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Abstract
In this paper, a new mathematical modeling of rhizosphere microbial degradation
with impulsive diffusion is proposed. By using the Floquet theorem, we find the
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solved by using a numerical simulation to justify our results.
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1 Introduction
The constructed wetland is usually used for the purpose of treating the oversupply of nu-
trients such as nitrogen and phosphorus in the lake. The rhizosphere microbe can play
a key role in decomposing organic matter through releasing inorganic nutrient available
to wetland plant. The degradation process is complex because it includes some biolog-
ical and chemical reactions. Therefore, understanding of the degradation process of the
rhizosphere microbe has been widely attractive to many authors [–]. Bunwong et al.
[] formulated a three-dimensional system of ordinary differential equations and investi-
gated the existence of equilibria and local Hopf bifurcation. In [], the authors compared
the efficiency of a laboratory scale subsurface hybrid constructed wetland (SS-HCW) for
domestic waste water treatment planted with different plants species at different hydraulic
retention times. Strigul and Kravchenko [] introduced beneficial microbes to the plant
rhizosphere. They showed that the competition for limiting resources between the intro-
duced population and the resident microorganisms was the most important factor de-
termining PGPR survival. The authors [] showed the exudation dynamics leading to the
development of the emerging attractors and synchronized oscillations of microbial popu-
lations, carbon and oxygen concentrations. Zhao et al. [] proposed a nonlinear mathe-
matical model of the rhizosphere microbial degradation based on impulsive state feedback
control. The sufficient conditions for existence of the positive order- or order- periodic
solution were obtained by using the geometrical theory of the semi-continuous dynamical
system.
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In fact, the dispersal phenomenon is ubiquitous, which has attracted many interests
of the researchers [–]. Jiao et al. [] considered a five-dimensioned chemostat model
with impulsive diffusion and pulse input and they obtained the stability of microorganism-
extinction periodic solution and permanence of the model. In [], the authors indicated
population dispersal is beneficial to pest control for some ranges of dispersal rates.

Since the rhizosphere microbial degradation is a complex process including some bio-
logical and chemical reactions, it is important to understand how this rhizosphere system
operates. The mathematical model may be an important tool to understand the complex
process and key parameters affecting the rhizosphere microbial degradation.

The paper is organized as follows: a mathematical model with impulsive diffusion is pro-
posed in Section . In Sections  and , the stability of rhizosphere microbe eradication
periodic solution and permanence are given, respectively. Finally, we give a brief discus-
sion.

2 Model description and preliminaries
The rhizosphere is usually defined as a narrow zone of soil directly affected by the presence
of plant root []. Considering the complexity of the degradation process, we suppose the
rhizosphere system comprises two patches which is connected by impulsive diffusion (see
Figure ). The plant rhizosphere is directly considered as a chemostat, which is defined
as patch  and the region outside the plant rhizosphere is called patch  (see Figure ).
Let N(t) be the organic concentration of the region outside the rhizosphere (patch ).
N(t) denotes the organic concentration of the rhizosphere (patch ). N denotes the in-
put concentration of the organic matter. Q and D are the dilution rates. The growth of the
rhizosphere microbe is supposed to follow the Monod equation involving the organic con-
centration N(t) as well as the microbial concentration x(t) (i.e. μN(t)x(t)

δ(K+N(t)) ), where μ is the
maximum specific growth rate and the constant δ is a yield term, K is a half-saturation con-
stant. m is the mortality of the rhizosphere microbe. d ( < d < ) is diffusive rate between
patch  and patch , which shows the net exchange from patch j to patch i is proportional
to the difference Nj – Ni.

Figure 1 Illustration of the impulsive diffusion.
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Based on the above description and [–], we formulate the following model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dN
dt = Q(N – N),

dN
dt = –DN – μNx

δ(K+N) ,
dx
dt = μNx

K+N
– mx,

⎫
⎪⎬

⎪⎭
t �= nT ,

�N = d(N – N),
�N = d(N – N),
�x = ,

⎫
⎪⎬

⎪⎭
t = nT ,

(.)

where T is the impulsive period, n ∈ N = {, , , . . .}, �Ni = Ni(t+) – Ni(t) (i = , ), �x =
x(t+) – x(t).

For convenience, we first give the basic properties of the following system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dN
dt = Q(N – N),

dN
dt = –DN,

t �= nT ,

�N = d(N – N),
�N = d(N – N),

t = nT .
(.)

For (nT , (n + )T], we solve the first two equations of system (.) and obtain

{
N(t) = N + (N(nT+) – N)e–Q(t–nT), nT ≤ t < (n + )T ,
N(t) = N(nT+)e–D(t–nT), nT ≤ t < (n + )T ,

(.)

system (.) describes the nutrient concentrations of patch  and patch  for (nT , (n + )T].
At the impulsive moment, system (.) becomes

{
N(n + )T+ = ( – d)N( – e–QT ) + ( – d)N(nT+)e–QT + dN(nT+)e–DT ,
N(n + )T+ = dN( – e–QT ) + ( – d)N(nT+)e–DT + dN(nT+)e–QT .

(.)

System (.) reflects the nutrient concentrations at the impulsive moment. The dynamical
properties of systems (.) and (.) determine the dynamical behaviors of system (.).
Obviously, system (.) has a fixed point

⎧
⎨

⎩

N∗
 = N(–e–QT )(–d–(–d)e–DT )

–(–d)(e–DT +e–QT )+(–d)e–(D+Q)T ,

N∗
 = dN(–e–QT )

–(–d)(e–QT +e–DT )+(–d)e–(Q+D)T .
(.)

Similar to the method of [], we have the following lemma.

Lemma . System (.) has a unique positive T-periodic solution (N̄(t), N̄(t)), which is
globally asymptotically stable, where

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N̄(t) = N + (N∗
 – N)e–Q(t–nT),

N̄(t) = N∗
 e–D(t–nT),

N∗
 = N(–e–QT )(–d–(–d)e–DT )

–(–d)(e–DT +e–QT )+(–d)e–(D+Q)T ,

N∗
 = dN(–e–QT )

–(–d)(e–QT +e–DT )+(–d)e–(Q+D)T ,

nT ≤ t < (n + )T . (.)
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3 Stability of rhizosphere microbe-eradication periodic solution
Theorem . The rhizosphere microbe-eradication periodic solution (N̄∗

 (t), N̄∗
 (t), ) is

globally asymptotically stable if R < , where R = μ

mTD ln
K+N̄∗


K+N̄∗

 e–DT and N∗
 is defined in (.).

Proof First of all, we prove the local stability of the rhizosphere microbe-eradication peri-
odic solution (N̄∗

 (t), N̄∗
 (t), ). The local stability of the periodic solution (N̄∗

 (t), N̄∗
 (t), )

is determined by considering the small-amplitude perturbations of the solution. Define
N(t) = N̄∗

 (t) + u(t), N(t) = N̄∗
 (t) + v(t), x(t) = w(t), where u(t), v(t), and w(t) are small

enough. We have

d
dt

⎛

⎜
⎝

u(t)
v(t)
w(t)

⎞

⎟
⎠ =

⎛

⎜
⎜
⎝

–Q  
 –D μN̄∗

 (t)
δ(K+N̄∗

 (t))

  μN̄∗
 (t)

K+N̄∗
 (t) – m

⎞

⎟
⎟
⎠

⎛

⎜
⎝

u(t)
v(t)
w(t)

⎞

⎟
⎠ . (.)

It is easy to obtain the fundamental solution matrix:

�(t) =

⎛

⎜
⎜
⎜
⎝

e–Qt  
 e–Dt μN̄∗

 (t)
δ(K+N̄∗

 (t))

  e
∫ t

(
μN̄∗

 (t)
K+N̄∗

 (t) –m) dt

⎞

⎟
⎟
⎟
⎠

. (.)

The linearization of the equation from the fourth to the sixth is

⎛

⎜
⎝

u(nT+)
v(nT+)
w(nT+)

⎞

⎟
⎠ =

⎛

⎜
⎝

 – d d 
d  – d 
  

⎞

⎟
⎠

⎛

⎜
⎝

u(nT)
v(nT)
w(nT)

⎞

⎟
⎠ .

Thus, the monodromy matrix of (.) is

M′ =

⎛

⎜
⎝

 – d d 
d  – d 
  

⎞

⎟
⎠�(T).

Let λ, λ, λ be eigenvalues of M′. It is obvious for λ = ( – d)e–QT < , λ = ( – d)e–DT < .
According to Floquet theory [], we see that the rhizosphere microbe-eradication peri-

odic solution (N̄∗
 (t), N̄∗

 (t), ) is locally asymptotically stable if λ = e
∫ T

 (
μN̄∗

 (t)
K+N̄∗

 (t) –m) dt
< ,

that is, μ

mTD ln
K+N̄∗


K+N̄∗

 e–DT < .
In the following, we will prove the global attraction. Choose ε >  such that � =

μ

D ln
K+ε+N̄∗


K+ε+N̄∗

 e–DT + με

D(K+ε) ln
(K+ε)eDT +N̄∗


K+ε+N̄∗


– mT < .

Noticing that dN
dt ≤ –QN, we consider the following comparison system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

du
dt = QN – Qu,

dv
dt = –Dv,

}

t �= nT ,

�u = d(v – u),
�v = d(u – v),

}

t = nT ,
(.)
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we have N(t) ≤ u(t), N(t) ≤ v(t), and u(t) → N̄(t), v(t) → N̄(t) as t → ∞. Then we
have

N(t) ≤ u(t) ≤ N̄(t) + ε, N(t) ≤ v(t) ≤ N̄(t) + ε (.)

for t large enough. For simplicity, we suppose system (.) holds for all t > . From the
third equation of system (.), we obtain

dx
dt

≤ x
(

μ(N̄(t) + ε)
K + N̄(t) + ε

– m
)

. (.)

Integrating the above inequality on the interval (nT , (n + )T], we get

x
(
(n + )T

) ≤ x
(
nT+)

exp

(∫ (n+)T

nT

(
μ(N̄(t) + ε)
K + N̄(t) + ε

– m
)

dt
)

,

therefore, we have x((n+)T) ≤ x(nT+) exp(�), thus x(nT) ≤ x(+) exp(n�) and x(nT) → ∞
as t → ∞. Since x(t) ≤ x(nT), we obtain x(t) →  as t → ∞.

Next, we prove N(t) → N̄∗
 (t) and N(t) → N̄∗

 (t) as t → ∞. There exists a t >  such
that  < x(t) ≤ ε for t ≥ t. Therefore, we have –DN(t) – με

δ
≤ dN

dt ≤ –DN. Hence, we get
u(t) ≤ N(t) ≤ u(t) and v(t) ≤ N(t) ≤ v(t), where (u(t), v(t)) and (u(t), v(t)) are the
solutions of the following two comparison systems, respectively:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

du
dt = QN – Qu,

dv
dt = –Dv – με

δ
,

}

t �= nT ,

�u = d(v – u),
�v = d(u – v),

}

t = nT ,
(.)

and
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

du
dt = QN – Qu,

dv
dt = –Dv,

}

t �= nT ,

�u = d(v – u),
�v = d(u – v),

}

t = nT .
(.)

The periodic solution of system (.) is

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u∗
 = DδN(–e–QT )–dμε(–e–DT )

Dδ(–(–d)e–QT ) + de–DT v∗


–()e–QT ,
v∗

 = (–(–d)e–QT )(DδdN(–e–QT )–(–d)με(–e–DT ))
Dδ(–(–d)(e–QT +e–DT )+(–d)e–(D+Q)T ) ,

ū(t) = N( – e–Q(t–nT)) + u∗
e–Q(t–nT),

v̄(t) = v∗
e–D(t–nT) – με

Dδ
( – e–D(t–nT)),

t ∈ (
nT , (n + )T

]
. (.)

The periodic solution of system (.) is

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u∗
 = N(–e–QT )(–d–(–d)e–DT )

–(–d)(e–DT +e–QT )+(–d)e–(D+Q)T ,

v∗
 = dN(–e–QT )

–(–d)(e–QT +e–DT )+(–d)e–(Q+D)T ,
ū(t) = N( – e–Q(t–nT)) + u∗

e–Q(t–nT),
v̄(t) = v∗

e–D(t–nT),

t ∈ (
nT , (n + )T

]
. (.)
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Therefore, for small enough ε, there exists a t >  such that

ū(t) – ε ≤ N(t) ≤ ū(t) + ε, v̄(t) – ε ≤ N(t) ≤ v̄(t) + ε.

Let ε → , we get

N̄∗
 (t) – ε ≤ N(t) ≤ N̄∗

 (t) + ε, N̄∗
 (t) – ε ≤ N(t) ≤ N̄∗

 (t) + ε

for t large enough, which shows N(t) → N̄∗
 (t) and N(t) → N̄∗

 (t) as t → ∞. The proof is
completed. �

4 Permanent
First of all, we show that all solutions of (.) are ultimately bounded.

Lemma . The system (.) is ultimately bounded.

Proof Define a function V (t) = N(t) + N(t) + x(t)
δ

. When t �= nT , we have dV
dt = QN –

QN – DN – mx(t)
δ

≤ QN – ρV (t), where ρ = min{Q, D, m}. When t = nT , we also obtain
V (nT+) = V (nT). For (nT , (n + )T], we have V (t) ≤ V ()e–ρt + QN

ρ
( – e–ρt) → QN

ρ
, as

t → ∞. So we have N(t) ≤ M, N(t) ≤ M, x(t) ≤ M, where QN

ρ

�= M. �

Theorem . System (.) is permanent if R > , where R is defined in Theorem ..

Proof Suppose (N(t), N(t), x(t)) is a solution of (.) with positive initial value. From
Lemma . N(t) ≤ QN

ρ

�= M, N(t) ≤ QN

ρ

�= M, x(t) ≤ QN

ρ

�= M, t ≥ , we get dN
dt ≥

–DN – μM
δ

.
Considering the comparison system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

du
dt = QN – Qu,

dv
dt = –Dv – μM

δ
,

t �= nT ,

�u = d(v – u),
�v = d(u – v),

t = nT .
(.)

Similar to system (.), the periodic solution (ū(t), v̄(t)) can be given:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u∗
 = (–d)N–d μM

Dδ
(–e–DT )

–(–d)e–QT + de–DT v∗


–(–d)e–Q ,

v∗
 = [–(–d) μM

Dδ
(–e–DT )+dN(–e–QT )](–(–d)e–QT )

–(–d)(e–QT +e–DT )+(–d)e–(Q+D)T ,
ū(t) = N( – e–Q(t–nT)) + u∗

e–Q(t–nT),
v̄(t) = – μM

Dδ
+ (v∗

 + μM
Dδ

)e–D(t–nT),

t ∈ (
nT , (n + )T

]
, (.)

which is globally asymptotically stable. Hence, there exists a ε >  such that N(t) ≥
u(t) ≥ u∗

(t)–ε ≥ u∗
 –ε

�= m, N(t) ≥ v(t) ≥ v∗
(t)–ε ≥ v∗

 –ε
�= m for t large enough.

In the following, we want to find m such that x(t) ≥ m for t large enough. We shall do
it in the following two steps.
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Step I: Let m >  and ε be small enough such that

ρ =
με + μm

Dδ

D(K – ε – μm
Dδ

)
ln

K – ε + v∗


(K – ε – μm
Dδ

)eDT + v∗
 + μm

Dδ

+

D

ln
K – ε – μm

Dδ
+ (v∗

 + μm
Dδ

)e–DT

K – ε + v∗


– mT > .

We will prove x(t) < m cannot hold for all t ≥ . Otherwise, dN
dt ≥ –DN – μm

δ
, we

consider the following comparison system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

du
dt = QN – Qu

dv
dt = –Dv – μm

δ
,

t �= nT ,

�u = d(v – u),
�v = d(u – v),

t = nT ,
(.)

we get N(t) ≥ u(t), N(t) ≥ v(t), and u(t) → ū∗
(t), v(t) → v̄∗

(t) as t → ∞, where
(ū∗

(t), v̄∗
(t)) is the periodic solution of system (.) and (ū∗

(t), v̄∗
(t)) is given as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u∗
 = (–d)N–d μm

Dδ
(–e–DT )

–(–d)e–QT + de–DT v∗


–(–d)e–Q ,

v∗
 = [–(–d) μm

Dδ
(–e–DT )+dN(–e–QT )](–(–d)e–QT )

–(–d)(e–QT +e–DT )+(–d)e–(Q+D)T ,
ū∗

(t) = N( – e–Q(t–nT)) + u∗
e–Q(t–nT),

v̄∗
(t) = – μm

Dδ
+ (v∗

 + μm
Dδ

)e–D(t–nT),

t ∈ (
nT , (n + )T

]
. (.)

Hence for ε small enough, there exists a T >  such that N(t) ≥ u∗
(t) –ε, N(t) ≥ v∗

(t) –
ε, and

dx
dt

≥
(

μ(v∗
(t) – ε)

K + v∗
(t) – ε

– m
)

x, t ≥ T. (.)

Let n ∈ N and nT > T, integrating (.) on the interval (nT , (n + )T], n > n, we obtain

x
(
(n + )T

) ≥ x
(
nT+)

exp

(∫ (n+)T

nT

(
μ(v∗

(t) – ε)
K + v∗

(t) – ε
– m

)

dt
)

= x
(
nT+)

exp(ρ).

Then x((n + k)T) ≥ x(nT) exp(kρ) → ∞ as k → ∞, which is in contradiction to the
boundedness of x(t). Therefore, there is a t >  such that x(t) > m. If x(t) ≥ m for all
t > t, then our aim is obtained. Otherwise, there exists a t̄ > t such that x(t̄) < m. Setting
t∗ = inft>t∗{x(t) < m}, then we have x(t) ≥ m for t ∈ [t, t∗), and x(t∗) = m.

Steps II: Since x(t) is continuous, suppose t∗ ∈ (nT , (n + )T], n ∈ N , select n ∈ N ,
n ∈ N , such that

nT > min

{

Q

M + u∗


ε
,


D

M + v∗


ε

}

,

exp
(
η(n + )T

)
exp(nρ) > ,

where η = μ�

K+�
– m < , where � = – μm

Dδ
+ (v∗

 + μm
Dδ

)e–DT and v∗
 is defined in (.).
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Figure 2 Dynamical behavior of the system (2.1) with Q = 0.08, N0 = 20, D = 0.1, μ = 0.1, δ = 0.5,
K = 1.8, m = 0.9, d = 0.0001, N1(0) = 18, N2(0) = 0.2, x(0) = 0.1, R = 0.39 < 1. (a) Time-series of the nutrient
concentration outside the rhizosphere (patch 2). (b) Time-series of the nutrient concentration inside the
rhizosphere (patch 1). (c) Phase portrait denoting the rhizosphere microbe-eradication periodic solution
(N̄∗

1(t), N̄
∗
2 (t), 0) is globally asymptotically stable for R < 1.

Let T ′ = nT + nT , we claim that there must exist a t′ ∈ ((n + )T , (n + )T + T ′] such
that x(t) ≥ m, otherwise x(t) < m for t ∈ ((n + )T , (n + )T + T ′].

Considering (.) with

u
(
(n + )T+)

= N
(
(n + )T+)

, v
(
(n + )T+)

= N
(
(n + )T+)

,

we have

u(t) =
(
u

(
(n + )T+)

– u∗

)
e–Q(t–(n+)T) + ū∗

(t),

v(t) =
(
v

(
(n + )T+)

– v∗

)
e–D(t–(n+)T) + v̄∗

(t)

for t ∈ (nT , (n + )T], n +  < n ≤ n + n + n + . Then

∣
∣u(t) – ū∗

(t)
∣
∣ ≤ (

M + u∗

)
e–Q(t–(n+)T) < ε,

∣
∣v(t) – v̄∗

(t)
∣
∣ ≤ (

M + v∗

)
e–D(t–(n+)T) < ε,

we have u(t) ≤ ū∗(t)+ε, v(t) ≤ v̄∗(t)+ε for (n ++n)T ≤ t ≤ (n +)T +T ′, which shows
system (.) holds. As in step I, we have x((n + n + n + )T) ≥ x((n + n + )T) exp(nρ).
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Figure 3 Dynamical behavior of the system (2.1) with Q = 0.8, N0 = 20, D = 0.1, μ = 0.3, δ = 0.1,
K = 1.8, m = 0.1, d = 0.0001, N1(0) = 18, N2(0) = 0.2, x(0) = 0.1, R = 15.99 > 1. (a) Time-series of the
nutrient concentration outside the rhizosphere (patch 2). (b) Time-series of the nutrient concentration inside
the rhizosphere (patch 1). (c) Phase portrait implying system (2.1) is permanent for R > 1.

From system (.), we have

dx
dt

≥
(

μ�

K + �
– m

)

x(t) = ηx(t).

Integrating the above equation on (t∗, (n +  + n)T], we obtain x((n +  + n)T) ≥
meη(n+)T , then

x
(
(n +  + n + N)T

) ≥ meη(n+)T enT > m,

which is a contradiction. Let t̄ = inft≥t∗{x(t) ≥ m}, thus x(t̄) ≥ m for t ∈ [t∗, t̄], we get
x(t) ≥ x(t∗)eη(t–t∗) ≥ meη(n++n)T �= m̄ for t ≥ t̄. The same arguments can be continued
since x(t̄) ≥ m. Hence x(t) ≥ m̄ for t ≥ t. �

5 Discussion
Since the rhizosphere microbial degradation undergoes a series of complex biochemical
reactions, the degradation process of rhizosphere microbe may be affected by many fac-
tors. It is unrealistic to expect the existing model predicts all possible results of microbial
degradation, therefore, each of the models has some validity and application limits []. In
this paper, we have formulated a mathematical modeling of rhizosphere microbial degra-
dation with impulsive diffusion and obtained the rhizosphere microbe-eradication peri-
odic solution (N̄∗

 (t), N̄∗
 (t), ) is globally asymptotically stable for R < , which is showed in
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Figure  with the parameters Q = ., N = , D = ., μ = ., δ = ., K = ., m = .,
d = ., N() = , N() = ., x() = ., R = . < . We can see the variables N(t),
N(t) oscillate in a stable periodical cycle. On the contrary, x(t) rapidly decreases to zero.
From Theorem ., we also have proved system (.) is permanent for R > , which is sim-
ulated in Figure  with the parameters Q = ., N = , D = ., μ = ., δ = ., K = .,
m = ., d = ., N() = , N() = ., x() = ., R = . > . The variables N(t),
N(t) and x(t) oscillate in a stable periodical cycle, respectively.
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