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Abstract
In this paper, the effect of the two different delays on the dynamics of a three-species
ratio-dependent predator-prey food-chain model is considered. By regarding the
delay as the bifurcation parameter, the local stability of the positive equilibrium and
the existence of Hopf bifurcation are investigated. Explicit formulas determining the
properties of a Hopf bifurcation are obtained by using the normal form method and
the center manifold theorem. Special attention is paid to the global continuation of
local Hopf bifurcation when the delay τ1 �= τ2. Finally, several numerical simulations
supporting the theoretical analysis are also given.
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1 Introduction
There has been great interest in dynamical characteristics of population models dur-
ing the last few decades, among these models, predator-prey systems play an impor-
tant role in population dynamics. Ratio-dependent predator-prey systems have received
much attention as more suitable ones for predator-prey interactions where predation in-
volves searching process. Many theoreticians and experimentalists have concentrated on
a ratio-dependent predator-prey system. The general form of the ratio-dependent model
is

{
ẋ = xf (x) – yp( x

y ),
ẏ = cyq( x

y ) – dy,
(.)

where x, y, respectively, denote the prey and predator density. The functions p(z) (the so-
called predator functional response) and q(z) satisfy the usual properties such as being
nonnegative and increasing, and being equal to zero at zero. Arditi and Ginzburg [] pro-
posed the following ratio-dependent predator-prey model with a Michaelis-Menten-type
or Holling-type II functional response:

{
ẋ = ax( – x

K ) – cxy
my+x ,

ẏ = y(–d + fx
my+x ),

(.)
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where a, K , c, m, f , d are positive constants that stand for prey intrinsic growth rate, carry-
ing capacity, capturing rate, half capturing saturation constant, conversion rate, predator
death rate, respectively.

It is well known that time delays in an ecological system can have a considerable in-
fluence on the qualitative behavior of these systems. The ratio-dependent predator-prey
models with time delays have been studied by many researchers recently and rich dynam-
ics has been observed (see, for example, [–] and references cited therein). In [], Xu
and Chen incorporate time delay due to gestation into the ratio-dependent predator-prey
system and investigate the following n-species ratio-dependent predator-prey food-chain
model with a Michaelis-Menten-type functional response:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dx
dt = x(t)[a – ax(t) – ax(t)

mx(t)+x(t) ],
. . . ,
dxi
dt = xi(t)[–ai + ai,i–xi–(t–τi–)

mi–,ixi(t–τi–)+xi–(t–τi–) – ai,i+xi+(t)
mi,i+xi+(t)+xi(t) ], i = , . . . , n – ,

. . . ,
dxn
dt = xn(t)[–an + an,n–xn–(t–τn–)

mn–,nxn(t–τn–)+xn–(t–τn–) ],

(.)

where xi(t) represents the density of the ith population, respectively, i = , , . . . , n. ai, aij

(i, j = , , . . . , n) and mi,i+ (i = , , . . . , n – ) are positive constants. τi ≥  (i = , , . . . , n – )
are constant delays due to gestation. Xu and Chen showed that the system is permanent
under some appropriate conditions, and sufficient conditions are obtained for the global
stability of the positive equilibrium of the system.

Periodic solutions bifurcating from Hopf bifurcations in delayed differential equations
are generally local. However, it is an important subject to investigate if these nonconstant
periodic solutions which are obtained through local Hopf bifurcations exist globally due
to theoretical and practical significance. In this paper, let n =  and make use of sufficient
conditions of the global stability of the positive equilibrium of system (.) in [], we inves-
tigate the Hopf bifurcation and global periodic solutions of three-species ratio-dependent
predator-prey model with two delays:

⎧⎪⎪⎨
⎪⎪⎩

dx
dt = x(t)[a – ax(t) – ax(t)

mx(t)+x(t) ],
dx
dt = x(t)[–a + ax(t–τ)

mx(t–τ)+x(t–τ) – ax(t)
mx(t)+x(t) ],

dx
dt = x(t)[–a + ax(t–τ)

mx(t–τ)+x(t–τ) ],
(.)

with initial conditions

xi(t) = φi(t), t ∈ [–τ , ], φi() > , i = , , , (.)

where x(t), x(t), and x(t) denote the densities of the prey, predator and top predator
population, respectively; a, a and a are the intrinsic growth rate of prey, death rates
of predator and top predator, respectively; a, a, a and a stand for the conversion
rates, m and m stand for the half capturing saturations. τ, τ, are constant delays due
to gestation, that is, mature adult preys can only contribute to the production of predator
biomass. τ = max{τ, τ}. φi(t) (i = , , ) are continuous bounded functions in the interval
[–τ , ].
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We would like to point out that many works investigated the dynamical behaviors of the
system with two delays under the assumption τ + τ = τ or τ = τ = τ . It is important to
deal with the effect of the different delays on the dynamics of system (.), and it is also
a mathematical subject to investigate whether the nontrivial periodic solutions which are
obtained through local Hopf bifurcations exist globally. Recently, a great deal of research
has been devoted to the topics [–]. To the best of our knowledge, there are few works
which deal with global Hopf bifurcation of system with different two delays. In this paper,
we investigate the stability and bifurcation of model (.) with the different delays τ and
τ, and the existence of the global Hopf bifurcation of system (.) is studied.

This paper is organized as follows: In Section , by analyzing the characteristic equa-
tion of the linearized system of system (.) at positive equilibrium, the sufficient con-
ditions ensuring the local stability of the positive equilibrium and the existence of Hopf
bifurcation are obtained. Some explicit formulas determining the direction and stability
of periodic solutions bifurcating from Hopf bifurcations are demonstrated by applying the
normal form method and center manifold theory in Section . In Section , we consider
the global existence of the bifurcating periodic solutions. A brief discussion is given in the
last section.

2 Stability of the positive equilibrium and local Hopf bifurcations
In this section, we first study the existence and local stability of the positive equilibrium,
and then we investigate the effect of delay and the conditions for the existence of Hopf
bifurcations.

Ẽ = (x̃, x̃, ) is a nonnegative equilibrium if a – a > , a – a(a–a)
ma

> .
E∗ = (x∗

 , x∗
, x∗

) is a unique positive equilibrium point if and only if the following condi-
tions are true:

(H) a > a,

a –
(

a +
a

am
(a – a)

)
> ,

a –
a

am

[
a –
(

a +
a

am
(a – a)

)]
> ,

where

x̃ =


a

[
a –

a(a – a)
ma

]
, x̃ =

a – a

am
x̃,

x∗
 =


a

{
a –

a

ma

[
a –
(

a +
a

ma
(a – a)

)]}
,

x∗
 =


m[a + a(a–a)

ma
]

[
a –
(

a +
a

am
(a – a)

)]
x∗

 ,

x∗
 =

a – a

am
x∗

.

Let E = (x, x, x) be the arbitrary equilibrium, and let u(t) = x(t) – x, u(t) = x(t) –
x, u(t) = x(t) – x, then the linearized system of the corresponding equations at E is
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as follows:

u̇(t) = Bu(t) + Cu(t – τ) + Du(t – τ), (.)

where

u(t) =
(
u(t), u(t), u(t)

)T , B = (bij)×, C = (cij)×, D = (dij)×,

b = a – ax –
amx


(mx + x) , b = –

ax


(mx + x) ,

b = –a +
ax

mx + x
–

amx


(mx + x) ,

b = –
ax


(mx + x) , b = –a +

ax

mx + x
,

c =
amx


(mx + x) , c = –

amxx

(mx + x) ,

d =
amx


(mx + x) , d = –

amxx

(mx + x) ,

all the other aij, bij, and cij are .
The characteristic equation for system (.) is

λ + pλ
 + pλ + p +

(
qλ

 + qλ + q
)
e–λτ

+
(
rλ

 + rλ + r
)
e–λτ + (mλ + m)e–λ(τ+τ) = , (.)

where

p = –(b + b + b), p = bb + bb + bb, p = –bbb,

q = –c, q = bc + bc – bc, q = bcb – bbc,

r = –d, r = bb – bd + bd, r = bbd – bbd,

m = cd, m = bcd – bcd.

The characteristic equation of system (.) at E reduces to

(λ – b)
[
λ – bλ + e–λτ (–cλ + bc – bc)

]
= .

We can easily see that E is unstable if b = a – a > .
In the following, we study local stability of the positive equilibrium E∗ by analyzing the

distribution of the roots of equation (.). We consider four cases.

Case (a) τ = τ = .

The associated characteristic equation of system (.) is

λ + (p + q + r)λ + (p + q + r + m)λ + (p + q + r + m) = . (.)
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Let

(H) p + q + r > , (p + q + r)(p + q + r + m) – (p + q + r + m) > ,

p + q + r + m > .

By the Routh-Hurwitz criterion, we have the following.

Theorem  Assume that (H), (H) hold, then when τ = τ = , the positive equilibrium
E∗(x∗

 , x∗
, x∗

) of system (.) is locally asymptotically stable.

Case (b) τ = , τ > .

The associated characteristic equation of system (.) is

λ + (p + q)λ + (p + q)λ + (p + q) +
[
rλ

 + (r + m)λ + (r + m)
]
e–λτ = . (.)

We want to determine if the real part of some root increases to reach zero and eventually
becomes positive as τ varies. Let λ = iω (ω > ) be a root of equation (.), then we have

–iω – (p + q)ω + i(p + q)ω + (p + q)

+
[
–rω

 + (r + m)ωi + (r + m)
]
(cosωτ – i sinωτ) = .

Separating the real and imaginary parts, we have

{
ω – (p + q)ω = [rω

 – (r + m)] sinωτ + (r + m)ω cosωτ,
–(p + q)ω + (p + q) = [rω

 – (r + m)] cosωτ – (r + m)ω sinωτ.
(.)

It follows that

ω + mω
 + mω

 + m = , (.)

where m = (p + q) – (p + q) – r
 , m = (p + q) – (p + q)(p + q) + (r + m)r –

(r + m), m = (p + q) – (r + m).
Denote z = ω, (.) becomes

z + mz + mz + m = . (.)

Let

h(z) = z + mz + mz + m. (.)

By (.), we have

dh(z)
dz

= z + mz + m.

If m = (p + q) – (r + m) < , then h() < , limz→+∞ h(z) = +∞. We can know
that equation (.) has at least one positive root.



Dai et al. Advances in Difference Equations  (2016) 2016:13 Page 6 of 27

If m = (p + q) – (r + m) ≥ , we see that when � = m
 – m ≤ , equation (.)

has no positive root for z ∈ [, +∞). On the other hand, when � = m
 – m > , the

equation

z + mz + m = 

has two real roots: z∗
 = –m+

√�
 , z∗

 = –m–
√�

 . Because of h′′
 (z∗

) = 
√� > , h′′

 (z∗
) =

–
√� < , z∗

 and z∗
 are the local minimum and the local maximum of h(z), respec-

tively. By the above analysis, we immediately obtain the following.

Lemma 
() If m ≥  and � = m

 – m ≤ , equation (.) has no positive roots for
z ∈ [, +∞).

() If m ≥  and � = m
 – m > , equation (.) has at least one positive root if

and only if z∗
 = –m+

√�
 >  and h(z∗

) ≤ .
() If m < , equation (.) has at least one positive root.

Without loss of generality, we assume that (.) has three positive roots, defined by z,
z, z, respectively. Then (.) has three positive roots

ω =
√

z, ω =
√

z, ω =
√

z.

From (.) we have

cosωkτk =
[(r + m) – r(p + q)]ω

k
[rω


k – (r + m)] + (r + m)ω

k

+
[(p + q)(r + m) + r(p + q) – (q + p)(r + m)]ω

k
[rω


k – (r + m)] + (r + m)ω

k

–
(q + p)(r + m)

[rω

k – (r + m)] + (r + m)ω

k
.

Thus, if we denote

τ
(j)
k

=


ωk

{
arccos

(
[(r + m) – r(p + q)]ω

k
[rω


k – (r + m)] + (r + m)ω

k

+
[(p + q)(r + m) + r(p + q) – (q + p)(r + m)]ω

k
[rω


k – (r + m)] + (r + m)ω

k

–
(q + p)(r + m)

[rω

k – (r + m)] + (r + m)ω

k

)
+ jπ
}

, (.)

where k = , , ; j = , , , . . . , then ±iωk is a pair of purely imaginary roots of (.) cor-
responding to τ

(j)
k

. Define

τ = τ
()
k

= min
k=,,

{
τ

()
k

}
, ω = ωk .

Let λ(τ) = α(τ) + iω(τ) be the root of equation (.) near τ = τ
(j)
k

satisfying

α
(
τ

(j)
k

)
= , ω

(
τ

(j)
k

)
= ωk .
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Substituting λ(τ) into (.) and taking the derivative with respect to τ, we have

{
λ + (p + q)λ + (p + q) +

[
rλ + (r + m)

]
e–λτ

– τ
[
rλ

 + (r + m)λ + (r + m)
]
e–λτ
} dλ

dτ

= λ
[
rλ

 + (r + m)λ + (r + m)
]
e–λτ .

Therefore,

[
dλ

dτ

]–

=
[λ + (p + q)λ + (p + q)]eλτ

λ[rλ + (r + m)λ + (r + m)]

+
rλ + (r + m)

λ[rλ + (r + m)λ + (r + m)]
–

τ

λ
. (.)

When τ = τ
(j)
k

, λ(τ (j)
k

) = iωk (k = , , ),

{
λ
[
rλ

 + (r + m)λ + (r + m)
]}|

τ=τ
(j)
k

= –(r + m)ω
k + i
[
(r + m)ωk – rω


k
]
,

{[
λ + (p + q)λ + (p + q)

]
eλτ
}|

τ=τ
(j)
k

=
{[

–ω
k + (p + q)

]
cos
(
ωkτ

(j)
k

)
– (p + q)ωk sin

(
ωkτ

(j)
k

)}
+ i
{

(p + q)ωk cos
(
ωkτ

(j)
k

)
+
[
–ω

k + (p + q)
]

sin
(
ωkτ

(j)
k

)}
,{

rλ + (r + m)
}|

τ=τ
(j)
k

= (r + m) + irωk .

According to (.), we have

[
Re d(λ(τ))

dτ

]–

τ=τ
(j)
k

= Re

[
[λ + (p + q)λ + (p + q)]eλτ

λ[rλ + (r + m)λ + (r + m)]

]
τ=τ

(j)
k

+ Re

[
rλ + (r + m)

λ[rλ + (r + m)λ + (r + m)]

]
τ=τ

(j)
k

=


�

{
–
[
–ω

k + (p + q)
]
ωk
[[

rω

k – (r + m)

]
sinωkτ

(j)
k

+ (r + m)ωk cosωkτ
(j)
k

]
– (p + q)ω

k
[[

rω

k – (r + m)

]
cosωkτ

(j)
k

– (r + m)ωk sinωkτ
(j)
k

]
– (r + m)ω

k + ωkr
[
(r + m)ωk – rω


k
]}

=


�

{
ω

k + 
[
(p + q) – (p + q) – r


]
ω

k

+
[
(p + q) – (p + q)(p + q)

+ (r + m)r – (r + m)]ω
k
}
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=


�

{
zk
(
z

k + mzk + m
)}

=


�
zkh′

(zk),

where � = (r + m)ω
k + [(r + m)ωk – rω


k] > . Notice that � > , zk > ,

sign

{[
Re d(λ(τ))

dτ

]
τ=τ

(j)
k

}
= sign

{[
Re d(λ(τ))

dτ

]–

τ=τ
(j)
k

}
,

then we have the following lemma.

Lemma  Suppose that zk = ω
k and h′

(zk) �= , where h(z) is defined by (.), then
d(Reλ(τ (j)

k
))

dτ
has the same sign with h′

(zk).

Here we also need the following lemma [].

Lemma  Consider the exponential polynomial

P
(
λ, e–λτ , . . . , e–λτm

)
= λn + p()

 λn– + · · · + p()
n–λ + p()

n

+
[
p()

 λn– + · · · + p()
n–λ + p()

n
]
e–λτ + · · ·

+
[
p(m)

 λn– + · · · + p(m)
n–λ + p(m)

n
]
e–λτm ,

where τi ≥ , i = , , . . . , m, and p(i)
j (i = , , . . . , m; j = , , . . . , n) are constants. As

(τ, τ, . . . , τm) vary, the sum of the orders of the zeros of P(λ, e–λτ , . . . , e–λτm ) in the open
right half plane can change only if a zero appears on or crosses the imaginary axis.

From Lemmas , , , and Theorem , we can easily obtain the following theorem.

Theorem  For τ = , τ > , suppose that (H), (H) hold, then:
(i) If m ≥  and � = m

 – m ≤ , then all roots of equation (.) have negative
real parts for all τ ≥ , and the positive equilibrium E∗ is locally asymptotically
stable for all τ ≥ .

(ii) If either m <  or m ≥ , � = m
 – m > , z∗

 >  and h(z∗
) ≤ , then h(z)

has at least one positive roots, and all roots of equation (.) have negative real
parts for τ ∈ [, τ ), and the positive equilibrium E∗ is locally asymptotically
stable for τ ∈ [, τ ).

(iii) If (ii) holds and h′
(zk) �= , then system (.) undergoes Hopf bifurcations at the

positive equilibrium E∗ for τ = τ
(j)
k

(k = , , ; j = , , , . . .).

Case (c) τ > , τ = .

The associated characteristic equation of system (.) is

λ + (p + r)λ + (p + r)λ + (p + r)

+
[
qλ

 + (q + m)λ + (q + m)
]
e–λτ = . (.)
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We want to determine if the real part of some root increases to reach zero and eventually
becomes positive as τ varies. Let λ = iω (ω > ) be a root of equation (.), then we have

–iω – (p + r)ω + i(p + r)ω + (p + r)

+
[
–qω

 + (q + m)ωi + (q + m)
]
(cosωτ – i sinωτ) = .

Separating the real and imaginary parts, we have

{
ω – (p + r)ω = [qω

 – (q + m)] sinωτ + (q + m)ω cosωτ,
–(p + r)ω + (p + r) = [qω

 – (q + m)] cosωτ – (q + m)ω sinωτ.
(.)

It follows that

ω + mω
 + mω

 + m = , (.)

where m = (p + r) – (p + r) – q
, m = (p + r) – (p + r)(p + r) + (q + m)q –

(q + m), m = (p + r) – (q + m).
Denote z = ω, (.) becomes

z + mz + mz + m = . (.)

Let

h(z) = z + mz + mz + m. (.)

By (.), we have

dh(z)
dz

= z + mz + m.

If m = (p + r) – (q + m) < , then h() < , limz→+∞ h(z) = +∞. We can know
that equation (.) has at least one positive root.

If m = (p + r) – (q + m) ≥ , we see that when � = m
 – m ≤ , equation

(.) has no positive roots for z ∈ [, +∞). On the other hand, when � = m
 – m > ,

the equation

z + mz + m = 

has two real roots: z∗
 = –m+

√�
 , z∗

 = –m–
√�

 . Because of h′′
(z∗

) = 
√� > , h′′

(z∗
) =

–
√� < , z∗

 and z∗
 are the local minimum and the local maximum of h(z), respec-

tively. By the above analysis, we immediately obtain the following.

Lemma 
() If m ≥  and � = m

 – m ≤ , equation (.) has no positive root for
z ∈ [, +∞).

() If m ≥  and � = m
 – m > , equation (.) has at least one positive root if

and only if z∗
 = –m+

√�
 >  and h(z∗

) ≤ .
() If m < , equation (.) has at least one positive root.
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Without loss of generality, we assume that (.) has three positive roots, defined by z,
z, z, respectively. Then (.) has three positive roots,

ω =
√

z, ω =
√

z, ω =
√

z.

From (.) we have

cosωkτk =
[(q + m) – q(p + r)]ω

k
[qω


k – (q + m)] + (q + m)ω

k

+
[(p + r)(q + m) + q(p + r) – (r + p)(q + m)]ω

k
[qω


k – (q + m)] + (q + m)ω

k

–
(r + p)(q + m)

[qω

k – (q + m)] + (q + m)ω

k
.

Thus, if we denote

τ
(j)
k

=


ωk

{
arccos

(
[(q + m) – q(p + r)]ω

k
[qω


k – (q + m)] + (q + m)ω

k

+
[(p + r)(q + m) + q(p + r) – (r + p)(q + m)]ω

k
[qω


k – (q + m)] + (q + m)ω

k

–
(r + p)(q + m)

[qω

k – (q + m)] + (q + m)ω

k

)
+ jπ
}

, (.)

where k = , , ; j = , , , . . . , then ±iωk is a pair of purely imaginary roots of (.) cor-
responding to τ

(j)
k

. Define

τ = τ
()
k

= min
k=,,

{
τ

()
k

}
, ω = ωk .

Let λ(τ) = α(τ) + iω(τ) be the root of equation (.) near τ = τ
(j)
k

satisfying

α
(
τ

(j)
k

)
= , ω

(
τ

(j)
k

)
= ωk .

Substituting λ(τ) into (.) and taking the derivative with respect to τ, we have

{
λ + (p + r)λ + (p + r) +

[
qλ + (q + m)

]
e–λτ

– τ
[
qλ

 + (q + m)λ + (q + m)
]
e–λτ
} dλ

dτ

= λ
[
qλ

 + (q + m)λ + (q + m)
]
e–λτ .

Therefore,

[
dλ

dτ

]–

=
[λ + (p + r)λ + (p + r)]eλτ

λ[qλ + (q + m)λ + (q + m)]

+
qλ + (q + m)

λ[qλ + (q + m)λ + (q + m)]
–

τ

λ
. (.)
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When τ = τ
(j)
k

, λ(τ (j)
k

) = iωk (k = , , ),

{
λ
[
qλ

 + (q + m)λ + (q + m)
]}|

τ=τ
(j)
k

= –(q + m)ω
k + i
[
(q + m)ωk – qω


k
]
,

{[
λ + (p + r)λ + (p + r)

]
eλτ
}|

τ=τ
(j)
k

=
{[

–ω
k + (p + r)

]
cos
(
ωkτ

(j)
k

)
– (p + r)ωk sin

(
ωkτ

(j)
k

)}
+ i
{

(p + r)ωk cos
(
ωkτ

(j)
k

)
+
[
–ω

k + (p + r)
]

sin
(
ωkτ

(j)
k

)}
,{

qλ + (q + m)
}|

τ=τ
(j)
k

= (q + m) + iqωk .

According to (.), we have

[
Re d(λ(τ))

dτ

]–

τ=τ
(j)
k

= Re

[
[λ + (p + r)λ + (p + r)]eλτ

λ[qλ + (q + m)λ + (q + m)]

]
τ=τ

(j)
k

+ Re

[
qλ + (q + m)

λ[qλ + (q + m)λ + (q + m)]

]
τ=τ

(j)
k

=


�

{
–
[
–ω

k + (p + r)
]
ωk
[[

qω

k – (q + m)

]
sinωkτ

(j)
k

+ (q + m)ωk cosωkτ
(j)
k

]
– (p + r)ω

k
[[

qω

k – (q + m)

]
cosωkτ

(j)
k

– (q + m)ωk sinωkτ
(j)
k

]
– (q + m)ω

k + ωkq
[
(q + m)ωk – qω


k
]}

=


�

{
ω

k + 
[
(p + r) – (p + r) – q


]
ω

k +
[
(p + r) – (p + r)(p + r)

+ (q + m)q – (q + m)]ω
k
}

=


�

{
zk
(
z

k + mzk + m
)}

=


�
zkh′

(zk),

where � = (q + m)ω
k + [(q + m)ωk – qω


k] > . Notice that � > , zk > ,

sign

{[
Re d(λ(τ))

dτ

]
τ=τ

(j)
k

}
= sign

{[
Re d(λ(τ))

dτ

]–

τ=τ
(j)
k

}
,

then we have the following lemma.

Lemma  Suppose that zk = ω
k and h′

(zk) �= , where h(z) is defined by (.), then
d(Reλ(τ (j)

k
))

dτ
has the same sign as h′

(zk).

From Lemmas , ,  and Theorem , we can easily obtain the following theorem.
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Theorem  For τ > , τ = , suppose that (H), (H) hold, then:
(i) If m ≥  and � = m

 – m ≤ , then all roots of equation (.) have negative
real parts for all τ ≥ , and the positive equilibrium E∗ is locally asymptotically
stable for all τ ≥ .

(ii) If either m <  or m ≥ , � = m
 – m > , z∗

 >  and h(z∗
) ≤ , then h(z)

has at least one positive roots, and all roots of equation (.) have negative real
parts for τ ∈ [, τ ), and the positive equilibrium E∗ is locally asymptotically
stable for τ ∈ [, τ ).

(iii) If (ii) holds and h′
(zk) �= , then system (.) undergoes Hopf bifurcations at the

positive equilibrium E∗ for τ = τ
(j)
k

(k = , , ; j = , , , . . .).

Case (d) τ > , τ > , τ �= τ.

The associated characteristic equation of system (.) is

λ + pλ
 + pλ + p +

(
qλ

 + qλ + q
)
e–λτ

+
(
rλ

 + rλ + r
)
e–λτ + (mλ + m)e–λ(τ+τ) = . (.)

We consider (.) with τ = τ ∗
 in its stable interval [, τ ). Regard τ as a parameter.

Let λ = iω (ω > ) be a root of equation (.), then we have

–iω – pω
 + ipω + p +

(
–qω

 + iqω + q
)
(cosωτ – i sinωτ)

+
(
–rω

 + r + irω
)(

cosωτ ∗
 – i sinωτ ∗


)

+ (imω + m)
(
cosω
(
τ + τ ∗


)

– i sinω
(
τ + τ ∗


))

= .

Separating the real and imaginary parts, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω – pω – rω cosωτ ∗
 + (–rω

 + r) sinωτ ∗


= qω cosωτ – (–qω
 + q) sinωτ

+ mω cosω(τ + τ ∗
 ) – m sinω(τ + τ ∗

 ),
pω

 – p – (–rω
 + r) cosωτ ∗

 – rω sinωτ ∗


= (–qω
 + q) cosωτ + qω sinωτ

+ m cosω(τ + τ ∗
 ) + mω sinω(τ + τ ∗

 ).

(.)

It follows that

ω + mω
 + mω

 + m + m cosωτ ∗
 + m sinωτ ∗

 = , (.)

where

m = p
 – p – q

 + r
, m = p

 – pp + r
 – rr – q

 + qq – m
 ,

m = p
 + r

 – m
 – q

,

m = –(r + rp)ω + (rp – pr – pr – qm + qm)ω + (pr – qm),

m = –rω
 + (pr + r – pr + qm)ω + (–rp + pr – qm – qm)ω.
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Denote F(ω) = ω + mω
 + mω

 + m + m cosω(τ + τ ∗
 ) + m sinω(τ + τ ∗

 ). If
(p + r) – (m + q) < , then

F() < , lim
ω→+∞ F(ω) = +∞.

We can see that (.) has at most six positive roots ω,ω, . . . ,ω. For every fixed ωk ,
k = , , . . . , , there exists a sequence {τ (j)

k |j = , , , , . . .}, such that (.) holds.
Let

τ = min
{
τ

(j)
k |k = , , . . . , ; j = , , , , . . .

}
. (.)

When τ = τ
(j)
k , equation (.) has a pair of purely imaginary roots ±iω(j)

k for τ ∗
 ∈ [, τ ).

In the following, we assume that

(H)
d Re(λ)

dτ

∣∣∣∣
λ=±iω(j)

k

�= .

Then we have the following result on the stability and Hopf bifurcation in system (.).

Theorem  For τ > , τ > , τ �= τ, suppose that (H)-(H) are satisfied. If p + r – q –
m <  and τ ∗

 ∈ [, τ ], then the positive equilibrium E∗ is locally asymptotically stable
for τ ∈ [, τ). System (.) undergoes Hopf bifurcations at the positive equilibrium E∗ for
τ = τ

(j)
k .

3 Direction and stability of the Hopf bifurcation
In Section , we obtain the conditions under which system (.) undergoes the Hopf bi-
furcation at the positive equilibrium E∗. In this section, we consider direction and stability
of the Hopf bifurcation with τ = τ ∗

 ∈ [, τ ) regarding τ as a parameter. We will derive
the explicit formulas determining the direction, stability, and period of these periodic so-
lutions bifurcating from equilibrium E∗ at the critical values τ, by using the normal form
and the center manifold theory developed by Hassard et al. []. Without loss of generality,
denote any one of these critical values τ = τ

(j)
k (k = , , . . . , ; j = , , , . . .) by τ̃, at which

equation (.) has a pair of purely imaginary roots ±iω and system (.) undergoes Hopf
bifurcation from E∗.

Throughout this section, we always assume that τ ∗
 < τ. Let u = x – x∗

 , u = x – x∗
,

u = x – x∗
, t = τt and μ = τ – τ̃, μ ∈ R. Then μ =  is the Hopf bifurcation value of

system (.) may be written as a functional differential equation in C([–, ],R),

u̇(t) = Lμ(ut) + f (μ, ut), (.)

where u = (u, u, u)T ∈R, and

Lμ(φ) = (τ̃ + μ)B

⎡
⎢⎣

φ()
φ()
φ()

⎤
⎥⎦ + (τ̃ + μ)C

⎡
⎢⎣

φ(–)
φ(–)
φ(–)

⎤
⎥⎦ + (τ̃ + μ)D

⎡
⎢⎢⎣

φ(– τ∗

τ

)
φ(– τ∗


τ

)
φ(– τ∗


τ

)

⎤
⎥⎥⎦ , (.)
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f (μ,φ) = (τ̃ + μ)

⎡
⎢⎣

f

f

f

⎤
⎥⎦ , (.)

where φ = (φ,φ,φ)T ∈ C([–, ],R), and

B =

⎡
⎢⎣

b b 
 b b

  b

⎤
⎥⎦ , C =

⎡
⎢⎣

  
c c 
  

⎤
⎥⎦ , D =

⎡
⎢⎣

  
  
 d d

⎤
⎥⎦ ,

f = (–a + l)φ
 () – lφ()φ() + lφ


 () + · · · ,

f = –lφ

 (–) + lφ


 (–) + lφ(–)φ(–) + lφ(–)φ() – lφ(–)φ()

+ lφ

 () – lφ()φ() + lφ


 () + · · · ,

f = –lφ



(
–

τ ∗


τ

)
+ lφ




(
–

τ ∗


τ

)
+ lφ

(
–

τ ∗


τ

)
φ() + lφ

(
–

τ ∗


τ

)
φ

(
–

τ ∗


τ

)

– lφ

(
–

τ ∗


τ

)
φ() + · · · ,

l =
amx∗


(mx∗

 + x∗
 ) , l =

amx∗
 x∗


(mx∗

 + x∗
 ) , l =

amx∗


(mx∗
 + x∗

 ) ,

l =
amx∗


(mx∗

 + x∗
 ) , l =

am
x∗

 x∗


(mx∗
 + x∗

 ) , l =
amx∗

 x∗
 – am

x∗


(mx∗
 + x∗

 ) ,

l =
amx∗


(mx∗

 + x∗
 ) , l =

amx∗


(mx∗
 + x∗

 ) , l =
amx∗


(mx∗

 + x∗
) ,

l =
amx∗

x∗


(mx∗
 + x∗

) , l =
amx∗


(mx∗

 + x∗
) , l =

amx∗


(mx∗
 + x∗

) ,

l =
am

x∗
x∗


(mx∗

 + x∗
) , l =

amx∗


(mx∗
 + x∗

) ,

l =
amx∗

x∗
 – am

x∗


(mx∗
 + x∗

) , l =
amx∗


(mx∗

 + x∗
) .

Obviously, Lμ(φ) is a continuous linear function mapping C([–, ],R) into R. By the
Riesz representation theorem, there exists a  ×  matrix function η(θ ,μ) (– ≤ θ ≤ ),
whose elements are of bounded variation such that

Lμ(φ) =
∫ 

–
dη(θ ,μ)φ(θ ), for φ ∈ C

(
[–, ],R). (.)

In fact, we can choose

dη(θ ,μ) = (τ̃ + μ)
[

Bδ(θ ) + Cδ(θ + ) + Dδ

(
θ +

τ ∗


τ

)]
, (.)

where δ is the Dirac delta function. For φ ∈ C([–, ],R), define

A(μ)φ =

{ dφ(θ )
dθ

, θ ∈ [–, ),∫ 
– dη(s,μ)φ(s), θ = 
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and

R(μ)φ =

{
, θ ∈ [–, ),
f (μ,φ), θ = .

Then when θ = , system (.) is equivalent to

ẋt = A(μ)xt + R(μ)xt , (.)

where xt(θ ) = x(t + θ ), θ ∈ [–, ]. For ψ ∈ C([, ], (R)∗), define

A∗ψ(s) =

{
– dψ(s)

ds , s ∈ (, ],∫ 
– dηT (t, )ψ(–t), s = ,

and a bilinear inner product

〈
ψ(s),φ(θ )

〉
= ψ̄()φ() –

∫ 

–

∫ θ

ξ=
ψ̄(ξ – θ ) dη(θ )φ(ξ ) dξ , (.)

where η(θ ) = η(θ , ). Let A = A(), then A and A∗ are adjoint operators. By the discussion in
Section , we know that ±iωτ̃ are eigenvalues of A. Thus, they are also eigenvalues of A∗.
We first need to compute the eigenvector of A and A∗ corresponding to iωτ̃ and –iωτ̃,
respectively. Suppose that q(θ ) = (,α,β)T eiθωτ̃ is the eigenvector of A corresponding to
iωτ̃. Then Aq(θ ) = iωτ̃q(θ ). From the definition of A, Lμ(φ) and η(θ ,μ), we can easily
obtain q(θ ) = (,α,β)T eiθωτ̃ , where

α =
iω – b

b
, β =

d(iω – b)e–iωτ∗


b(iω – b – de–iωτ∗
 )

,

and q() = (,α,β)T . Similarly, let q∗(s) = D(,α∗,β∗)eisωτ̃ be the eigenvector of A∗ corre-
sponding to –iωτ̃. By the definition of A∗, we can compute

α∗ =
–iω – b

ceiωτ̃
, β∗ =

b(–iω – b)
c(–iω – b – deiωτ∗

 )eiωτ̃
.

From (.), we have

〈
q∗(s), q(θ )

〉
= D̄
(
, ᾱ∗, β̄∗)(,α,β)T –

∫ 

–

∫ θ

ξ=
D̄
(
, ᾱ∗, β̄∗)e–iωτ̃(ξ–θ ) dη(θ )(,α,β)T eiωτ̃ξ dξ

= D̄
{

 + αᾱ∗ + ββ̄∗ + τ̃
(
cᾱ

∗ + cαᾱ∗)e–iωτ̃ + τ ∗

(
dαβ̄∗ + dββ̄∗)e–iωτ∗


}

.

Thus, we can choose

D̄ =
{

 + αᾱ∗ + ββ̄∗ + τ̃
(
cᾱ

∗ + cαᾱ∗)e–iωτ̃ + τ ∗

(
dαβ̄∗ + dββ̄∗)e–iωτ∗


}–,

such that 〈q∗(s), q(θ )〉 = , 〈q∗(s), q̄(θ )〉 = .
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In the remainder of this section, we follow the ideas in Hassard et al. [] using the same
notations as there to compute the coordinates describing the center manifold C at μ = .
Let xt be the solution of equation (.) when μ = . Define

z(t) =
〈
q∗, xt
〉
, W (t, θ ) = xt(θ ) –  Re

{
z(t)q(θ )

}
. (.)

On the center manifold C, we have

W (t, θ ) = W
(
z(t), z̄(t), θ

)
= W(θ )

z


+ W(θ )zz̄ + W(θ )

z̄


+ W(θ )

z


+ · · · ,

where z and z̄ are local coordinates for center manifold C in the direction of q and q̄. Note
that W is real if xt is real. We consider only real solutions. For the solution xt ∈ C of (.),
since μ = , we have

ż = iωτ̃z +
〈
q∗(θ ), f

(
, W
(
z(t), z̄(t), θ

)
+  Re
{

z(t)q(θ )
})〉

= iωτ̃z + q̄∗()f
(
, W
(
z(t), z̄(t), 

)
+  Re
{

z(t)q()
})

= iωτ̃z + q̄∗()f(z, z̄) � iωτ̃z + g(z, z̄), (.)

where

g(z, z̄) = q̄∗()f(z, z̄) = g
z


+ gzz̄ + g

z̄


+ g

zz̄


+ · · · . (.)

By (.), we have xt(θ ) = (xt(θ ), xt(θ ), xt(θ ))T = W (t, θ ) + zq(θ ) + z̄q̄(θ ). It follows from
this, together with (.), that

g(z, z̄) = q̄∗()f(z, z̄)

= D̄τ̃
(
, ᾱ∗, β̄∗)(f ()

 f ()
 f ()


)T

= D̄τ̃

{[
(–a + l)φ

 () – lφ()φ() + lφ

 () + · · · ]

+ ᾱ∗[–lφ

 (–) + lφ


 (–)

+ lφ(–)φ(–) + lφ(–)φ() – lφ(–)φ()

+ lφ

 () – lφ()φ() + lφ


 () + · · · ]

+ β̄∗
[

–lφ



(
–

τ ∗


τ̃

)
+ lφ




(
–

τ ∗


τ̃

)
+ lφ

(
–

τ ∗


τ̃

)
φ()

+ lφ

(
–

τ ∗


τ̃

)
φ

(
–

τ ∗


τ̃

)
– lφ

(
–

τ ∗


τ̃

)
φ() + · · ·

]}
.

Comparing the coefficients with (.), we have

g = D̄τ̃
{[

(–a + l) – lα + lα
] + ᾱ∗[–le–iωτ̃ + lα

e–iωτ̃ + lαe–iωτ̃

+ lαe–iωτ̃ – lα
e–iωτ̃ + l – lα + lα

] + β̄∗[–lα
e–iωτ∗



+ lβ
e–iωτ∗

 + lαβe–iωτ∗
 + lαβe–iωτ∗

 – lβ
e–iωτ∗


]}

,
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g = D̄τ̃
{[

(–a + l) – l(α + ᾱ) + alαᾱ
]

+ ᾱ∗[–l + lαᾱ + l(α + ᾱ)

+ l
(
ᾱe–iωτ̃ + αeiωτ̃

)
– l
(
αᾱe–iωτ̃ + αᾱeiωτ̃

)
+ l – l(α + ᾱ) + lαᾱ

]
+ β̄∗[–lαᾱ + lββ̄ + l

(
αβ̄e–iωτ∗

 + βᾱeiωτ∗

)

+ l(αβ̄ + ᾱβ) – lββ̄
(
eiωτ∗

 + e–iωτ∗

)]}

,

g = D̄τ̃
{[

(–a + l) – lᾱ + lᾱ
] + ᾱ∗[–leiωτ̄ + lᾱ

eiωτ̄ + lᾱeiωτ̄

+ lᾱeiωτ̄ – lᾱ
eiωτ̄ + l – lᾱ + lᾱ

] + β̄∗[–lᾱ
eiωτ∗

 + lβ̄
eiωτ∗



+ lᾱβ̄eiωτ∗
 + lᾱβ̄eiωτ∗

 – lβ̄
eiωτ∗


]}

,

g = D̄τ̃

{[
(–a + l)

(
W ()

 () + W ()
 ()
)

– l
(
αW ()

 () + ᾱW ()
 () + W ()

 () + W ()
 ()
)

+ l
(
αW ()

 () + ᾱW ()
 ()
)]

+ ᾱ∗[–l
(
W ()

 (–)e–iωτ̃ + W ()
 (–)eiωτ̃

)
+ l
(
ᾱW ()

 (–)eiωτ̃ + αW ()
 (–)e–iωτ̃

)
+ l
(
W ()

 (–)e–iωτ̃ + W ()
 (–)eiωτ̃

+ ᾱW ()
 (–)eiωτ̃ + αW ()

 (–)e–iωτ̃
)

+ l
(
αW ()

 (–) + ᾱW ()
 (–)

+ W ()
 ()eiωτ̃ + W ()

 ()e–iωτ̃
)

– l
(
αW ()

 (–) + ᾱW ()
 (–) + ᾱW ()

 ()eiωτ̃

+ αW ()
 ()e–iωτ̃

)
+ l
(
W ()

 () + W ()
 ()
)

– l
(
W ()

 () + W ()
 ()

+ ᾱW ()
 () + αW ()

 ()
)

+ l
(
αW ()

 () + ᾱW ()
 ()
)]

+ β̄∗
[

–l

(
αW ()



(
–

τ ∗


τ̃

)
e–iωτ∗

 + ᾱW ()


(
–

τ ∗


τ̃

)
eiωτ∗



)

+ l

(
β̄W ()



(
–

τ ∗


τ̃

)
eiωτ∗

 + βW ()


(
–

τ ∗


τ̃

)
e–iωτ∗



)

+ l

(
αW ()

 ()e–iωτ∗
 + ᾱW ()

 ()eiωτ∗
 + β̄W ()



(
–

τ ∗


τ̃

)
+ βW ()



(
–

τ ∗


τ̃

))

+ l

(
αW ()



(
–

τ ∗


τ̃

)
e–iωτ∗

 + ᾱW ()


(
–

τ ∗


τ̃

)
eiωτ∗



+ β̄W ()


(
–

τ ∗


τ̃

)
eiωτ∗

 + βW ()


(
–

τ ∗


τ̃

)
e–iωτ∗



)

– l

(
βW ()

 ()e–iωτ∗
 + β̄W ()

 ()eiωτ∗
 + β̄W ()



(
–

τ ∗


τ̃

)
+ βW ()



(
–

τ ∗


τ̃

))]}
,

where

W(θ ) =
ig

ωτ̃
q()eiωτ̃θ +

iḡ

ωτ̃
q̄()e–iωτ̃θ + Eeiωτ̃θ ,

W(θ ) = –
ig

ωτ̃
q()eiωτ̃θ +

iḡ

ωτ̃
q̄()e–iωτ̃θ + E,

and

E = 

⎡
⎢⎣

iω – b –b 
–ce–iωτ̃ iω – b – ce–iωτ̃ –b

 –de–iωτ∗
 iω – b – de–iωτ∗



⎤
⎥⎦

–

·
⎡
⎢⎣

M

M

M

⎤
⎥⎦ ,
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E = 

⎡
⎢⎣

–b –b 
–c –b – c –b

 –d –b – d

⎤
⎥⎦

–⎡
⎢⎣

N

N

N

⎤
⎥⎦ ,

where

M = (–a + l) – lα + lα
,

M = –le–iωτ̃ + lα
e–iωτ̃ + lαe–iωτ̃ + lαe–iωτ̃ – lα

e–iωτ̃

+ l – lα + lα
,

M = –lα
e–iωτ∗

 + lβ
e–iωτ∗

 + lαβe–iωτ∗
 + lαβe–iωτ∗

 – lβ
e–iωτ∗

 ,

N = (–a + l) – l(α + ᾱ) + lαᾱ,

N = –l + lαᾱ + l(α + ᾱ) + l
(
ᾱe–iωτ̃ + αeiωτ̃

)
– l
(
αᾱe–iωτ̃ + αᾱeiωτ̃

)
+ l – l(α + ᾱ) + lαᾱ,

N = –lαᾱ + lββ̄ + l
(
αβ̄e–iωτ∗

 + βᾱeiωτ∗

)

+ l(αβ̄ + ᾱβ)

– lββ̄
(
eiωτ∗

 + e–iωτ∗

)
.

Thus, we can determine W(θ ) and W(θ ). Furthermore, we can determine each gij by
the parameters and delay in (.). Thus, we can compute the following values:

c() =
i

ωτ̃

(
gg – |g| –



|g|
)

+



g, μ = –
Re{c()}
Re{λ′(τ̃)} ,

T = –
Im{c()} + μ Im{λ′(τ̃)}

ωτ̃
, β =  Re

{
c()
}

,

which determine the quantities of bifurcating periodic solutions in the center manifold
at the critical value τ̃. Suppose Re{λ′(τ̃)} > . μ determines the directions of the Hopf
bifurcation: if μ >  (< ), then the Hopf bifurcation is supercritical (subcritical) and the
bifurcation exist for τ > τ̃ (< τ̃); β determines the stability of the bifurcation periodic
solutions: the bifurcating periodic solutions are stable (unstable) if β <  (> ); and T de-
termines the period of the bifurcating periodic solutions: the period increases (decreases)
if T >  (< ).

4 Global continuation of local Hopf bifurcations
In this section, we study the global continuation of periodic solutions bifurcating from
the positive equilibrium. Throughout this section, we follow closely the notations in []
and assume that τ = τ ∗

 ∈ [, τ ) regarding τ as a parameter. For simplification of nota-
tions, setting zt(t) = (xt , xt , xt)T , we may rewrite system (.) as the following functional
differential equation:

ż(t) = F(zt , τ, p), (.)

where zt(θ ) = (xt(θ ), xt(θ ), xt(θ ))T = (x(t + θ ), x(t + θ ), x(t + θ ))T for t ≥  and θ ∈
[–τ, ]. Since x(t), x(t), and x(t) denote the densities of the prey, the first predator, and
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the second predator, respectively, the positive solution of system (.) is of interest and its
periodic solutions only arise in the first quadrant. Thus, we consider system (.) only in
the domain R

+ = {(x, x, x) ∈ R, x > , x > , x > }. It is obvious that (.) has a unique
positive equilibrium E∗(x∗

 , x∗
, x∗

) in R
+ under the assumption (H). Following the work of

[], we define

X = C
(
[–τ, ], R

+
)
,

� = Cl
{

(z, τ, p) ∈ X × R × R+; z is a p-periodic solution of system (.)
}

,

N =
{

(z̄, τ̄, p̄); F(z̄, τ̄, p̄) = 
}

.

Let �(E∗ ,τ (j)
k , π

ω
(j)
k

) denote the connected component passing through (E∗, τ (j)
k , π

ω
(j)
k

) in �,

where τ
(j)
k is defined by (.). We know that �(E∗ ,τ (j)

k , π

ω
(j)
k

) through (E∗, τ (j)
k , π

ω
(j)
k

) is nonempty.

Lemma  If the conditions (H) hold, then all nontrivial periodic solutions of system (.)
with initial conditions

x(θ ) = ϕ(θ ) ≥ , x(θ ) = ψ(θ ) ≥ , x(θ ) = φ(θ ) ≥ , t ∈ [–τ, );

ϕ() > , ψ() > , φ() > ,

are uniformly bounded.

Proof Suppose that (x(t), x(t), x(t)) are nonconstant periodic solutions of system (.)
and define

x(ξ) = min
{

x(t)
}

, x(η) = max
{

x(t)
}

,

x(ξ) = min
{

x(t)
}

, x(η) = max
{

x(t)
}

, (.)

x(ξ) = min
{

x(t)
}

, x(η) = max
{

x(t)
}

.

It follows from system (.) that

x(t) = x() exp

{∫ t



[
a – ax(s) –

ax(s)
m + x(s)

]
ds
}

,

x(t) = x() exp

{∫ t



[
–a +

ax(s – τ)
m + x(s – τ)

– ax(s) –
ax(s)

m + x(s)

]
ds
}

,

x(t) = x() exp

{∫ t



[
–a +

ax(s – τ ∗
 )

m + x(s – τ ∗
 )

– ax(s)
]

ds
}

,

which implies that the solutions of system (.) cannot cross the xi-axis (i = , , ). Thus,
the nonconstant periodic orbits must be located in the interior of each quadrant. It follows
from the initial data of system (.) that x(t) > , x(t) > , x(t) >  for t ≥ .

From the first equation of system (.), we can get

 = a – ax(η) –
ax(η)

mx(η) + x(η)
≤ a – ax(η),
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thus, we have

x(η) ≤ a

a
. (.)

From the second equation of system (.), we obtain

 = –a +
ax(η – τ)

mx(η – τ) + x(η – τ)
–

ax(η)
mx(η) + x(η)

≤ –a +
ax(η – τ)

mx(η – τ) + x(η – τ)
,

therefore, one gets

x(η – τ) ≤ a(a – a)
aam

.

From the second equation of system (.), we obtain

ẋ(t) ≤ (a – a)x(t),

when t > τ, x(t) ≤ x(t – τ)e(a–a)τ .
Then we have

x(η) ≤ a(a – a)
aam

e(a–a)τ .= Q. (.)

Applying the third equation of system (.), we know

 = –a +
ax(η – τ ∗

 )
mx(η – τ ∗

 ) + x(η – τ ∗
 )

≤ –a +
aQ

mx(η – τ ∗
 ) + Q

.

It follows that

x(η) ≤ (a – a)Q
am

e(a–a)τ . (.)

This shows that the nontrivial periodic solution of system (.) is uniformly bounded and
the proof is complete. �

Lemma  If the conditions (H) and

(H)
am

a

(
a –

a

m

)
–




aamτ
∗
 > ,

a –
a

m
–

aτ
∗


m

(
a +

a

m
+ a

)
–




aaτ
∗
 –




a
mτ

∗
 > ,

hold, then system (.) has no nontrivial τ-periodic solution.
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Proof Suppose for a contradiction that system (.) has nontrivial periodic solution with
period τ. Then the system (.) has nontrivial periodic solution:

⎧⎪⎪⎨
⎪⎪⎩

dx
dt = x(t)[a – ax(t) – ax(t)

mx(t)+x(t) ],
dx
dt = x(t)[–a + ax(t)

mx(t)+x(t) – ax(t)
mx(t)+x(t) ],

dx
dt = x(t)[–a + ax(t–τ∗

 )
mx(t–τ∗

 )+x(t–τ∗
 ) ],

(.)

which has the same equilibria to system (.), i.e.,

Ẽ = (x̃, x̃, ), E∗ =
(
x∗

 , x∗
, x∗


)
.

Note that the xi-axis (i = , , ), the invariable manifold of system (.), and the orbits of
system (.) do not intersect each other. Thus, there are no solutions crossing the coordi-
nate axes. On the other hand, note the fact that if system (.) has a periodic solution, then
there must be the equilibrium in its interior, and that Ẽ are located on the coordinate axis.
Thus, we conclude that the periodic orbit of system (.) must lie in the first quadrant. If
(H) holds, it is well known that the positive equilibrium E∗ is global asymptotically stable
in the first quadrant (see [, ]). Thus, there is no periodic orbit in the first quadrant. The
above discussion means that (.) has no nontrivial periodic solution. It is a contradiction.
Therefore, Lemma  is confirmed. �

Theorem  Suppose the conditions of Theorem  and (H) hold, let ωk and τ
(j)
k be defined

in Section , then when τ > τ
(j)
k , j = , , , . . . , system (.) has at least j– periodic solutions.

Proof It is sufficient to prove that the projection of �(E∗ ,τ (j)
k , π

ωk
) onto τ-space is [τ̄, +∞) for

each j ≥ , where τ̄ ≤ τ
(j)
k .

In the following we prove that the hypotheses (A)-(A) in [] hold.
() From system (.) we easily see that the following conditions hold:
(A) F̂ ∈ C(R

+ × R+ × R+), where F̂ = F|R
+×R+×R+ → R

+.
(A) F(φ, τ, p) is differential with respect to φ.
() It follows from system (.) that

DzF̂(z, τ, p)

=

⎡
⎢⎢⎢⎣

a – ax – amx


(mx+x) – ax


(mx+x) 
amx


(mx+x) –a + ax


(mx+x) – amx


(mx+x) – ax


(mx+x)

 amx


(mx+x) –a + ax


(mx+x)

⎤
⎥⎥⎥⎦. (.)

Then under the assumption (H)-(H), we have

det DzF̂
(
z∗, τ, p

)
= det

⎡
⎢⎢⎢⎣

–ax∗
 + ax∗

 x∗


(mx∗
+x∗

 )
ax∗


(mx∗

+x∗
 ) 

amx∗


(mx∗
+x∗

 )
ax∗

x∗


(mx∗
+x∗

 ) – amx∗
 x∗


(mx∗

+x∗
 ) – ax∗


(mx∗

+x∗
)

 amx∗


(mx∗
+x∗

)
amx∗

x∗


(mx∗
+x∗

)

⎤
⎥⎥⎥⎦

= –
aamx∗

 x∗
 x∗


(mx∗

 + x∗
 )(mx∗

 + x∗
) < . (.)
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From (.), we know that the hypothesis (A) in [] is satisfied.
() The characteristic matrix of equation (.) at a stationary solution (z̄, τ, p), where

z̄ = (z̄(), z̄(), z̄()) ∈ R, takes the following form:

�(z̄, τ, p)(λ) = λId – DφF(z̄, τ̄, p̄)
(
eλI
)
, (.)

that is,

�(z̄, τ, p)(λ)

=

⎡
⎢⎢⎢⎣

λ – a + az̄() + am z̄()

(m z̄()+z̄())
a z̄()

(m z̄()+z̄()) 

– am z̄()

(m z̄()+z̄()) e–λτ λ + a + G
a z̄()

(m z̄()+z̄())

 – am z̄()

(m z̄()+z̄()) e–λτ∗
 λ + a + G

⎤
⎥⎥⎥⎦ , (.)

where

G = –
az̄()

(mz̄() + z̄())
+

amz̄()

(mz̄() + z̄()) –
az̄()

(mz̄() + z̄()) e–λτ ,

G = –
az̄()

mz̄() + z̄() +
az̄()

(mz̄() + z̄()) e–λτ∗
 .

A stationary solution (z̄, τ̄, p̄) of (.) is called a center if F(z̄, τ̄, p̄) =  and det�(z̄,
τ̄, p̄)( π i

p ) = . A center (z̄, τ̄, p̄) is said to isolated if it is the only center in some neigh-
borhood of (z̄, τ̄, p̄).

From (.), we have

det
(�(E∗, τ, p

)
(λ)
)

= λ + pλ
 + pλ + p +

(
qλ

 + qλ + q
)
e–λτ

+
(
rλ

 + rλ + r
)
e–λτ + (mλ + m)e–λ(τ+τ). (.)

Note that the above equation is the same as (.), from the discussion in Section  about
the local Hopf bifurcation, it is easy to verify that (E∗, τ (j)

k , π
ωk

) is an isolated center, and
there exist ε > , δ >  and a smooth curve λ : (τ (j)

k –δ, τ (j)
k +δ) → C such that det(�(λ(τ))) =

, |λ(τ) – ωk| < ε for all τ ∈ [τ (j)
k – δ, τ (j)

k + δ] and

λ
(
τ

(j)
k
)

= ωki,
d Reλ(τ)

dτ

∣∣∣∣
τ=τ

(j)
k

> .

Let

�ε, π
ωk

=
{

(η, p);  < η < ε,
∣∣∣∣p –

π

ωk

∣∣∣∣ < ε

}
.

It is easy to verify that on [τ (j)
k – δ, τ (j)

k + δ] × ∂�ε, π
ωk

,

det

(
�(E∗, τ, p

)(
η +

π

p
i
))

=  if and only if
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η = , τ = τ
(j)
k , p =

π

ωk
, k = , , ; j = , , , . . . .

Therefore, the hypothesis (A) in [] is satisfied.
If we define

H±
(

E∗, τ (j)
k ,

π

ωk

)
(η, p) = det

(
�(E∗, τ (j)

k ± δ, p
)(

η +
π

p
i
))

,

then we have the crossing number of the isolated center (E∗, τ (j)
k , π

ωk
) as follows:

γ

(
E∗, τ (j)

k ,
π

ωk

)
= degB

(
H–
(

E∗, τ (j)
k ,

π

ωk

)
,�ε, π

ωk

)

– degB

(
H+
(

E∗, τ (j)
k ,

π

ωk

)
,�ε, π

ωk

)
= –.

Thus, we have

∑
(z̄,τ̄,p̄)∈C

(E∗ ,τ (j)
k , π

ωk
)

γ (z̄, τ̄, p̄) < ,

where (z̄, τ̄, p̄) has all or parts of the form (E∗, τ (k)
j , π

ωk
) (j = , , . . .). It follows from The-

orem . in [] that the connected component �(E∗ ,τ (j)
k , π

ωk
) through (E∗, τ (j)

k , π
ωk

) is un-

bounded for each center (z∗, τ, p) (j = , , . . .). From the discussion in Section , one can
get π

ωk
≤ τ

(j)
k for j ≥ .

Now we prove that the projection of �(E∗ ,τ (j)
k , π

ωk
) onto τ-space is [τ̄, +∞), where τ̄ ≤ τ

(j)
k .

Clearly, it follows from the proof of Lemma  that system (.) with τ =  has no nontrivial
periodic solution. Hence, the projection of �(E∗ ,τ (j)

k , π
ωk

) onto τ-space is away from zero.

For a contradiction, we suppose that the projection of �(E∗ ,τ (j)
k , π

ωk
) onto τ-space is

bounded, this means that the projection of �(E∗ ,τ (j)
k , π

ωk
) onto τ-space is included in an inter-

val (, τ ∗). Noticing π
ωk

< τ
j
k and applying Lemma  we have p < τ ∗ for (z(t), τ, p) belonging

to �(E∗ ,τ (j)
k , π

ωk
). This implies that the projection of �(E∗ ,τ (j)

k , π
ωk

) onto p-space is bounded. Then

applying Lemma  we see that the connected component �(E∗ ,τ (j)
k , π

ωk
) is bounded. This con-

tradiction completes the proof. �

5 Numerical simulations
In this section, we present some numerical results of system (.) to verify the analytical
predictions obtained in the previous section. As an example, we consider the following
system:

⎧⎪⎪⎨
⎪⎪⎩

dx
dt = x(t)[ – .x(t) – .x(t)

x(t)+x(t) ],
dx
dt = x(t)[–. + .x(t–τ)

x(t–τ)+x(t–τ) – .x(t)
x(t)+x(t) ],

dx
dt = x(t)[–. + .x(t–τ)

x(t–τ)+x(t–τ) ].
(.)
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Figure 1 The trajectories of system (5.1) with τ1 = 0, τ2 = 1.1 < τ210 = 31.1328. The positive equilibrium
E∗ is asymptotically stable. The initial value is (4, 3.2, 1).

Figure 2 The trajectories of system (5.1) with τ1 = 0, τ2 = 30 < τ210 = 31.1328. The positive equilibrium
E∗ is asymptotically stable. The initial value is (4, 3.2, 1).

From the coefficients of system (.), we can easily see that

a – a = .,

a –
(

a +
a

am
(a – a)

)
= . > ,

a –
a

am

[
a –
(

a +
a

am
(a – a)

)]
= . > ,

p + q + r = . > ,
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Figure 3 The trajectories of system (5.1) with τ1 = 0, τ2 = 31.14 > τ210 = 31.1328. A Hopf bifurcation
occurs from the positive equilibrium E∗ . The initial value is (4, 3.2, 1).

Figure 4 The trajectories of system (5.1) with τ1 = 15, τ2 = 1.1. The positive equilibrium E∗ is
asymptotically stable. The initial value is (4, 3.2, 1).

(p + q + r)(p + q + r + m) – (p + q + r + m) = . > ,

p + q + r + m = . > .

Then the conditions (H)-(H) are satisfied. E∗ = (., ., .) is a unique pos-
itive equilibrium of system (.).

When τ = , by some computations by means of Matlab ., we have m =
–.e– < , ω = ., τ = .. From Theorem , we know that the
positive equilibrium E∗ is asymptotically stable for τ < τ = . and unstable for



Dai et al. Advances in Difference Equations  (2016) 2016:13 Page 26 of 27

Figure 5 System (5.1) undergoes a Hopf bifurcation when τ1 = 20, τ2 = 1.1. A Hopf bifurcation occurs
from the positive equilibrium E∗ . The initial value is (4, 3.2, 1).

Figure 6 System (5.1) undergoes a Hopf bifurcation when τ1 = 80, τ2 = 1.1. The initial value is (4, 3.2, 1).

τ > τ = ., which is shown in Figures -. When τ = ., system (.) under-
goes a Hopf bifurcation at the positive equilibrium E∗.

Let τ = . ∈ (, .) and choose τ as a parameter. Theorem  is satisfied. By the
computer simulations, we have τ ≈ . Then the positive equilibrium E∗ is asymptot-
ically stable when τ ∈ [, ). A Hopf bifurcation occurs from positive equilibrium E∗

when τ = . The top predator is in danger of extinction when τ = . These numerical
simulations, mentioned above, are shown in Figures -.
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6 Conclusion
In this paper, we devoted our attention to the stability and bifurcation analysis of a de-
layed two predator-one prey system. We obtained some conditions for local stability and
Hopf bifurcation occurring. Specially, when τ �= τ, we derived the explicit formulas to
determine the properties of periodic solutions by the normal form method and center
manifold theorem. In addition, the global existence results of periodic solutions bifurcat-
ing from Hopf bifurcations were established by using a global Hopf bifurcation result due
to []. Finally, a numerical example supporting our theoretical predications was given.
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