣
∣p =


ep(n)

n∑

i=

EVi
(
z(t)

)

≤ 
ep(n)

n∑

i=

zi

min≤j≤n{zj} κ̂‖φ – ϕ‖p
Lp e–(λ–μ–γ )(t–t)

� M‖φ – ϕ‖p
Lp e–(λ–μ–γ )(t–t), t ≥ t. (.)

Therefore, the conclusion of Theorem . holds.
If Ii(t) ≡ , σij(t, , ) ≡  for t ≥ t, Iik() = , fj() = gj() = , i, j ∈ N , k ∈ N then the

system (.) becomes the following system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dxi(t) = [–ai(t)xi(t) +
∑n

j= bij(t)fj(xj(t)) +
∑n

j= cij(t)gj(xj(t – τij(t)))] dt
+

∑n
j= σij(t, x(t), x(t – τ (t))) dωj(t), t ≥ t, t 	= tk ,

xi(tk) = Iik(x(t–
k )), t = tk ,

xi(s) = φi(s), t – τ ≤ s ≤ t,

(.)

with an equilibrium point x∗ = . From Theorem ., we can get the following conclu-
sion. �

Corollary . Assume that the conditions (A)-(A) are all true. Then the zero solution
x∗ =  of (.) is exponentially p-stable and the exponential convergent rate is no less than
λ – μ – γ .

Remark . The authors in [] obtained some new results on p-moment exponential
stability of non-autonomous stochastic differential equation with delay. The model (.)
without impulses is a special case of equation () in []. However, the results in [] re-
quire the coefficients to have a common factor and hi(t) ≡  (i ∈N , t ≥ t) in assumption
(A) to be true.

If Iik(x) = xi, i ∈N , k ∈ N and φ(s) = (φ(s), . . . ,φn(s))T ∈ Cb
F

[[t –τ , t], Rn], from system
(.), we can get the following model without impulses:

⎧
⎪⎨

⎪⎩

dxi(t) = [–ai(t)xi(t) +
∑n

j= bij(t)fj(xj(t)) +
∑n

j= cij(t)gj(xj(t – τij(t))) + Ii(t)] dt
+

∑n
j= σij(t, x(t), x(t – τ (t))) dωj(t), t ≥ t,

xi(s) = φi(s), t – τ ≤ s ≤ t.
(.)

Then we can get the following conclusion.

Theorem . Assume that (A)-(A) hold, (A) holds for λ ∈ (, δ̂] which satisfies

(
λE + P̂ + Q̂eλτ

)
z < , z ∈ �M(�̂). (.)

Then the system (.) is exponentially p-stable and the exponential convergent rate is no
less than λ – μ.
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If Ii(t) ≡ , σij(t, , ) ≡  for t ≥ t, fj() = gj() = , i, j ∈ N , then the system (.)
becomes the following model:

⎧
⎪⎨

⎪⎩

dxi(t) = [–ai(t)xi(t) +
∑n

j= bij(t)fj(xj(t)) +
∑n

j= cij(t)gj(xj(t – τij(t)))] dt
+

∑n
j= σij(t, x(t), x(t – τ (t))) dωj(t), t ≥ t,

xi(s) = φi(s), t – τ ≤ s ≤ t,
(.)

with an equilibrium point x∗ = . From Theorem ., we get the following corollary.

Corollary . Assume that (A)-(A) hold, (A) holds for λ ∈ (, δ̂] which satisfies the in-
equality (.). Then the zero solution x∗ =  of (.) is exponentially p-stable and the
exponential convergent rate is no less than λ – μ.

Remark . The models investigated in [, ] can be considered as special cases of
model (.), but they require the differentiability of delay functions and supt≥t τ̇ij(t) < .
In addition, combining σij(t, , ) ≡  for t ≥ t with (A), we can get

trace
[
σ T (t, v, u)σ (t, v, u)

]
=

n∑

i=

n∑

j=

σ 
ij (t, v, u)

≤
n∑

j=

[( n∑

i=

mij(t)

)

v
j +

( n∑

i=

nij(t)

)

u
j +

n∑

i=

hi(t)

]

.

However, the authors of [, ] require that hi(t) ≡  (i ∈ N , t ≥ t) in assumption (A)
is true.

Remark . The authors in [] used the methods in [, ] to study the p-moment
exponential stability of non-autonomous stochastic Cohen-Grossberg neural networks
and obtained some new results. It is well known that the model (.) is a special case
of equation () in [], however, the condition () in [] is equivalent to requiring that
–(P(t) + Q(t)) is a nonsingular M-matrix for all t ≥ t. In addition, the results in [] re-
quire that hi(t) ≡  (i ∈N , t ≥ t) in assumption (A) is true.

5 Examples
Example . Consider the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t) = [–( – 
 | cos t|)x(t) + ( + sin te–.t)f(x(t)) + ( 

 + e–.t)f(x(t))
+ ( 

 + e–.t)g(x(t – .| sin t|))
+ ( 

 + e–.t)g(x(t – .| sin t|))] dt
+ (

√


 x(t) + e–t sin x(t)) dω(t) + (
√


 x(t) + e–t sin x(t)) dω(t),

dx(t) = [–( 
 – 

 | cos t|)x(t) + ( 
 + e–.t)f(x(t)) + ( + cos te–.t))f(x(t))

+ ( 
 + e–.t)g(x(t – .| sin t|))

+ ( 
 + e–.t)g(x(t – .| sin t|))] dt

+ (
√


 x(t) + e–t sin x(t)) dω(t) + (

√


 x(t) + e–t sin x(t)) dω(t),
xi(s) = φi(s), –. ≤ s ≤ ,

(.)
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where f(s) = f(s) = 
 (|s + | – |s – |), g(s) = g(s) = s. We can easily know τ = ., l = l =

k = k = , f() = f() = g() = g() = , σij(t, , ) ≡ , i, j = , . Evidently, model (.)
has an equilibrium point zero.

For σij(t, x(t), x(t – τ (t))) =
√


 xj(t) + e–t sin xj(t), i, j = , , we can derive |σij(t, x(t), x(t –

τ (t)))| ≤ 
 x

j (t) + e–t , that is, mij(t) ≡ 
 , nij(t) ≡ , hi(t) = e–t , r̂i(t) = e–t , i, j = , .

Case . Let p = , by simple computation, we can get the parameters of (A) as follows:

P(t) =
(

– 
 + 

 | cos t| + | sin t|e–.t + e–.t 
 + e–.t


 + e–.t – 

 + 
 | cos t| + | cos t|e–.t + e–.t

)

,

Q(t) =

(

 + e–.t 

 + e–.t


 + e–.t 

 + e–.t

)

, P̂ =

(
– 






 – 



)

,

Q̂ =

(












)

, �̂ = –(̂P + Q̂) =

(
. –.

–. .

)

,

α̂(t) =
(
α̂

ij(t)
)

× +
(
α̂

ij(t)
)

× =

(

 | cos t| 

 
 | cos t|

)

+

(
| sin t|e–.t + e–.t e–.t

e–.t | cos t|e–.t + e–.t

)

,

β̂(t) =
(
β̂ij(t)

)
× =

(
e–.t e–.t

e–.t e–.t

)

.

We can easily know that �̂ is a nonsingular M-matrix, and we obtain

�M(�̂) =
{

(z, z)T > 
∣
∣
∣




z < z <



z

}

.

Apparently, z = (, )T ∈ �M(�̂), and λ = . satisfies

(
λE + P̂ + Q̂eλτ

)
z = (–., –.)T < (, )T .

We compute

J(t) �=
∫ t


| cos s|ds.

For any t ≥ , there must be an integer n ≥  satisfying nπ – π
 ≤ t < nπ + π

 . Let t =
nπ – π

 + u,  ≤ u < π , then we get

J(t) �=
∫ t


| cos s|ds

=
∫ π




cos s ds +

n–∑

k=

(–)k
∫ kπ+ π



kπ– π


cos s ds + (–)n
∫ t

nπ– π


cos s ds

=  +
n–∑

k=

(–)k
(

sin

(

kπ –
π



)

– sin

(

kπ +
π



))

+ (–)n
(

sin t – sin

(

nπ –
π



))
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=  +
n–∑

k=

(
(–)k – (–)k–) + (–)n

(

sin

(

nπ –
π


+ u

)

– (–)n–
)

= (n – cos u) =

π

(

nπ –
π



)

+  – cos u

≤ 
π

t + ( – cos u),  ≤ u < π . (.)

Since θ̂ (s) = 
 | cos s| + max≤i≤{∑

j=(α̂
ij(s) + β̂ij(s)eλτ ) + e.sr̂i(s)} �= 

 | cos s| + θ̂∗(s)
and α̂

ij , β̂ij ∈ L[R+, R+], e.sr̂i(s) = e–.s ∈ L[R+, R+], i, j = , , we easily know θ̂∗(s) ∈
L[R+, R+]. Combined with (.), we obtain

e
∫ t

 θ̂ (s) ds = e
∫ t

 θ̂∗(s) dse



∫ t
 | cos s|ds

≤ e
∫ t

 θ̂∗(s) dse


π te

 (–cos u)

≤ Me


π t , (.)

where M ≥  is a constant.
Thus, from Corollary ., we know the zero solution x∗ =  of (.) is exponentially -

stable (see Figure ), the exponential convergent rate is no less than . – 
π

= ..

Remark . Apparently, –(P(t) + Q(t)) is not a nonsingular M-matrix for all t ≥ , and
hi(t) = e–t ≡  is not true for all t ≥ , thus the results in [, ] are invalid for (.).
In addition, the delay functions τij(t) do not satisfy supt≥ τ̇ij(t) < , therefore, when model
(.) is autonomous, the results in [, ] are invalid for it.

Figure 1 The state trajectories of model (5.1) without impulses.
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Figure 2 The state trajectories of model (5.1) with impulses (5.2).

Case . If

x(tk) = Ik
(
x
(
t–
k
))

= .e.x
(
t–
k
)

+ .e.x
(
t–
k
)
,

x(tk) = Ik
(
x
(
t–
k
))

= .e.x
(
t–
k
)

+ .e.x
(
t–
k
)
, tk – tk– = , k ∈N,

(.)

then we can get the following parameters of (A), (A), (A):

R̂k = e.

(
. .
. .

)

, ρ(R̂k) = e., �ρ(R̂k) =
{

(z, z) > |z = z
}

.

Therefore, � =
⋂∞

k=(�ρ(R̂k)) ∩ �M(�̂) = {(z, z) > |z = z} is not empty. Let z =
(, )T ∈ � and γk = e., we can obtain for k ∈N

lnγk

tk – tk–
=

ln e.


= . = γ < λ – μ = ..

From Corollary ., we know the zero solution to (.) with impulses (.) is exponen-
tially -stable (see Figure ).

6 Conclusion
In this paper, we have analyzed the stochastic non-autonomous impulsive cellular neural
networks with delays. Based on the properties of L-operator and M-matrix, we have de-
veloped a new inequality of L-operator. We have applied the new inequality to stochastic
non-autonomous neural networks and derived the sufficient conditions for the pth mo-
ment exponential stability of the considered system without impulses or with impulses.
Our results do not require differentiability of the delay functions and have relaxed the
conditions imposed on the diffusion coefficient matrix. The results obtained have gener-
alized some early works.
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