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Abstract

In this paper, an exponential RED algorithm with communication delay is considered.
By choosing the delay as a bifurcation parameter, we demonstrate that a Hopf
bifurcation would occur when the delay exceeds a critical value. Some explicit
formulas are worked out for determining the stability and the direction of the
bifurcated periodic solutions by using the normal form theory and center manifold
theory. Finally, numerical simulations supporting the theoretical analysis are provided.
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1 Introduction

It is well known that Internet applications, such as the world wide web, file transfer, Usenet
news and remote login, are delivered via the Transmission Control Protocol (TCP). With
a spectacular growth of Internet applications, congestion control has become a subject
of intense research activity. An uncontrolled network may suffer from severe congestion,
which can cause high packet loss rates and increasing delays, the upper formation ap-
plication systems performance drop, and it can even break the whole system by causing
congestion collapse (or Internet meltdown) [1]. Thus congestion control is one of the crit-
ical issues for the efficient operation of the Internet. Many researchers have investigated
the congestion control problems of the Internet and a lot of excellent and interesting re-
sults have been obtained, for example, Raina and Heckmann [2] investigated the stability
properties of the congestion avoidance phase of TCP with drop tail. Guo et al. [3] investi-
gated the stability of an exponential RED model with heterogeneous delays. Liu et al. [1]
studied the bifurcation and chaotic behavior of the Transmission Control Protocol (TCP)
and User Datagram Protocol (UDP) network with Random Early Detection (RED) queue
management. Xu et al. [4] studied the Local Hopf bifurcation and global existence of pe-
riodic solutions of the following TCP system:

dx(t) _ wlt—7) [M(l -p(t-1))  x(O)p( - T))} (L1)

dt Nix(?) oM

where M, N are two positive constants, p(y) is an increasing non-negative continuous
function in (0, +00) and 7 is the round-trip propagation delay for each of the TCP connec-
tions. Guo et al. [5] considered the stability and Hopf bifurcation of the following conges-
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tion control model with two communication delays:

%(0) =k (t - 1) G - Ba(®p(t - 1),
%2(2) = koo (£ = ) [ 5 — B2 (O)p(t — )], 12)
pt) =yp@)[xi(t — 1) + %2(¢ — 12) — ¢,

where x;(¢) is the rate at which source i transmits data at time ¢, « and $ are positive real
numbers, p(t) is the loss probability function, 7; is the round-trip delay for source i, ¢ is
the link capacity, k and y are positive gain parameter, i = 1,2. For more related work on
congestion control, see [6—-12].

Based on [7-9], Guo et al. [13] recently studied the following exponential RED algorithm
coupled with TCP-Reno with a single source and with two sources:

&(t) = kin (¢ = 2% - B (DpO)],
Fa(t) = kyea (£ = 1) [ 7205 — o (P (2)], (L3)
p(t) = ksp()[x1(t — 7) + x2( - 7) — ¢],

where x;(t) = % (i =1,2,3) represent the transmission rate of the i source per second at

time ¢, 7, k; (i = 1,2,3) and B (j = 1,2) are the round-trip time (RTT), the positive gain
parameter, and the decrease factor of the source i, respectively. By choosing the delay as a
bifurcation parameter, Guo et al. [13] obtained the necessary and sufficient conditions for
the existence of Hopf bifurcation and a formula for determining the direction of the Hopf
bifurcation and the stability of bifurcating periodic solutions.

Motivated by [13] and considering that, when the number of sources is large, the sim-
plified model can reflect the really exponential RED algorithm more closely, in this paper,
we consider an exponential RED algorithm coupled with TCP-Reno with a single source
and with three sources, then we have the following system:

&1(t) = ki (¢ = 2% - B (Dp(0)],

&a(t) = koot = ) [ 7205 — B (0)p(0)),

&3(8) = kaxa (¢ = ) [ 7255 — Baxs (Dp(2)],

pt) = kap(&)[x1(E — T) + x2(E — 7) + x3(t — 7) — c].

(1.4)

The purpose of this paper is to discuss the stability and the properties of the Hopf bifur-
cation of model (1.4). This paper is organized as follows. In Section 2, the stability of the
equilibrium and the existence of a Hopf bifurcation at the equilibrium are studied. In Sec-
tion 3, the direction of the Hopf bifurcation and the stability and periodic of bifurcating
periodic solutions on the center manifold are determined. In Section 4, numerical simu-
lations are carried out to illustrate the validity of the main results. Some main conclusions

are drawn in Section 5.

2 Stability of the equilibrium and local Hopf bifurcations
Let E, (x5,%5,%5, p*) be the non-zero equilibrium point of system (1.4), then we have

1 /1-p* 1 /1-p* 1 /[1-p*

* *
- v’ xz = - PR x3 = — v
a\ By a\ fop a\ Bsp

Xy = (2.1)
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where p* satisfies the following equation:

\/ Bip* \/ Bar* \/ Bsp*

n(t) = x1(8) — 7, y2(2) = x(2) — %3,

Let

(2.2)
y3(t) =x3(t) —x3,  ya(t) = p(t) -
Substituting (2.2) into (1.4), we obtain the following linearized system:
71(2) = ary1(t) + azya(t),
H)=>b boyya(t
¥2(t) = 1)’2( ) + baya(t), (2.3)
¥3(8) = c1y3(t) + caya(t),
ya(t) = 1y1(t - 1)+ dya(t — 1) +diys(t - 7),
where
a = =2k fip*x}, by = =2ky Bop* 5, a1 = —2ksBsp*xy, dy = ksp*,
ki (x5)? koo (x5)* ks B3 (x3)?
a)=———"""7 b2:_7y CQp=———
1-p* 1-p* 1-p*
Then the associated characteristic equation of (2.3) is
A—a 0 0 —dy
0 A=Db 0 -b
det ! o ) (2.4)
0 0 A— C1 —C
—d1€7AT —d137AT —d167AT A
Then we obtain the following fourth degree exponential polynomial equation:
A+ A + oA + mah + (mA® + mh +n3)e”" =0, (2.5)
where
my =—(a1 + b1 +c1), my = arby + aicy + bicy, m3 = —arbicy,

—(bady + crd3 + ardy), ny = bady(ar + 1) + cadsz(ar + by) + axdi(by + c1),

n3 = —(a1b261d2 + 611b1C2d3 + ﬂzblcldl).

Let A = iwy, T = 79, and substitute this into (2.5), for the sake of simplicity, denote wy and
79 by w, T, respectively, Separating the real and imaginary parts, we have

(1’13 - n1w2) COSWT + MywSINWT = Myw? — w?, (2.6)

mwcoswt — (13 — me?) sinwt = mw’ - mo. (2.7)
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Taking the square on both sides of (2.6) and (2.7) and summing them up, we obtain

(n3 - n1w2)2 + (mw)? = (myw® - w4)2 + (mo® - }’7’130))2,

o® + (my — 2m) 0% + (nz — 2nmyms — ;flf)a)4 + (Wl3 +2mn3 — n%)a)z - n% =0. (2.8)

Let p = my —2ny, q = ny — 2myms — 3, u = ms + 2nng — 13, v = —n3, z = >. Then equation
(2.8) becomes

A+ p +q +uz+v=0. (2.9)
Let
lz)=z*+ p2® + q2* + uz +v. (2.10)

If the coefficients k; (i = 1,2,3,4), a, B; (j = 1,2,3) of system (1.4) are given, it is easy to
use computer to calculate the roots of (2.9). Since lim,_, , I(z) = +00 and v < 0, we can
conclude that (2.9) has at least one positive real root.

Without loss of generality, we assume that (2.9) has four positive roots, denoted by z;,
Za, 23, 24, respectively. Then (2.8) has four positive roots

o=z, o=z, 3=z,  0i=z.
By (2.6) and (2.7) we have

¢ 1 (myw} — m*)(n3 — mw}) + (M} — myw)nyw
7)) = o arccos

%y |, 2.11
(n3 — mw}p)? + (nyw)? " ]n] (210

where k =1,2,3,4 and j = 0,1,2,.... Then %iwy are a pair of purely imaginary roots of

equation (2.5) with 7 = r,Y) . Obviously, the sequence {r,y ) ;fé’ is increasing, and

lim r,g) =+00, k=1,2,3,4.

Jj—+00
Then we can define

) (0
- ) = wio- 2.12
1151}}24{7:/( } wo = Wxo (2.12)

©

Ty = tkO
Note that, when 7 = 0, (2.5) becomes

A4 qn® + oA + g3k + 4 =0, (2.13)

where

@1 =—(a1 + b1 + 1),

g2 = (a1b1 + a1 + bicr) — (bady + cods + ardy),

Page 4 of 24
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qs = bady(ar + 1) + cods(ar + by) + axdi(cy + dv) — arbicy,

q;; = {llbzcldz + d1b1C2d3 + a2b1c1d1.

A set of necessary and sufficient conditions for all roots of (2.13) to have a negative real
part is given by the well-known Routh-Hurwitz criteria in the following form:

71>0, @@-q3>0,  @qqs—g5-4194>0, g4 >0. (2.14)

Let A(1) = (1) + iw(t) be the root of equation (2.5) near 7 = ¥ satisfying oz(r,y)) =0,

w(r,ij)) = wg. Then the following lemma holds.

Lemma 2.1 Suppose that l'(zy) # 0, where I(2) is defined by (2.10). If T = T,Ej), then Liwy are
a pair of simple purely imaginary roots of equation (2.5). Moreover,

d(ReA (1))
[ dt Lkw 70

and the sign of[W]rrg) is consistent with that of I' (zx).

o
Proof Let

F(A) = A% + mA2 + mod? + msh, H) = mA2 + noh + ns. (2.15)
Then (2.5) can be written as

F(A\)+ HW)e™ =0, (2.16)
which leads to

F(A\F(L) — HAWH(A) = 0. (2.17)
Thus, together with (2.9) and (2.10), we get

(w?) = F(iw)F(iw) - H(io)H(iw). (2.18)
Differentiating both sides of equation (2.5) with respect to @, we obtain

20l (?) = i[F (iw)F(io) - F (io)F(io) — H' (io)H(io) + H (io)H(iv)). (2.19)

If iwy is not simple, then w; must satisfy

dii [FG)+HOe ]| =0,

A=iwy

[0 i [
F'iax) + H'(iog)e % — 10 H(iwg)e % = 0.
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By (2.16), we obtain

L0 _ H'liox) _ Fllioy)
K7 H(iag)  Fliax)"

Thus, by (2.17) and (2.19), we obtain

H(iw)H (i) F(io)F (iwk)

_ Im{ H' (i) H (iwy) — F' (i) F(iwk) } ol (0f)

F(ic ) F i)  |Fion)|?

me? - Im{H/(iwk) B F'(iowy) } B Im{ H' (iwp)H (iwg) F’(iwk)F(iwk)}
7 Hlior)  Flioy) |~

Since 7 is real, we have ['(z;) = l/(a),%) = 0, which is a contradiction to the condition
'(zx) # 0. This proves the first part of Lemma 2.1.

Taking the derivative of A with respect to 7 in (2.5), it is easy to obtain

[F'(A) + H' (W)e ™™ —tH(A)e™] % —AH()e ™ =0,

which means

dr(t) AH(A)

dt F(\)er + H(\) — tH(L)

_ AHO)[F' () + H'(3) - TH()]
T IF()eT + H'(A) - tH(L)?

_AM=FO)EQ) + H(WHO) — T HO)]
N |[E'(M)er + H' (L) — TH(A)|2

It follows from this together with (2.19) that

d(Re A(1))
dt )
_ Re{A[-F'(M)F() + H(WHM) — t|HR)I*])
- |F'(A\)e*™ + H'(A) — TH(A)|2 ree)

_ ia)k[—F/(ia)k)F(ia)k) + H/(ia)k)H(ia)k) + F/(ia)k)F(ia)k) - H/(iwk)H(ia)k)]

() 7
2|F ()€™ “% + H'(ioy) — 70 H(icoy)|?
~ il (w?)

- () ;
|F' (o)™ % + H'(iwx) — 70 H(ieoy) |

_ il (zx) 20,

. () .
|F' (o)™ “* + H' (i) — 70 H(ieoy)|?

Obviously, the sign of W| () is determined by that of /'(z¢). This completes the
T=fk

proof. O

In order to investigate the distribution of roots of the transcendental equation (2.5), the
following lemma, which is stated in [14], is useful.
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Lemma 2.2 [14] For the transcendental equation

P(k,e’“l, . ..,ef)‘f”‘) =\ +p§0))»n71 e +P£,0_)1)\ +l’£10)
n [pil))\n—l I +p51121)\’ +p£ll)]e*)~'fl I

[0 g e =0,

as (11, T2, T3, ..., Tm) vary, the sum of orders of the zeros of P(\,e™™,...,e™*™) in the open
right half plane can change, and only a zero appears on or crosses the imaginary axis.

From Lemma 2.2, it is easy to obtain the following results.

Theorem 2.3 Let ‘L’]Y ) and 79 be defined by (2.11) and (2.12), respectively.
(i) If (2.14) holds, the equilibrium E.(x3,%5,x%,p*) of system (1.4) is asymptotically
stable for T € [0, 1p).
(ii) If (2.14) and l'(zx) hold, then system (1.4) undergoes a Hopf bifurcation at the

()

equilibrium E.(x],x5,%%, p*) when t = ‘(k‘ , i.e., system (1.4) has a branch of periodic

solutions bifurcating from the equilibrium E,(x}, x5, x5, p*) near v = r,y).

3 Direction and stability of the Hopf bifurcation

In the previous section, we have obtained conditions for Hopf bifurcation to occur when
T = T,Ej ). In this section, we shall derive the explicit formulas for determining the direc-
tion, stability, and period of these periodic solutions bifurcating from the equilibrium
E.(x},%3,x3,p*) at these critical value of 7, by using techniques from the normal form and
center manifold theory [15], Throughout this section, we always assume that system (2.2)
undergoes Hopf bifurcation at the equilibrium E. (x], %3, x5, p*) for v = 1:,? ), and then ioy
are corresponding purely imaginary roots of the characteristic equation at the equilibrium

E.(x},x5,%3,p*). The linear part of system (1.4) at E,(x},x},x5, p*) is given by

1(8) = a1y (£) + azya(t),
Y2(t) = brya () + baya(?),

. (3.1)
y3(8) = c1y3(2) + 2y (2),
Ya(t) = din(t = 7) + diya(t = 7) + dys(E - 7),
and the non-linear part is given by
f(M) ut) = (ﬁ;_fb BJﬁ)T’ (3.2)

where

Si = asy; (£) + ayr (D1t — ) + asy1(£)ya(0) + aeyi (£ — 7)ya(t)

+azyy (£) + agy; Ot - T) + asy; (£)ya(t) + aroyi (i (¢ - T)ya(®) + hovt,,
fo = b3y5(®) + bayr )yt = ) + bsya(0)ya(t) + beya(t — T)ya(t)

+b7y3(0) + by ()72 = ©) + boy3(£)ya(®) + broya(£)ya(t — T)ya(t) + hoort,

S = 395(8) + cay3 )yt — T) + csy3(t)ya(t) + oyt — T)yalt)
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+ 073 (8) + csy3 ()y3(t — T) + coya(t)ya(t) + croy3(t)ys(t — T)ya(t) + hoot,,

Ja=diyi(t — 1)ya(t) + diya(t — T)ya(t) + diys(t — T)ya(t),

where

kiBixE(2p* -1 o By x*
as =kipip*x], ay = =2k Bip*, as = kipixi(2p* ~1) a6 = 181

1-p* ’ 1 —p* ’
ki Bip* ki p1p* ki pip* kipi(2p* - 1)
a7 =———H ag = P ag = — , ap=————,
X X 1-p* 1-p*
. " ky Baxs(2p* — 1)
by=kobap'ss,  bu=-dapp', b=l
be ko o by - _kypop” be = kafap™
6 1 —P* ) 7 x; ) 8 x; )
k * kyBr(2p* -1
bg = __252]9 ’ bl() = 42’32( P ), dl = /(4.

Sett = r,ij) + 1 and denote

C-7,0] = {(plgo : [-7,0] — R*, each component of ¢

has kth order continuous derivative}.

For convenience, denote C[-7,0] by C°[-7,0].
For ¢(0) = (¢1(9), 92(0), 93(6), 94(8))T € C([-7, 0], R*), define a family of operators

Lo = Bp(0) + Bip(-7) (3.3)
and
G(,LL, ‘P) = (kb k2’k31 k4)T¢ (34')
where
a 0 0 a 0O 0 0 O
B- 0 b 0 b ’ B, - 0O 0 0 O ’
0 0 a o 0O 0 0 O
0 0 0 O d di di 0

ki = azp; (0) + as1(0)1(—7) + asg1(0)pa(0) + agpr(—)ga(0)
+a7¢7(0) + as@; (0)g1 (1) + as@; ()94 (0) + a10e1 ()@ (-7)@a(0) + o(ll¢]l*),
ka = b393(0) + b4y (0)@2(—7) + b5@2(0)94(0) + bsr(~7)y4(0)
+ b7¢5(0) + b3 (02 (—T) + bo 3 (0)¢a(0) + 102 (0)g2(—7)94(0) + o(ll[|*),
ks = ¢33 (0) + ca3(0)3(~7) + ¢5¢3(0)9a(0) + co3(t — T)p4 (0)
+¢703(0) + csp3(0)p3(0 = 7") + cow(0)p4 (0) + c1o@3(0)p3(~T)pa(0) + oIl ),

kg = d11(—7)@4(0) + d192(—1)94(0) + d103(-T)4(0),



Xu and Li Advances in Difference Equations (2016) 2016:40 Page 9 of 24

and L, is a one-parameter family of bounded linear operators in C([-7,0],R*) — R*. By
the Riesz representation theorem, there exists a matrix whose components are bounded
variation functions n(@, i) in [-7,0] — R42, such that

0
%¢=/¢MWMWW) (3.5)

T

In fact, choosing
n(6, ) = B8(O) + B16(6 + 1), (3.6)

where §(8) is the Dirac delta function, then (3.5) is satisfied. For (¢1, 2, 93, ¢4) € (C}[-7,0],

R*), define
dg(0) -71<60<0
Awe=y o o (3.7)
Y { S dnts, we(s), 60
and
0, -T1<6<0,
Ry = - 3.8
v {f(“r 90): 0=0. ( )
Then (1.4) is equivalent to the abstract differential equation
vy = A()us + R(w)uy, (3.9)
where u = (i1, ug, us, ua)”, u,(0) = u(t +0), 0 € [-7,0].
For ¢ € C([-7,0], (R*)*), define
ay(s)
* _ T ds RS (01 T]’
A= { SO dn" (600 (-8), s=0. (310
For ¢ € C([-T1,0],R*) and ¥ € C([0, 7], (R*)*), define the bilinear form
B 0 o
W91 = 7000) - [ [ 9T -0)dn0)0(e) ds 61

where n(0) = 1(0,0). We have the following result on the relation between the operators
A =A(0)and A*.

Lemma 3.1 A = A(0) and A* are adjoint operators.

Proof Let ¢ € C'([-7,0],R*) and ¥ € CY([0, T], R*)*. It follows from (3.11) and the defini-
tions of A = A(0) and A* that

0

4
V(€ - 0)dn(©)A0)p (%) di

o Je=o

(1(5), A0)$(9)) = F(0)A0)$(0) — /

0

=50 [ o) - [ | [ i -o)aneaoe)de

T £=0
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B 0 o )
-5 [ dnowo)- [ [6-0ranow],

¢ (7 dy(E-9)
’ /—fﬁ) /50 T dE dn(0)¢(§) dé
[ O [T dyE-06)
= _rg)w(—e)dn(e)¢(0)—/_tg) /s=o[_T} dn(0)p(€) de

- 45 7(0)900) - [ jk@ | | AVE 0 i) ds
= (A"Y (), 0(0))-
This shows that A = A(0) and A* are adjoint operators and the proof is complete. d
By the discussions in Section 2, we know that tiwy are eigenvalues of A(0), and they are
also eigenvalues of A* corresponding to iwy and —iw, respectively. We have the following
result.
Lemma 3.2 The vector
q(0) = (L, ra,r3)Te™’, 6 € [-1,0],
is the eigenvector of A(0) corresponding to the eigenvalue iwy, and

q'(s) = D(l, rf,r;‘,r;)ei“’ks, se[0,1],

is the eigenvector of A* corresponding to the eigenvalue —iwy, moreover, (q*(s),q(0)) =1,

where
p=2 (3.12)
- C’ .
where

3
()]
= ok - bt bt * _IWET
C=1+ E riry + (L4711 + 79 + 13)dyry etk .
i=1

Proof Let g(0) be the eigenvector of A(0) corresponding to the eigenvalue iwy and g*(s)
be the eigenvector of A* corresponding to the eigenvalue —iwy, namely, A(0)g(0) = iwrq(6)
and A*q(s) = —iwgg™(s). From the definitions of A(0) and A*, we have A(0)q(0) = dg(0)/do
and A*q(s) = —dq*(s)/ds. Thus, g(0) = q(0)e*? and g*(s) = g(0)e’?*. In addition,

a 0 0 a 0O 0 0 O
0
0 b 0 b 0 0 0 0 0
dn(0)q(0) = 0) + -7
/_rkw TOVORS DO PORY DN PIEY
0 0 0 O dy dy dp 0

= A(0)q(0) = icogq(0). (313)
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That is,
ay + dal3 iwy
biry + byrs _ z:wkrl . (3.14)
Gy + Car3 lwiry
()] .
di(1+ 1 +1ry)e” Kk iwirs
Therefore, we can easily obtain
by(ar — iwy) cala — iwy) iwg —ay
r=—"—: ry=—/—m"0, r3 = .
as(by — iwy) ax(c1 — iwy) as
On the other hand,
a 0 0 O 0 0 0 4
0
0 b 00 00 0 d 0
*(—t t) = 0) + (-1
/f,@q()n() o 0 Cloq() OOOdlq(k)
a by ¢ 0 0 0 0 O
= A*q*(0) = —iwoq*(0). (3.15)
Namely,
()
ay + dyrie”" % —iwy
() .
birf + dirie ”"“1;) _ —l’wk’"f _ (3.16)
iy —iwirs

ary +dirie

. *
ay + barf + cor} —lwgry

Therefore, we can easily obtain

. @+ oy . a+iwg . a + iwy
L7 by +iog " Yo 377 ot
1 K 1 K dye R

In the sequel, we shall verify that (g*(s), g(9)) = 1. In fact, from (3.11), we have

(q*(s)!q(e» = D(L ?ik’ ;'; ;j;k)(ll I, 1, VS)T

-7

0 [
- / 5 fé 70D(1’ rr,75,73) e k0 dn(0) (1, 1y, o, 15) T €K dE
3 0
- D|:1 + Zrﬁj‘ -/ 5 (1,7,75,75)0e " dn(0)(, rl,rz,r3)Ti|
i=1 Tk
3 i
= D{l + Zri?;‘ + (1, ?f,?;‘,?;)Ble_i“’kr/E])(l, 1,72, r3)T}

i=1

i=1

3
- ()]
= D|:1 + E rirt + (L4 + 7y + r3)dirye Kk :| =1 0
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Next, we use the same notations as those in Hassard et al. [15], and we first compute the
coordinates to describe the center manifold Cy at & = 0. Let y; be the solution of equation
(1.4) when u = 0.

Define

2t)=(q%y)  WI(t6) =y.(6) - 2Re{z(£)q(6)} (3.17)

on the center manifold Cy, and we have

W (t,0) = W(z(2),2(2),0), (3.18)
where
z? z?
W (z2(2),2(2),0) = W(z,2) = Wao— + WnzZ+ Woo — + -+ (3.19)

and z and z are local coordinates for center manifold Cj in the direction of g* and g*.
Noting that W is also real if y, is real, we consider only real solutions. For solutions y; € Cy
of (1.4),
2(t) = (q%(s) %) = (q"(s), A0ty + R(0)usz)
= (q%(s),A(0)yz) + (7% (s), R(0)ye)
= (A4"¢*(9),3:) + 7* (O)R(0)y:

0 0
- [, [, 7€ -0 aioaorome

-7

= (iwkg™(s),y¢) + °(0)f (0,:(9))

C irz(t) + 7 0)fo (2(0), 2(0)). (3.20)
That is,
z(t) = iz + g(z,2), (3.21)
where
g(z,2) :gz()? +gnzz +g02§ +g21Z;—2 o (3.22)

Hence, we have

g(z,é) = é*(O)fo(Z,z) :f(o’yt)
= D(L 7,75, 75) ((0,5),£(0,30),/5(0,31), £a(0,3)) (3.23)

where

£(0,52) = a3y%,(0) + @y Oy (=) + a531:(0)y4:(0) + aeyre(~7)yar(0)

+a79%,(0) + agy? (0 (~7) + a972,(0)ya:(0)
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+ a10y1:0)y1: (=7 )y4:(0) + hoo.t.,

£(0,9:) = 352,(0) + bay2:(0)y2: (=7") + bsy2:(0)yac(0) + beyar (7 )y (0)
+ 5753,(0) + bgy2,(0)y2e(~7) + 932, (0)4:(0)
+ bloyzt(O)yzt(—t,Y))y4t(0) +h.ot,

£3(0,92) = ¢392,(0) + cay3:(0)y3e(~7") + €573 (0)y4¢(0) + coy3e (=7 y4:(0)
+ €793(0) + 593, (0073 (~7{") + €993,(0)74:(0)
+ ClOySt(O)ysr(—'C/?))yz;t(O) +h.o.t,

200,90) = duyie (=7 )7a0(0) + dyyae (=7)y2:(0) + ciyas (<" )y 0).
Noticing that

7:(0) = (51:(6), y21(0), 73:(0), y4:(0)) " = W (£,0) + 2q(0) + 27
and

q(0) = (1,11, 75,73) €%,
we have

y:(0)=z+7+ Wz%)(O)é + WP(0)2z + ng(oé been,

- z? _ z2
¥2:(0) =z + 1z + Wz(?))(O)E + WP (0)zz + W(%)(O)E e,

2 22
- z _ z
¥3:(0) =z + 1z + L\’/z(g)(o)—2 + Wff)(o)zz + Wé’?(o)g +oee,

2 =2
_ z _ z
¥4:(0) =r3z + 132 + Wé?(O); + Wl(f)(o)zz + \X/é‘;)(o)E e,

; ) ) )\ 22
J’lt(—r,?)) =e 'k z+ ek Z + WZ%) (—r,f’))g

, 22
+ W (-e)ez+ W) (—IIE’))% P

j it = i - M Z
2 (~t) = re O Z 4 TR 2+ WD) (_T(]))E

R » Z2
+ WI(IZ)(—IO))22+ W(%)(—r,?))% +ee,

, U L ) 22
3 (=t) = rae KK 2 4 T 7+ WY (_T/E]))E

N N
W) e W ()G

j o) ) I o Z2
y4t(—r,£’)) = 1€ KK 7 4 F3 Kk Z+ WA (- IE’))E

22
_+ ..

W)z Wil ()
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From (3.22) and (3.23), we have

g(Z, 2) = é*(o)ﬁ)(zr 2)
= D[_fl(oryt) + ;T,fz(o)xt) + ?;fé(oyyt) + ?;ﬁ(O,yt)]
B —iw, T(j) —iw, r(j)
= D[ﬂg + age " k'k + asrs + agrze " Okk
() 0
+7 (bgr1 + by r ek 4+ bsriry + bgrirse” )
- zwkf(l) —iw, r(j)
+ (637'2 + 047' e k + c5rars + cgrarze” " Okk )
iw, r iw, r(’ 10} rq) 2
+7 (dll"?,e k k +d17‘17’3€ kT +d17‘27’3e Kk )]Z
i, r(j) i, r(j)
+ [2(13 + 2ay Re{rge (3 } + 2as5 Re{rs} + 2ag Re{rge kT }
[ _ _ )}
+7} (2b3|r1| +2by Re{rlrle ooy Ty } + 2bs Re{rir3} + 2bg Re{rlrge”wk’k })
) _ ()
+7 (203|r2|2 + 2¢4 Re{|r2|ze"”’<fk } + 2cs5 Re{rrs) + 2¢6 Re{rgrge Ok Tk })
i, T(j) —iw, r(j) —iw, r(j) =
+7 (2 Re{rge kT }+2d1 Re{rle KTk }+2d1 Re{rze KTk })]zz
[ _ S ()]
+ [613 + A€k + asts + agrye’ kT
0 o
+ 75 (bs7y + bary €Kk + bsiis + bgri73€ k)
0] _ S )]
( Okt 4 C5Par3 + ColaT3e’ Pk Tk )

+7 631’2 +c4r e

0 Dyq_
+ rg(dlrge““k k + diFF3€ Kk + dyFyTae Tk )]z2

+ {r [b3 2nW(0) + Wiy (0)71)

1 .
+by (fl Wi (-z) + 3 Wiy (-7)

1 . () 1

+5h W2 (0)e ™% +r W2 (0)e % ) +bs (rl wD(0) + S w2 (0)
1_ 1_ )

+s sWE2(0) + r3 Wf?(O)) + be (m wP(0) + S WP (0)e
| R—) ot 0

+ 57 Way (—0)e %+ W (-7)

_ ()] ()
+3byriTy + bs (riT1€ %k + 2rire KTk )

(%) 0) %)
+ bg(}’lrg + 2|7'1| 7'3) + blo(rle"“"kfk + |7‘1|27‘361wkrk + |}"1|27'3€ 37 ):|
) 3 o
+ 75 |:3C37‘21’2 +C4 <r2Wn (-t U )+ —r2 W( )( )

+

N =

)] )]
W5 (<5)e U + Wi (0)e Xk )
1_
+c5( WH r2 W20 (0) + 57’3 Wz(g)(O) +73 Wl(lg)(O))

M 1 (i)
+¢e (rz WD (0)e % + Erg WD (0)e
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W ) e () )

_ _ () )}
+3c7r37 + cg(raTa€ Tk + 2ryrre k)

_ I )]
+co (1373 + 2|ra|?r3) + c1o (r3Tse™ %

)] )]
+ 172 Prse KK 4 |1y 2ryet kT ):|+?§‘d1[Wl(f)(0) ~wido) + r3W20(0)

() )
+rs Wi (0) + WP (0)e 4%+ R Wi (0)e

_ i i i ()
+ -1 Wae (—1) + s WD (—10) + WP (0)e

N =

N =

_ ) ()] i _
eyt W et rw el |z o)

and we obtain
T~ —iw, T(j) —iw, ‘L'(j)
0 = 2D[6l3 + age”"“f'k + asrs + agrze” Kk
=% 2 2 —iw, r(j) —iw, T(j)
+7] (193r1 + bary ek + bsrirs + berirse” Kk )
(. 2 2 it iyt
+I’2(C37'2 + Cyrye k + €53 + Celalze k )
_ () ) ()
+ rg(dlrge kT 4 dirrze” %% + dirorse k% )],
iw, r(j) iw, r(j)
g = [2a3 + 2dy Re{rge KTk } + 2as5 Re{rs} + 2ae¢ Re{rge KTk }
* 2 - i, z(j) = = _—io, r@
+7] (2b3|r1| +2by Re{rlrle kT } +2bs Re{rr3} + 2bg Re{r1r3e (3 })
L) _ I )]
+ 75 (2c3lra|* + 2ca Re{|ra[*€™% } + 2c5 Re{rars} + 2c6 Re{rarse ™k })
* iw, I(i) —iw, I(/) —iw, r(j)
+75 (2d1 Re{rge kT } +2d; Re{rle (3 }+ 2d; Re{rge KTk })],
B iw, r(/) = = o, r(/)
go2 = 2D[a3 + aqse'*k +asrs + agrse’ k'«
_ o i) _ __
+ 1§ (37} + baF7 ek + bsii7s + bei173e 'k )
% _ o j
+7; (637'2 + CaT2e KK+ c5Tors + CoTaT3e Kk )
_ () ) I ()]
+73 (dlrge“""’k +diinr3e %k + diryr3etkTk )],

o= 2D{rf [b3 (2 W,P(0) + Win (0)71) + by (n w (—fk”)) Sh wid (<)

1 )] L) 1
+ 57 W2 (0)e ™% + r W2 (0)e ) +bs (rl wiP(0) + 57 w2 (0)

()

1 .
+ =rWAD(0) + 13 Wf12>(0)> + b (rl wiP(0) + 57 WD (0)elr

t\JI»—l N =

()]
P Wi (-~ )elwkzk + Wi (- 1?))>
2- 2= iogr? 2= _ige?
+3byrir1 + bg (r1 ne'Yk +2rire k )

3 ) 0 0
+bo(ri7s +2|r|rs) + bio (rie” K + |1 r3e % + |y |*rae kK )]
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_ i 1_ i 1_ -
+ 7 [SC3r§r2 N <r2 w) (—T,E’)) +57 W) (—r,?)) +o7 W) (—1)ef
() 1 1
+ 1 Wi (0)e™ K ) +es ("2 WiP(0) + 572 Wig (0) + 273 Wi (0) + s Wff)m))

Cpo1 | : ;
+ Co <rz WP (0)e % + 5?2 Wie (0)e % + 5?3 WZ(?))(_.(IE,)) +rs W (—tk(')))

_ _ ) _ () _ ()
+ BC7r§r2 +cg (r%rze“"kfk + Zr%rze 1Ok T ) +¢Co (7"%}"3 + 2|r2|2r3) +C10 (r%rge HOkTk

. () . () 1 1
+ | Prse K% 4 |ry 2rael kT )] + ?;kdl[Wff)(O) + 5W2‘§)(o) + 573 W (0)
. () 1 . ()
+73 Wl(ll)(O) +711 LVl(f)(O)e"“’“k + 5?1 Wég)(O)e“"ka
B A . . ()]
WY (-20) + s WD (-20) + raWAD O

+

+

N = N =

B oG 1. A () ;
2 Wi (00K 4 2 Wig (- )k + s Wi (—rf))] }
For

w0, w0,  wi-i)),  w@(-7)).,  wPo),  wio),

w0,  wio), w7,  wP(r"), w0, wio),
3) 4 3 ) 3 ) 3 )

w0,  wiPo),  wa)),  wP),  wi(-))

unknown in gy, we still need to compute them.
From (3.9), (3.23), we have

w - [AW -2Re@Ohq®), -7 <6<,
AW —2Re{g*(0)foq®)} +fo, 6=0
© AW + H(z,2,0), (3.24)
where
z? z?
H(z,é,@) = Hzo(@); + HII(Q)ZE + Hoz(@)g e (325)

Comparing the coefficients, we obtain

(A = 2iwo) Wao(0) = —Ha0(0), (3.26)

AW (0) = -Hu(9), (3.27)

And we know that for 8 € [—r,fj), 0),

H(z,2,6) = =" (0)f0q(0) - 4°(0)/0q(6) = ~g(2,2)4(6) - &(z,2)4(6). (3.28)
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Comparing the coefficients of (3.25) with (3.28) gives

Hy0(0) = —g204(0) — 80249(0), (3.29)

H(9) = —guq () - uq(©). (3.30)
From (3.26), (3.29), and the definition of A, we get

Wao(6) = 2ieo Wao (6) + g204(6) + 2024(6)- (3.31)
Noting that g(9) = g(0)e°?, we have

Wio(6) = fj" (0)er? %qm)e-iwke + By, (3:32)

where E; is a constant vector. Similarly, from (3.27), (3.30), and the definition of A, we

have
Wi (0) = g1q(0) + §13(6), (3.33)
Wi (0) = — 22 g(0)e” + %u SR7(0)e ™k + E,, (3.34)
k i

where E, is a constant vector.
In the following, we shall seek appropriate E;, E; in (3.32), (3.34), respectively. It follows
from the definition of A and (3.29), (3.30) that

0
/ dn(6) Wio (8) = 2iax Wio(0) - Hao(0) (3.35)
and
0
f dn(0) W11 (0) = —Hyu (0), (3.36)

where n(0) = 1(0,0).

From (3.30), we have
H>0(0) = —£204(0) — §024(0) + (Hy, Ha, Hs, H3) ", (3.37)
where

() . j
= 2(a3 +ase”" %% +asrs + agrse k% ),

_ 0 [
2 bgr1 +194r12 KT 4 beryrs + beryrse” kT ),

[0 [
2(03r2 + c4r eI & csrors + Corarze kK ),

[ ()
=2(dirse” “"kfk +dyrirse %%+ dyryrae” K )
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From (3.31), we have

H1(0) = —guq(0) — g1(0)g(0) + (Py, P, P, Py)", (3.38)
where

Py =2a;3 +2a, Re{rgei‘““/y) } +2a5 Re{rs} + 2a Re{rgei“’krly> b

Py = 2bs3|r1|? + 2by Re{rlile_i“’kfly)} +2bs Re{rir3} + 2bg Re{rl?ge_i“’kflg) },

Ps =2c3|r3)% + 2¢4 Re{|r2|zeiwk’£)} +2cs5 Re{rrs) + 2¢q Re{rgfge_iwkff) },

Py =2d; Re{rgei‘“"’ly)} +2d; Re{rle’i“’kflg) } +2d; Re{rge’i”’krlgj) }

From (3.26), (3.27), and the definition of A, we have

BW3(0) + By Wzo(—flg)) = 2iwy W (0) — Hao(0), (3.39)
BWn(0) + B Wn(—T/Y)) =—H(0).
Noting that
0 .
<iwk1 —/ 0 gkt dn(@))q(O) =0, (3.40)
2
O .
(—iwkz - f e dn(e>)c‘z<o> -0, (3.41)
—
and substituting (3.36) and (3.41) into (3.39), we have
0 .
(2ia)k1— / 5 g2kt dn(e))a = (Hy, Hy, H3, Hy) ™. (3.42)
)
That is,
2wy — a1 0 0 —a, Eil) H,
0 2iwy — b 0 -b E® H
det SR =172 643
0 0 2la)k - —C El H3
_dle—Zia)kr/Y) —d1€_2iwkr/£/) _dle—Ziwkrly) Qi EYL) H,
Hence,
A A A A
go-Bu pe_Aeo e Bs o pe Au (3.44)
Ay Ay Ay Ay
where
iwg — ay 0 0 )
0 2wy — by 0 ~by
Ar=det 0 0 Qi -1 - |

() ()] ; j) .
_dle—Zzwkzk _dle—Zzwkrk _dle—thkrk 2zwk



Hl 0 0 —ay
H. 2iwg — b 0 -b
A1p = det > ! , ?
Hsl 0 2iwg — 1 —C3
]_14 _dle—Ziwkrly) _dle—2iwkr,5’) 2la)k
2ia)k —a; Hl 0 —ay
A d 0 H, 0 -by
=det
12 =¢e 0 Hy 2iox—c1 -
)} ()]
_dle—thkr H4 _dle—thkr 2ia)k
iwg — ay 0 H  -a
0 2ivg—by  Hy, —by
Aq3 = det
18 =€ 0 0 Hy —c
2yt 2y )
—de KTk —de Kk Hy o 2iwp
2iwg — m 0 0
A d 0 2iwy — by 0
1 = det 0 0 Qiwy - ¢)
_dle—Ziwkr/y) _dle—Ziwkt]Y) _dle—Ziwkr,E])
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H,
H,
Hj
H,

Similarly, substituting (3.37) and (3.42) into (3.40), we have

0
([, 0=
-t
That is,
a) 0 0 ay
0 by 0 by
0 0 C1 Cy
d d dp 0
Hence,
A
O _Ba g
Ay
where
a; 0 0
0 b O
Azzdet !
0 0 C1
d d dp
-P 0
-P, b
Azlzdet > !
-P; 0
-Py, d;

PZ;PIS?P‘L)T'

Py
Py
P;

az
by
C2

0 b
(4}

d

C)
0

(3.45)
(3.46)
A
(4) 24
-2 3.47
2T A, (347)
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Figure 1 Dynamic behavior of system (4.1): times series of x; (i = 1,2,3) and p(t). A Matlab simulation of
the asymptotically stable origin to system (4.1) with T = 1.65 < 1y & 1.85. The initial value is (0.5,0.5,0.5,0.5).

200 250 300 350 400 450
t

(d)

a; —Pl 0 ay

0 -, 0 b
Azz =det g ? ’

0 —P3 C1 Cy

dl —P4 dl 0

a; 0 —P1 ay

0 by -P, b
Azg =det ! > 2 »

0 0 —P3 Cy

dl dl -P, 0

a 0 0 -P

0 b 0 -P
A24, = det ! >

0 0 ¢ -Ps

dl dl dl —Py

From (3.32), (3.34), (3.44), (3.47), we can calculate g and derive the following values:

g0z |

i
c1(0) = — (gzogu ~2lgnl* - 3

2w
__ Re{c;(0)}
Re(x/(z))’

)

421
+ -,
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L L L L L L L L L L L L L L
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 ‘0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

x,(t) X,(t)
(a) (b)

L L L L L L L
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

X4(t) x5(t) 05 05 X0

(c) (d)

Figure 2 Dynamic behavior of system (4.1): projection on x1-p, x2-p, x3-p plane and projection on
X2-Xx3-p space. A Matlab simulation of the asymptotically stable origin to system (4.1) with
T =1.65< 79 ~ 1.85. The initial value is (0.5,0.5,0.5,0.5).

B2 = 2Re (c1(0)),

7m0} + uImix' (5))
2= o .

These formulas give a description of the Hopf bifurcation periodic solutions of (1.4) at
T = r,fl) on the center manifold. From the discussion above, we have the following re-

sult.

Theorem 3.3 For system (1.4), if (H1)-(H4) hold, the periodic solution is supercritical (sub-
critical) if py > 0 (g < 0); the bifurcating periodic solutions are orbitally asymptotically
stable with asymptotical phase (unstable) if B, < 0 (B2 > 0); the periods of the bifurcating

periodic solutions increase (decrease) if T> >0 (T, < 0).

4 Numerical examples
In this section, we present some numerical results of system (1.4) to verify the analytical
predictions obtained in the previous section. From Section 3, we may determine the di-

rection of a Hopf bifurcation and the stability of the bifurcation periodic solutions. Let us
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Figure 3 Dynamic behavior of system (4.1): times series of x; (i = 1,2, 3) and p. A Matlab simulation of a
periodic solution to system (4.1) with T = 1.97 > 1o &~ 1.85. The initial value is (0.5,0.5,0.5,0.5).

100 150 200 250 300 350 400 450
t

(d)

consider the following special case of system (1.4):

6.25x1 (¢

6.25x2 (¢

&1(t) = 0.5%1( - T)[ 5205 — 0.5 (Dp(1)],
&a(8) = 0.5%3(¢ - T) g5l — 0.5%> (H)p (1)),

&3(8) = 0.5t — 1) [ g5l — 0.5x3(0)p(8)],
p) =03p(t)[x1(t — 1) +xp(t — 7) +23(¢t — 7) = 2].

(4.1)

By some complicated computation by means of Matlab 7.0, we get wo =~ 0.9824, 7, ~1.85,
A (79) & 2.1022 — 3.1513i. Thus we can calculate the following values: ¢;(0) ~ —2.9542 —
22.2355i, s ~ 0.5642, B, ~ —4.4636, T, ~ 22.1327. We see that the conditions indi-

cated in Theorem 2.3 are satisfied. Furthermore, it follows that 1, > 0 and 8, < 0. Choose

7 = 1.65 < 79 &~ 1.85. Thus, the equilibrium (x],x3,x3,p*) is stable when 7 < 79, which

is illustrated by the computer simulations (see Figure 1 and Figure 2). When t passes

through the critical value 79 & 6.2, the equilibrium (x],x3,x3, p*) loses its stability and

a Hopf bifurcation occurs, i.e., a family of periodic solutions bifurcate from the equilib-

rium (¥}, x3,45, p*). Choose t =1.97 > 7y ~ 1.85. Since uy > 0 and B, < 0, the direction of

the Hopf bifurcation is t > 7y, and these bifurcating periodic solutions from (x},x3, x5, p*)

at 7o are stable; they are depicted in Figure 3 and Figure 4.
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Figure 4 Dynamic behavior of system (4.1): projection on the x1-p, x2-p, x3-p plane and projection on
the x2-x3-p space, respectively. A Matlab simulation of a periodic solution to system (4.1) with
7 =1.97> 19 ~ 1.85. The initial value is (0.5,0.5,0.5,0.5).

5 Conclusions
In this paper, we have investigated the properties of Hopf bifurcation in an exponen-

tial RED algorithm with communication delay. It is shown that under certain conditions,
the Hopf bifurcation occurs as the delay t passes through some critical values 7 = 7,
k,j=0,1,2,.... Moreover, the direction of the Hopf bifurcation and the stability of the bi-
furcating periodic orbits are derived by applying the normal form theory and the center

manifold theorem.
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