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Abstract
Under some local superquadratic conditions onW(t,u) with respect to u, the
existence of infinitely many homoclinic solutions is obtained for the nonperiodic
second order Hamiltonian systems ü(t) – L(t)u(t) +∇W(t,u(t)) = 0, ∀t ∈R, where L(t) is
unnecessarily coercive.
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1 Introduction and main results
Let us consider the second order Hamiltonian systems

ü(t) – L(t)u + ∇W
(
t, u(t)

)
= , ∀t ∈R, ()

where L ∈ C(R,RN ) is a symmetric matrix-valued function and ∇W (t, x) = ∂
∂x W (t, x).

As usual, we say that u is a nontrivial homoclinic solution (to ) if u ∈ C(R,RN ), u �= ,
u(t) →  as |t| → ∞. In the following, (·, ·) : RN × R

N �→ R denotes the standard inner
product in R

N and | · | is the induced norm, and let IN be the identity matrix of order N .
With the variational methods, the existence and multiplicity of homoclinic orbits of

problem () have been obtained in many papers (see [–]), mainly in the case that W
satisfies some global assumptions for all t and u. Among other results, under some local
conditions on W , Lv and Jiang [] investigated the existence of one nontrivial homoclinic
solution for the second order Hamiltonian systems

ü – L(t)u(t) + ∇W
(
t, u(t)

)
= f (t), ∀t ∈R

as a limit of periodic solutions of a certain sequence of boundary-value problems. Later, it
was proved in [] that if L(t) is coercive and W (t, u) is subquadratic near the origin with
respect to u, then problem () has a sequence of homoclinic solutions converging to zero
in L∞ norm. There were no conditions assumed on W for u large. More precisely, one
presented the following assumptions:

(A) There exists a constant α <  such that l(t)|t|α– → ∞ as |t| → ∞, where

l(t) = inf
x∈RN ,|x|=

(
L(t)x, x

)
.
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(A) There are constants c >  and 
 ≤ ν ∈ ( 

–α
, ) such that

∣
∣∇W (t, x)

∣
∣ ≤ c|x|ν , ∀(t, x) ∈R× Bδ(),

where Bδ() denotes the ball in R
N centered at  with radius δ > .

(A)

lim|x|→

W (t, x)
|x| = ∞ uniformly for t ∈R.

(A) W (t, x) – (∇W (t, x), x) >  for all t ∈R and x ∈R
N \ {}.

In this note, we will consider problem () where L(t) is unnecessarily coercive, and
W (t, u) is superquadratic near the origin. The exact assumptions on L and W are as fol-
lows.

Theorem  Assume the following conditions hold:

(L) There exists l ≥  such that

l(t) := inf
x∈RN ,|x|=

(
L(t)x, x

) ≥ –l, ∀t ∈R.

(L) There exists a constant ξ >  such that

meas
(
t ∈R | |t|–ξ L(t) � MIN

)
< +∞, ∀M > .

(W) W ∈ C(R × Bδ(),R) is even in u and W (t, ) = , where Bδ() denotes the ball in
R

N centered at  with radius δ > .
(W) There are constants c >  and  < θ <  such that

∣∣∇W (t, x)
∣∣ ≤ c|x|θ , ∀(t, x) ∈R× Bδ().

(W) There exists a constant p >  such that

lim|x|→

W (t, x)
|x|p =  uniformly for t ∈R.

(W) W (t, x) – (∇W (t, x), x) <  for all t ∈R and x ∈ R
N \ {}.

(W) There exists a constant μ >  such that

lim|x|→

W (t, x)
|x|μ = ∞ uniformly for t ∈R.

Then problem () has a sequence of homoclinic solutions {uk} such that maxt∈R |uk(t)| → 
as k → ∞.

Remark  There exist L and W that satisfy all assumptions in Theorem . For example, let
L(t) = (t sin t + )IN and W (t, x) = |x| for |x| <  with θ = 

 , p = , μ = . Note that since
L does not satisfy the coercive condition (A) and W is superquadratic near the origin,
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Theorem  is different from Theorem . in []. As far as the authors know, there is little
research concerning the multiplicity of homoclinic solutions for problem () simultane-
ously under local conditions and noncoercive conditions, so our result is different from
the previous results in the literature.

The proof is motivated by the argument in []. We will modify and extend W to an ap-
propriate W̃ and show for the associated modified functional I the existence of a sequence
of homoclinic solutions converging to zero in L∞ norm, and therefore we obtain infinitely
many homoclinic solutions for the original problem.

2 Proof of theorems
First of all, we introduce the Sobolev space that we study. Let A be the self-adjoint ex-
tension of the operator –( d

dt ) + L(t) with the domain D(A) ⊂ L ≡ L(R,RN ). Denote by
{E(λ) | –∞ < λ < ∞} and |A| the spectral resolution and the absolute value of A, respec-
tively. Define U = I – E() – E(–). U commutes with A, |A| and |A|/, and A = U|A| is
the polar decomposition of A (see []). Let E = D(|A|/), the domain of |A|/. Define on
E the inner product and the corresponding norm:

(u, v) =
(|A|/u, |A|/v

)
 + (u, v),

‖u‖ = (u, u)/
 ,

where u, v ∈ E and (·, ·) denotes the inner product of L. Then E is a Hilbert space, and it
is easy to verify that E is continuously embedded in H(R,RN ).

Lemma  (see []) Suppose that L(t) satisfies (L) and (L). Then E is compactly embed-
ded in Lq(R,RN ) for q ∈ [,∞].

Remark  By Lemma  it is easy to prove that the spectrum σ (A) consists of eigenval-
ues numbered by λ ≤ λ ≤ · · · → +∞, and a corresponding system of eigenfunctions,
(ej)(Aej = λjej), forms an orthogonal basis in L. Let j– = #{j | λj < }, j = #{j | λj = } and
j̄ = j– + j, where #A denotes the number of elements of the set A. Set E– = span{e, . . . , ej–},
E = span{ej–+, . . . , ej̄} = ker A, and E+ = span{ej̄+, . . .}. Then one has E = E– ⊕ E ⊕ E+. We
introduce on E the following inner product and the corresponding norm:

(u, v) =
(|A| 

 u, |A| 
 v

)
 +

(
u, v)

,

‖u‖ = (u, u) =
∥
∥|A| 

 u
∥
∥

 +
∥
∥u∥∥

,

where u = u– + u + u+ and v = v– + v + v+ ∈ E = E– ⊕ E ⊕ E+. Obviously the norms ‖ · ‖
and ‖ · ‖ are equivalent and so the norm ‖ · ‖ on E will always be used. By Lemma  we
see that there exists a constant γq >  such that

‖u‖q ≤ γq‖u‖, ∀u ∈ E,∀q ∈ [,∞]. ()

Lemma  Assume that (W)-(W) are satisfied. There is  < r < δ
 and W̃ ∈ C(R,RN )

such that
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(i)

∣∣∇W̃ (t, x)
∣∣ ≤ c

(|x|θ + |x|p–), ∀(t, x) ∈R×R
N , ()

where c is a constant;
(ii)

Ŵ (t, x) := W̃ (t, x) –
(∇W̃ (t, x), x

) ≤ , ∀(t, x) ∈R×R
N ()

and

Ŵ (t, x) =  iff |x| = . ()

Proof By the mean value theorem, (W) and (W) imply that

∣∣W (t, x)
∣∣ ≤ c|x|θ+, ∀(t, x) ∈R× Bδ(). ()

Next we modify W (t, x) for x outside a neighborhood of the origin . Choose

 < β <


γ
p
p

,

where γp is the constant given in (). By (W), there is a constant r ∈ (, δ
 ) such that

W (t, x) ≤ β|x|p, ∀t ∈R and |x| ≤ r. ()

Define a cut-off function ρ ∈ C(R,R) satisfying

ρ(t) =

{
,  ≤ t ≤ r,
, t ≥ r,

and – 
r ≤ ρ ′(t) <  for r < t < r. Using ρ , we define

W̃ (t, x) := ρ
(|x|)W (t, x) +

(
 – ρ

(|x|))W∞(x), ∀(t, x) ∈R×R
N , ()

where W∞(x) = β|x|p. Then by direct computation we get

∇W̃ (t, x) = ρ
(|x|)∇W (t, x) + ρ ′(|x|)W (t, x) +

(
 – ρ

(|x|))W ′
∞(x) – ρ ′(|x|)W∞(x), ()

Ŵ (t, x) = ρ
(|x|)(W (t, x) –

(∇W (t, x), x
))

+ ( – p)
(
 – ρ

(|x|))W∞(x)

– ρ ′(|x|)(W (t, x) – W∞(x)
)|x| ()

for (t, x) ∈R×R
N . It follows from (W) and (W) that

∇W̃ (t, ) = Ŵ (t, ) = , ∀t ∈R. ()

Then by (), (), (W), and the choice of the cut-off function ρ , we have

∣∣∇W̃ (t, x)
∣∣ ≤ βp|x|p–, ∀t ∈R, |x| ≥ r
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and

∣∣∇W̃ (t, x)
∣∣ ≤ ∣∣∇W (t, x)

∣∣ +

r
∣∣W (t, x)

∣∣ + W ′
∞(x) +


r

W∞(x)

≤ c|x|θ + c|x|θ + βp|x|p– + β|x|p–

= c|x|θ + ( + p)β|x|p–, ∀t ∈R, |x| < r.

Therefore, () is satisfied if c = max{c, ( + p)β}.
Finally, we prove () and (). On one hand, using () we know that Ŵ (t, x) =  whenever

x = . On the other hand, assume that r < |x| < r. By (), (W), (), and the choice of the
cut-off function ρ , we obtain

ρ
(|x|)(W (t, x) –

(∇W (t, x), x
))

< ,

( – p)
(
 – ρ

(|x|))W∞(x) ≤ ,

and

–ρ ′(|x|)(W (t, x) – W∞(x)
)|x| ≤ .

The above estimates imply that Ŵ (t, x) <  if r < |x| < r. Besides, when |x| ≥ r, by ()
we have

Ŵ (t, x) = ( – p)W∞(x) < .

When  < |x| ≤ r, by (W) we get

Ŵ (t, x) = W (t, x) –
(∇W (t, x), x

)
< .

Thus () and () are verified. The proof is completed. �

We now consider the modified problem

ü(t) – L(t)u + ∇W̃
(
t, u(t)

)
= , ∀t ∈R, ()

whose solutions correspond to critical points of the functional

I(u) =



∫

R

(|u̇| +
(
L(t)u, u

))
dt –

∫

R

W̃ (t, u) dt

=


∥
∥u+∥

∥ –


∥
∥u–∥

∥ –
∫

R

W̃ (t, u) dt

for all u = u– + u + u+ ∈ E = E– + E + E+. By () and () we have

∣∣W̃ (t, u)
∣∣ ≤ c|u|θ+ + β|u|p, ∀(t, u) ∈ R×R

N . ()

Thus, I is well defined.
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Rewrite I as follows:

I = I – I,

where

I =



∫

R

(|u̇| +
(
L(t)u, u

))
dt and I =

∫

R

W̃ (t, u) dt.

In the following, c will be used to denote various positive constants where the exact values
are different.

Lemma  Let (L), (L), (W) and (W) be satisfied. Then I ∈ C(E,R) and I ′
 : E → E∗ is

compact, and hence I ∈ C(E,R). Moreover,

〈
I ′

(u), v
〉

=
∫

R

(∇W̃ (t, u), v
)

dt,

〈
I ′(u), v

〉
=

(
u+, v+)

–
(
u–, v–)

–
∫

R

(∇W̃ (t, u), v
)

dt

for u, v ∈ E = E– ⊕ E ⊕ E+, and nontrivial critical points of I on E belong to C(R,RN ) and
are homoclinic solutions of problem ().

Proof By (), for any η ∈ [, ], u, h ∈R
N we have

∣∣(∇W̃ (t, u + ηh), h
)∣∣ ≤ c

(|u|θ |h| + |h|θ+ + |u|p–|h| + |h|p),

where c is independent of η. Hence, for any u, h ∈ E, by the mean value theorem and
Lebesgue’s dominated convergence theorem, we get

lim
s→

I(u + sh) – I(h)
s

= lim
s→

∫

R

(∇W̃
(
t, u + τ (t)sh

)
, h

)
dt

=
∫

R

(∇W̃ (t, u), h
)

dt

:= W(u, h),

where τ (t) ∈ [, ] depends on u, h, s. Moreover, it follows from () and () that

∣
∣W(u, h)

∣
∣ ≤

∫

R

∣
∣(∇W̃ (t, u), h

)∣∣dt

≤ c
(‖u‖θ

θ+‖h‖θ+ + ‖u‖p–
p ‖h‖p

)

≤ c
(‖u‖θ + ‖u‖p–)‖h‖.

Therefore, W(u, ·) is linear and bounded in h, and dI(u) = W(u, ·) ∈ E∗ is the Gateaux
derivative of I at u.

Next we prove that dI(u) is weakly continuous. Set Bu := ∇W̃ (t, u). There exist B, B

such that B = B + B, where B is bounded and continuous from Lθ+(R) to L
θ+
θ (R) and
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B is bounded and continuous from Lp(R) to L
p

p– (R). For any v, h ∈ E,

∣
∣〈dI(u) – dI(v), h

〉∣∣ =
∣∣
∣∣

∫

R

(Bu – Bv, h) dt
∣∣
∣∣

=
∣∣
∣∣

∫

R

(Bu + Bu – Bv – Bv, h) dt
∣∣
∣∣

≤
∫

R

|Bu – Bv||h|dt +
∫

R

|Bu – Bv||h|dt

≤ c‖Bu – Bv‖ θ+
θ

‖h‖ + c‖Bu – Bv‖ p
p–

‖h‖,

which implies that

∥∥dI(u) – dI(v)
∥∥

E∗ ≤ c‖Bu – Bv‖ θ+
θ

+ c‖Bu – Bv‖ p
p–

.

Now suppose un ⇀ u in E, then by Lemma , un → u in L(θ+)(R) and Lp(R). Combining
the above arguments, we see that dI(u) is weakly continuous. Therefore, I(u) ∈ C(E,R)
and I ′

 : E → E∗ is compact.
Finally, we show that nontrivial critical points of I on E are homoclinic solutions of

problem (). Let u ∈ E be a nontrivial critical point of I . A standard argument shows that
u ∈ C(R,RN ) and satisfies problem () (see [] for more details). Since E is continuously
embedded in H(R,RN ), u(t) →  as |t| → ∞. The proof is completed. �

Lemma  Assume that (L), (L), (W)-(W) are satisfied. Then  is the only critical point
of I such that I(u) = .

Proof By (W), (W), and Lemma , we know that  is a critical point of I with I() = .
Now let u ∈ E be a critical point of I with I(u) = . Then we have

 = I(u) –
〈
I ′(u), u

〉
= –

∫

R

Ŵ (t, u) dt,

where Ŵ is defined in (). This together with (ii) of Lemma  implies that |u(t)| =  for all
t ∈R. The proof is completed. �

The following lemma is due to Bartsch and Willem [] and we quote it from [].

Lemma  Let E be a Banach space with a finite-dimensional approximation in the sense
that E =

⊕
j∈N E(j), where E(j) are all finite-dimensional subspaces. Let I ∈ C(E,R) be an

even functional and satisfy:

(F) For every k ≥ k, there exists Rk >  such that I(u) ≥  for every u ∈ Ek :=
⊕

j≥k E(j)
with ‖u‖ = Rk , and bk := infu∈Bk I(u) →  as k → ∞. Here Bk := {u ∈ Ek | ‖u‖ ≤ Rk}.

(F) For every k ∈ N, there exist rk ∈ (, Rk) and dk <  such that I(u) ≤ dk for every u ∈
Ek :=

⊕
j≤k E(j) with ‖u‖ = rk .

(F) I satisfies (PS)∗ condition with respect to {Em | m ∈ N}, i.e., every sequence um ∈ Em

with I(um) <  bounded and (I|Em )′(um) →  as m → ∞ has a subsequence which
converges to a critical point of I .
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Then, for each k ≥ k, I has a critical value ξk ∈ [bk , dk], hence ξk <  and ξk →  as
k → ∞.

Let E(j) = span{ej} for each j ∈N, where {ej : j ∈N} is the system of eigenfunctions given
in Remark . Now we show that the functional I has the geometric property of Lemma 
under the conditions of Theorem .

Lemma  Assume that (L), (L), (W), and (W) hold. Then there exist a positive integer
k and a sequence Rk → + as k → ∞ such that

inf
u∈Ek ,‖u‖=Rk

I(u) ≥ , ∀k ≥ k

and

bk := inf
u∈Bk

I(u) →  as k → ∞,

where Ek :=
⊕

j≥k E(j) and Bk := {u ∈ Ek | ‖u‖ ≤ Rk} for all k ∈N.

Proof Note that Ek ⊂ E+ for all k ≥ j̄ +  (see Remark  for details). Thus for each k ≥ j̄ + ,
by () we obtain

I(u) ≥ 

‖u‖ –

∫

R
W̃ (t, u) dt

≥ 

‖u‖ – c‖u‖θ+

θ+ – β‖u‖p
p, ∀u ∈ Ek . ()

Set

lk = sup
u∈Ek ,‖u‖=

‖u‖θ+, ∀k ≥ j̄ + . ()

Since E is compactly embedded into Lθ+, we have (see [])

lk → + as k → ∞. ()

For each k ≥ j̄ + , it follows from (), (), (), and the choice of β that

I(u) ≥ 

‖u‖ – clθ+

k ‖u‖θ+ – βγ p
p ‖u‖p

≥ 

‖u‖ – clθ+

k ‖u‖θ+ –



‖u‖p, ∀u ∈ Ek . ()

For each k ≥ j̄ + , choose

Rk = clθ+
k , ()

then, by (),

Rk → + as k → ∞ ()
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and hence there exists a positive integer k ≥ j̄ +  such that

Rk < , ∀k ≥ k. ()

Now by (), (), and (), we have

inf
u∈Ek ,‖u‖=Rk

I(u) ≥ 


R
k –




Rθ+
k –




Rp
k ≥ , ∀k ≥ k.

Noting that I() =  and

I(u) ≥ –clθ+
k ‖u‖θ+ –




‖u‖p, ∀k ≥ j̄ + , u ∈ Ek ,

we have

 ≥ inf
u∈Bk

I(u) ≥ –clθ+
k Rθ+

k –



Rp
k , ∀k ≥ j̄ + ,

which combined with () and () implies that

bk := inf
u∈Bk

I(u) →  as k → ∞.

The proof is completed. �

Lemma  Assume that (L), (L), (W), and (W) hold. Then for every k ∈ N, there exist
rk ∈ (, Rk) and dk <  such that I(u) ≤ dk for every u ∈ Ek :=

⊕
j≤k E(j) with ‖u‖ = rk .

Proof For a fixed k ∈N, since Ek is finite dimensional, there is a constant Ck >  such that

Ck‖u‖μ ≤ ‖u‖μ
μ, ∀u ∈ Ek . ()

Set pk = min{Rk , wk
γ∞ }. Then by (W), there exists a constant  < wk < r such that

W̃ (t, u) = W (t, u) ≥ mk|u|μ, ∀t ∈R and |u| ≤ wk , ()

where mk = 
pμ–

k Ck
. Now by (), (), (), and Lemma , for u ∈ Ek with ‖u‖ ≤ wk

γ∞ , we get

I(u) =


∥∥u+∥∥ –



∥∥u–∥∥ –

∫

R

W̃ (t, u) dt

≤ 

‖u‖ – mk‖u‖μ

μ

≤ 

‖u‖ – mkCk‖u‖μ

=


‖u‖

(
 –


pμ–

k
‖u‖μ–

)
.

Choose

 < rk =
(




) 
μ–

pk < pk



Wan Advances in Difference Equations  (2016) 2016:25 Page 10 of 13

and let

dk = –
r

k


< .

If u ∈ Ek with ‖u‖ = rk , we have

I(u) ≤ dk .

The proof is completed. �

Lemma  Assume that (L), (L), (W), (W), and (W) hold. Then I satisfies (PS)∗ con-
dition with respect to {Em | m ∈N}.

Proof Let um ∈ Em be a (PS)∗ sequence, that is,

I(um) is bounded and (I|Em )′(um) →  as m → ∞. ()

Then we claim that {um} is bounded. If not, passing to a subsequence if necessary, we may
assume that

‖um‖ → ∞ as m → ∞. ()

From (), (), (), we have

I(um) –
〈
(I|Em )′(um), um

〉
=

∫

R

[(∇W̃ (t, um), um
)

– W̃ (t, um)
]

dt

≥ (p – )β
∫

{t∈R||um(t)|≥r}
|um|p dt ()

for all m ∈N. From (), (), and (), it follows that

∫
{t∈R||um(t)|≥r} |um|p dt

‖um‖ →  ()

as m → ∞. Let

vm(t) =

{
um(t), if |um(t)| < r,
, if |um(t)| ≥ r

()

and

wm(t) = um(t) – vm(t) ()

for all m ∈N and all t ∈R. By (), (), and (),

c
(
 + ‖um‖) ≥ ‖wm‖p

p ()
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for all positive integer m. From Hölder’s inequality, (), (), and the equivalence of the
norms on the finite-dimensional subspace E– ⊕ E, we have

∥
∥u–

m + u
m
∥
∥

 =
(
u–

m + u
m, um

)


=
(
u–

m + u
m, vm

)
 +

(
u–

m + u
m, wm

)


≤ ∥
∥u–

m + u
m
∥
∥

‖vm‖∞ +
∥
∥u–

m + u
m
∥
∥

p′ ‖wm‖p

≤ c
∥
∥u–

m + u
m
∥
∥



(
 + ‖wm‖p

)
()

for all m ∈ N, where 
p + 

p′ = . Then, from the equivalence of the norms on the finite-
dimensional subspace E– ⊕ E, (), and () it follows that

∥
∥u–

m + u
m
∥
∥ ≤ c

∥
∥u–

m + u
m
∥
∥



≤ c
(
 + ‖wm‖p

)

≤ c
(
 + ‖um‖ 

p
)

for all m ∈N, which implies that

‖u–
m + u

m‖
‖um‖ →  ()

as m → ∞. By () we get

∣∣∇W̃ (t, x)
∣∣ ≤ c

(
 + |x|p–), ∀(t, x) ∈ R×R

N ,

which combined with () implies that

〈
(I|Em )′(um), u+

m
〉 ≥ ∥∥u+

m
∥∥ –

∫

R

∣∣∇W̃ (t, um)
∣∣∣∣u+

m
∣∣dt

≥ ∥∥u+
m
∥∥ – c

∫

R

|um|p–∣∣u+
m
∣∣dt – c

∫

R

∣∣u+
m
∣∣dt

≥ ∥
∥u+

m
∥
∥ – c

∥
∥u+

m
∥
∥∞

∫

{t∈R||um(t)|≥r}
|um|p– dt

– c(r)p–
∫

{t∈R||um(t)|<r}

∣
∣u+

m
∣
∣dt – c

∥
∥u+

m
∥
∥



≥ ∥∥u+
m
∥∥ – c

∥∥u+
m
∥∥∞(r)–

∫

{t∈R||um(t)|≥r}
|um|p dt

– c(r)p–∥∥u+
m
∥∥

 – c
∥∥u+

m
∥∥



≥ ∥
∥u+

m
∥
∥ – cγ∞

∥
∥u+

m
∥
∥(r)–

∫

{t∈R||um(t)|≥r}
|um|p dt

– c(r)p–γ
∥
∥u+

m
∥
∥ – cγ

∥
∥u+

m
∥
∥.

From this and () it follows that

‖u+
m‖

‖um‖ →  ()
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as m → ∞. Combining () and (), one gets

 =
‖um‖
‖um‖ ≤ ‖u+

m‖ + ‖u–
m + u

m‖
‖um‖ → 

as m → ∞, which is a contradiction. Hence {um} is bounded. Noting that by Lemma , I ′

is a compact perturbation of the identity in E � E. Since E has finite dimension, {um}
has a subsequence converging to a critical point of I (see []). Hence, I satisfies the (PS)∗

condition. The proof is completed. �

Proof of Theorem  It follows from Lemmas - that the functional I satisfies the con-
ditions (F)-(F) of Lemma . Therefore, by Lemma , there exists a sequence of critical
values ξk <  with ξk →  as k → ∞. Let {uk} be a sequence of critical points of I corre-
sponding to these critical values, i.e., I(uk) = ξk and I ′(uk) =  for all k. Then by Lemma ,
{uk} ⊂ C(R,RN ) is a sequence of homoclinic solutions of problem (). Moreover, {uk}
forms a (PS) sequence in E. By Lemma  and Remark . in [], I satisfies the (PS) condi-
tion and hence we may assume without loss of generality that uk → u in E as k → ∞. Evi-
dently, u is a critical point of I with I(u) = . Then by Lemma , u must be . Thus uk → 
in E as k → ∞. By (), we further have uk →  in L∞(R,RN ) as k → ∞. Therefore, for k
large enough, they are homoclinic solutions of problem (). The proof is completed. �
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