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Abstract
Hirota bilinear method is proposed to directly construct periodic wave solutions in
terms of Riemann theta functions for (2 + 1)-dimensional Toda lattice equations. The
asymptotic properties of the periodic waves are analyzed in detail, including
one-periodic and two-periodic solutions. Furthermore, the curves of the solutions are
plotted to analyze the solutions. It is shown that well-known soliton solutions can be
reduced from the periodic wave solutions.
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1 Introduction
It is well known that there are many successful methods to construct explicit solutions for
differential equations, such as the scattering transform [], the Darboux transformation
[], Hirota direct method [–], algebra-geometrical approach [–], etc. Quasi-periodic
or algebraic-geometric solutions can be obtained by using algebraic-geometric approach;
however, the forms of their solutions are complicated with the help of a Riemann surface
and the Abel-Jacobi function. The Hirota direct method provides a powerful approach to
construct exact solutions of nonlinear equations. Once nonlinear equations are written in
bilinear forms by a dependent variable transformations, then multisoliton solutions and
rational solutions can be obtained. Nakamura [, ] in  and  presented one-
periodic wave solutions and two-periodic wave solutions based on the Hirota method
with the help of the Riemann theta function, where the periodic solutions of the KdV
and Boussinesq equations were derived. The important advantages of this approach, as
first demonstrated in Dai et al. [] for the KP equation, are that the solution profiles can
be explicitly plotted and by using suitable asymptotic limits multisoliton solutions can
be deduced from the quasi-periodic solutions. The procedures introduced in Dai et al.
[] are adopted by other authors to study a number of soliton equations for constructing
quasi-periodic solutions (see [–]).

The problems of the Toda lattice have been subjected to a number of investigations.
Nakamura [] studied the ( + )-dimensional Toda equation, and its solutions are ex-
pressed by the series expansions of the Bessel functions. Krichever and Vaninsky [] ob-
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tained the relation between the periodic and open Toda lattice. Furthermore, algebraic-
geometric approach for the open Toda lattice was developed. Based on Lie superalgebraic
approach, it was found in [] that super Toda lattice and super-KdV equation have cer-
tain relations. Baleanu and Baskal [] discussed the tensorial form of the Lax pair equa-
tions in a compact and geometrically transparent form in the presence of Cartan torsion
tensor. Moreover, solutions to the Lax tensor equations of the Toda lattice were given.
Baleanu et al. [] presented a connection between Killing tensors and Lax operators and
analyzed an application the Toda lattice equation in detail. Ito and Locke [] studied
affine Toda field equations and derived some interesting solutions. Mahmood [] derived
quasi-determinant solutions of the NC Painlevé equation with the Toda solution at n = 
by using the Darboux transformation. Klein and Roidot [] presented a numerical study
of the ( + )-dimensional Toda in the limit of the wavelengths for both hyperbolic and
elliptic cases. Wu et al. [] introduced the tool of discrete fractional calculus to discrete
modeling of diffusion problem and presented a model of a fractional time discretization
diffusion in the Caputo sense. Li [] constructed the Sato theory of the bilinear equations
and tau-function of a new q-deformed Toda hierarchy. Furthermore, the multicomponent
extension was studied in detail. In [], the authors studied the asymptotics of the dynam-
ics of periodic Toda chains with a large number of particles of equal mass for initial data
close to the equilibrium. Wu et al. [] proposed a lattice fractional diffusion equation
and, as applications, discussed various difference orders.

For the D Toda lattice equation

αuxx(x, y, n) + βuyy(x, y, n) + e–u(x,y,n+) + e–u(x,y,n–) – e–u(x,y,n) = , (.)

Nakamura [] found new type exact solutions (ripplon solutions); the new solutions re-
flect the effect of essential multidimensionality of the system. In fact, equation (.) is a
discretization of the modified Laplace equation (see [])

αuxx + βuyy – uzz = . (.)

In this paper, we adopt the approach proposed in Dai et al. [] to directly construct
periodic-wave solutions in Riemann theta functions of equation (.). Both one-periodic
and two-periodic solutions are obtained and derived by conducting a suitable asymptotic
analysis; furthermore, we plot some solution curves to analyze the solutions in detail.

The paper is organized as follows. In Section , we derive a bilinear form of the D Toda
lattice equation. In Section , one-periodic wave solutions and asymptotic behaviors are
given; moreover, some solution curves are given. In Section , we obtain two-periodic
wave solutions and their asymptotic behaviors; similarly to Section , some solution curves
for imaginary parts are dropped.

2 Bilinear form of the 2D Toda lattice equation
We consider the equation

αuxx(x, y, n) + βuyy(x, y, n) + e–u(x,y,n+) + e–u(x,y,n–) – e–u(x,y,n) = . (.)

Under the transformation

e–u(x,y,n) –  =
(
α∂

x + β∂
y
)

ln f (x, y, n), (.)
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equation (.) has the bilinear form

G(Dx, Dy, cosh Dn)f (x, y, n) · f (x, y, n)

≡ [
αD

x + βD
y –  cosh Dn +  + c

]
f (x, y, n) · f (x, y, n) = , (.)

where c = c(n)x + c(n)y + c(n), which arises as a result of integration. The Hirota bilinear
differential operator is defined as []

Dm
x Dn

y a(x, y) · b(x, y) ≡ (∂x – ∂x′ )m(∂y – ∂y′ )na(x, y) × b
(
x′, y′)|x′ = x, y′ = y,

and the difference operator is defined as

eDn an · bn = an+bn–; e–Dn an · bn = an–bn+,

cosh Dnan · bn =


(
eDn + e–Dn

)
an · bn =




(an+bn– + an–bn+).

From the definition of the Hirota operator we have the relations

Dm
x Dl

te
ξ · eξ = (k – k)m(ω – ω)leξ+ξ ,

where ξj = kjx + ωjt + μjn, j = , . Moreover, it is easy to deduce the relations

cosh Dneξ · eξ = cosh(μ – μ)eξ+ξ , (.)

G(Dx, Dt , cosh Dn)eξ · eξ = G(k – k,ω – ω,μ – μ)eξ+ξ . (.)

3 One-periodic wave solution and asymptotic behavior
3.1 One-periodic wave solution
We consider the Riemann theta function solution of the bilinear form of the D-Toda
lattice equation

f =
∑

k∈ZN

eπ i〈τk,k〉+π i〈ξ ,k〉, (.)

where k = (k, . . . , kN ), ξ = (ξ, . . . , ξN ), τ is a symmetric matrix with Im τ >, and ξj = pjx +
ljy + μjm + ξ, j = , . . . , N .

We consider the case where N = . Then (.) becomes

f =
∞∑

k=–∞
eπ ikξ+π ikτ . (.)

In order that the above form can be a solution, p, l, and μ cannot be independent, and we
proceed to find their relations. Substituting (.) into (.) and using property (.)-(.),
we have

Gf · f =
∞∑

k,k′=–∞
G(Dx, Dy, cosh Dn) exp

(
π ikξ + π ikτ

) · exp
(
π ik′ξ + π ik′τ

)

=
∞∑

k,m=–∞
G(Dx, Dy, cosh Dn) exp

(
π ikξ + π ikτ

)



Ting et al. Advances in Difference Equations  (2016) 2016:55 Page 4 of 14

× exp
(
π i(m – k)ξ + π i(m – k)τ

)

=
∞∑

k,m=–∞
G

(
π i(k – m)p, π i(k – m)l, cosh

[
π i(k – m)μ

])

× exp
(
π imη + π i

[
k + (k – m)]τ

)

=
∞∑

m=–∞
G̃(m) exp(π imη) = ,

where the new summation index m = k + k′ is introduced, and G̃(m) is defined by

G̃(m) =
∞∑

k=–∞
G

(
π i(k – m)p, π i(k – m)l, cosh

[
π i(k – m)μ

])

× expπ i
[
k + (k – m)]τ . (.)

In equation (.), letting k = k′ + , we have the relation

G̃(m) =
∞∑

k=–∞
G

(
π i

(
k′ – (m – )

)
p, π i

(
k′ – (m – )

)
l, cosh

[
π i

(
k′ – (m – )

)
μ

])

× expπ i
[
k′ +

(
k′ – (m – )

)]
τ exp

[
π i(m – )τ

]

= G̃(m – ) exp
[
π i(m – )τ

]
= · · ·

=

{
G̃()eπ im′(m′–)τ , m′ is even,
G̃()eπ i(m′+)(m′+)τ , m′ is odd.

(.)

This relation implies that if G̃() = G̃() = , then G̃(m′) = , m′ ∈ Z.
In this way, we may let

G̃() =
∞∑

k=–∞

[
πk(αp + βl) +  sinh(π iμk) + c

]
exp

(
π ikτ

)
= , (.)

G̃() =
∞∑

k=–∞

[
π(k – )(αp + βl) +  sinh(π iμ(k – ) + c

]

× exp
(
π i

(
k + (k – ))τ

)
= . (.)

Denote

δ(k) = exp
(
π ikτ

)
, δ(k) = exp

(
π i

(
k + (k – ))τ

)
,

a =
∞∑

k=–∞
πkδ(k), a =

∞∑

k=–∞
δ(k),

b =
∞∑

k=–∞
 sinh(π iμk)δ(k), a =

∞∑

k=–∞
π(k – )δ(k),

a =
∞∑

k=–∞
δ(k), b =

∞∑

k=–∞
 sinh(π i(k – )μ

)
δ(k).
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Then, equations (.)-(.) are reduced to

a
(
αp + βl) + ac + b = , (.)

a
(
αp + βl) + ac + b = . (.)

Solving the system, we have

αp + βl =
ba – ba

aa – aa
, (.)

c =
ba – ba

aa – aa
. (.)

The coefficients p, l, and μ need to satisfy (.), and correspondingly (.) and (.) give
a periodic solution.

3.2 Asymptotic behavior of the one-periodic wave solution
The well-known soliton solution of the D Toda lattice equation can be obtained as the
limit of the periodic solution. For this purpose, we write q = expπ iτ and take the limit as
q →  (or Im τ → ∞).

Theorem  As q →  (or Im τ → ∞), the periodic solution (.) of (.) tends to the soliton
solution via (.)

e–u(x,y,n) –  =
(
α∂

x + β∂
y
)

ln f = –π(αp + βl)  +  cos πη

( +  cos πη) , (.)

where αp + βl = – sin(πμ)
π and η = px + ly + μn + η.

Proof Denoting q = expπ iτ , the quantifies defined are then expanded in powers of q as

a = π(q + q + · · · ), a =  + q + q + · · · ,

b = q sinh(π iμ) + q sinh(π iμ) + · · · ,

a = πq + πq + · · · , a = q + q + q + · · · ,

b =  sinh(π iμ)q +  sinh(π iμ)q + · · · ,

aa – aa = πq – πq + o
(
q),

ba – ba = –q sinh(π iμ) + o(q),

ba – ba = q sinh(π iμ) + o
(
q),

Therefore, as q → , we have c → , and thus αp + βl = – – sinh(π iμ)
π = – sin(πμ)

π .
The one-periodic wave solution (.) converges, as q → , to

fn =  + exp–π iη+π iτ + expπ iη+π iτ + · · · ,

fnx = π ip
(
exp–π iη+π iτ – expπ iη+π iτ ),

fnxx = –πp(exp–π iη+π iτ + expπ iη+π iτ ),
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Figure 1 The soliton solution curve of u(x, y, n) for μ = 0.05, p = 0.5, l = 3, n = 5, η0 = 2, α = 1.5, β = 2,
y = 0.05, x ∈ [–10, 10].

Figure 2 The soliton solution of u(x, y, n) for μ = 0.05, p = 0.5, l = 3, n = 5, η0 = 2, α = 1.5, β = 2,
x ∈ [–10, 10].

fny = π il
(
exp–π iη+π iτ – expπ iη+π iτ ), (.)

fnyy = –πl(exp–π iη+π iτ + expπ iη+π iτ ).

After some tedious calculations, we derive (.).
A solution curve of u(x, y, n) for a fixed y and μ = . is presented in Figure , and the

corresponding solution for varying y is presented in Figure , from which we see that this
solution is periodic in the space coordinate.

A solution curve of u(x, y, n) for a fixed y and μ = .i is presented in Figure , and the
corresponding solution for varying y is presented in Figure , from which we see that this
solution is periodic in the space coordinate. However, the shapes of the solutions between
μ = . and μ = .i are different. This shown μ is affect to the one-periodic solution.

�
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Figure 3 The soliton solution curve of u(x, y, n) for μ = 0.05i, p = 0.5, l = 3, n = 5, η0 = 2, α = 1.5, β = 2,
y = 0.05, x ∈ [–10, 10].

Figure 4 The soliton solution of u(x, y, n) for μ = 0.05i, p = 0.5, l = 3, n = 5, η0 = 2, α = 1.5, β = 2,
x ∈ [–10, 10].

4 Two-periodic wave solution and asymptotic behavior
In what follows, we consider the two-periodic wave solution to the ( + )-dimensional
Toda lattice equation (.), which is a two-dimensional generalization of a one-periodic
wave solution.

4.1 Construction of the two-periodic wave solution
Now we consider the two-periodic wave solution of the D Toda lattice equation. By set-
ting N =  in equation (.) and substituting it into (.), we have

G(fn · fn) =
∑

k,k∈Z

G(Dx, Dy, cosh Dn)eπ i〈ξ ,k〉+π i〈τk,k〉 · eπ i〈ξ ,k〉+π i〈τk,k〉

=
∑

k,k∈Z

G
(
π i〈k – k, p〉, π i〈k – k, l〉) exp

(
π i〈ξ , k + k〉 + π i〈τk, k〉

)

× exp(π i〈ξ , k〉 + π i
(〈τk, k〉 + 〈τk, k〉

)
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=
∑

s′∈Z

∞∑

s′=–∞
G

(
π i

〈
k – s′, p

〉
, π i

〈
k – s′, l

〉)

× expπ i
(〈
η
(
k – s′), k – s′〉 + 〈τk, k〉

)
exp

(
π i

〈
ξ , s′〉)

≡
∑

s′∈Z

G̃
(
s′

, s′

)

exp π i
〈
ξ , s′〉 = , (.)

where the new summation index k + k = s′ is introduced, and G̃(s′
, s′

) is defined by

˜G
(
s′

, s′

)

=
∞∑

k,k=–∞
G

(
π i

〈
k – s′, p

〉
, π i

〈
k′

 – s′, l
〉)

× expπ i
(〈
τ
(
k – s′), k – s′〉, 〈τk, k〉

)

=
∞∑

k,k=–∞
G

(

π i
∑

j=

(
k′

j –
(
s′

j – δjl
))

pj, π i
∑

j=

(
k′

j –
(
s′

j – δjl
))

lj

)

× expπ i
∑

j,l=

[(
k′

j + δjl
)
τjl

(
k′

j + δjl
)

+
((

sj – δjl – k′
j
)

+ δjl
)

× τjk
(
sj – δjl – k′

j
)

+ δkl)
]

=

{
G(s′

 – , s′
)eπ i(s′–)τ+π is′τ , l is even,

G(s′
, s′

 – )eπ i(s′–)τ+π is′τ , l is even.
(.)

This relation implies that if G̃(, ) = G̃(, ) = G̃(, ) = G̃(, ) = , then G̃(s′
, s′

) = ,
s′

, s′
 ∈ Z.

Denote

δj(n) = eπ i〈τn–mj ,n–mj〉+π i〈τm,n〉

and

A

⎛

⎜
⎝

αp
 + βl



αp
 + βl



αpp + βllc

⎞

⎟
⎠ = –b,

where m() = (, ), m() = (, ), m() = (, ), m() = (, ), and the elements of the matrix A
and vector b are

aj =
∞∑

n,n=–∞

[
π i

(
n – mj


)]

δj(n) = –
∞∑

n,n=–∞
π(n – mj


)

δj(n),

aj =
∞∑

n,n=–∞

[
π i

(
n – mj


)]

δj(n) = –
∞∑

n,n=–∞
π(n – mj


)

δj(n),

aj =
∞∑

n,n=–∞
(π i)(n – mj


)(

n – mj

)
δj(n)

= –
∞∑

n,n=–∞
π(n – mj


)(

n – mj

)
δj(n),
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aj =
∞∑

n,n=–∞
δj(n),

bj = –
∞∑

n,n=–∞

(
sinhπ i

〈
n – mj,μ

〉)
δj(n), μ =

〈
μ,μ〉.

Then we have

αp
 + βl

 =
	

	 , αp
 + βl

 =
	

	 , αpp + βll =
	

	 , c =
	

	 , (.)

where 	 = det A, and 	, 	, 	, 	 are from 	 by replacing columns - with b.

4.2 Asymptotic behavior of the two-periodic wave solution
The two-soliton solution of the D Toda lattice equation can be obtained as a limit of the
two-periodic solution.

Theorem  Suppose that  < r <  and  < r <  are constants satisfying |λ|r →  and
|λ|r →  (the definitions of λ and λ are given below). Then the periodic solution (.) of
equation (.) tends to the soliton solution via equation (.)

e–un –  =
(
α∂

x + β∂
y
)

ln fn =
(αp̃

 + β l̃
 )eη̃ ( + eη̃ + eη̃+A + eη̃+A )

( + eη̃ + eη̃ + eη̃+η̃+A )

+
(αp̃

 + β l̃
)eη̃ ( + eη̃ + eη̃+A + eη̃+A )

( + eη̃ + eη̃ + eη̃+η̃+A )

+
(αp̃p̃ + β l̃ l̃)eη̃+η̃ (ea – )

( + eη̃ + eη̃ + eη̃+η̃+A ) (.)

with the constraints

αp̃
 + β l̃


= sinh μ̃, αp̃

 + β l̃


= sinh μ̃, (.)

exp(A) =
–α(p̃

 + p̃
) – β(l̃

 + l̃
) + (αp̃p̃ + β l̃ l̃) +  sinh(μ̃ – μ̃) – 

–α(p̃
 + p̃

) – β(l̃
 + l̃

) – (αp̃p̃ + β l̃ l̃) +  sinh(μ̃ + μ̃) – 
, (.)

where A = π iτ.

Proof Using the quantities

p̃j = π ipj, l̃j = π ilj, μ̃j = π iμj, η̃j = p̃jx + l̃jy + μ̃jn + η̃j

η̃j = π iηoj + πτjj, j = , , λ = eπ iτ , λ = eπ iτ , λ = eπ iτ ,

we expand the two-periodic wave solution (.) (N = ) in the following form:

fn =  + exp(π iη + π iτ) + exp(–π iη + π iτ) + exp(π iη + π iτ)

+ exp(–π iη + π iτ) + exp
(
π i(η + η) + π i(τ + τ + τ)

)

+ exp
(
–π i(η + η) + π i(τ + τ + τ)

)
+ · · ·
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Figure 5 The soliton solution curve of u(x, y, n) for μ1 = 0.05, p1 = 1, μ2 = 0.02, p2 = 2, l1 = 3, l2 = 6,
n = 5, η01 = 2, η02 = 2, α = 1.5, β = 2, y = 0.05, x ∈ [–10, 10].

Figure 6 The soliton solution curve of u(x, y, n) for μ1 = 0.05, p1 = 1, μ2 = 0.02, p2 = 2, l1 = 3, l2 = 6,
n = 5, η01 = 2, η02 = 2, α = 1.5, β = 2, y = –1, x ∈ [–10, 10].

=  + exp η̃ + exp η̃ + exp(η̃ + η̃ + π iτ)

+ λ
 exp(–η̃) + λ

 exp(–η̃) + λ
λ


 exp(–η̃ – η̃ + π iτ) + · · ·

−→  + exp η̃ + exp η̃ + exp(η̃ + η̃ + A). (.)

We now verify formulas (.) and (.). To this end, we expand each function in G̃(, ) =
G̃(, ) = G̃(, ) = G̃(, ) =  into series of λ and λ. We only need to make the first-order
expansions with λ and λ to show the asymptotic relations (.) and (.). Here we keep
the second-order terms in order to see deeper relations among the parameters of the two-
periodic solution and two-soliton solution.

From

G̃(, ) =
(
–παp

 – πβl
 –  sinh(π iμ) + c

)
λ



+
(
–παp

 – πβl
 –  sinh(π iμ) + c

)
λ
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Figure 7 The soliton solution of u(x, y, n) for μ1 = 0.05, p1 = 1, μ2 = 0.02, p2 = 2, l1 = 3, l2 = 6, n = 5,
η01 = 2, η02 = 2, α = 1.5, β = 2, x ∈ [–10, 10].

Figure 8 The soliton solution curve of u(x, y, n) for μ1 = 0.05i, p1 = 1, μ2 = 0.06i, p2 = 2, l1 = 3, l2 = 6,
n = 5, η01 = 2, η02 = 2, α = 1.5, β = 2, y = 0.05, x ∈ [–10, 10].

+
(
–πα(p + p) – πβ(l + l) –  sinh(π i(μ + μ) + c

))
λ

λ

λ




+ c + o
(
λ

s
 λ

s

)

= , (.)

where s + s ≥ , as λ −→ , λ −→ , we obtain that c = . From

G̃(, ) =
(
–παp

 – πβl
 –  sinh π iμ + c

)
λ + o

(
λ

s
 λ

s

)

= , (.)

where s + s ≥ , using c = , we derive the asymptotic relations

π(αp
 + βl


)

+  sinh π iμ = , αp̃
 + β l̃

 = sinh μ̃. (.)

From

G̃(, ) =
(
–παp

 – πβl
 –  sinh π iμ + c

)
λ + o

(
λ

s
 λ

s

)

= , (.)
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Figure 9 The soliton solution curve of u(x, y, n) for μ1 = 0.05i, p1 = 1, μ2 = 0.06i, p2 = 2, l1 = 3, l2 = 6,
n = 5, η01 = 2, η02 = 2, α = 1.5, β = 2, y = –1, x ∈ [–10, 10].

Figure 10 The soliton solution curve of u(x, y, n) for μ1 = 0.05i, p1 = 1, μ2 = 0.06i, p2 = 2, l1 = 3, l2 = 6,
n = 5, η01 = 2, η02 = 2, α = 1.5, β = 2, x ∈ [–10, 10].

where s + s ≥ , using c = , we derive the asymptotic relations

π(αp
 + βl


)

+  sinh π iμ = , αp̃
 + β l̃

 = sinh μ̃. (.)

From

G̃(, ) = 
([

–π(αp
 + βl


)

– π(αp
 + βl


)

– π(αpp + βll)

–  sinh[π i(μ + μ)
]

+ c
]
λ +

[
–π(αp

 + βl

)

– π(αp
 + βl


)

+ π(αpp + βll) –  sinh[π i(μ – μ)
]

+ c
])

λλ + o
(
λ

s
 λ

s

)

= , (.)

where s + s ≥ , using c = , we derive the asymptotic relations

eA =
π(αp

 + βl
 ) + π(αp

 + βl
) – π(αpp + βll) +  sinh[π i(μ – μ)]

π(αp
 + βl

 ) + π(αp
 + βl

) + π(αpp + βll) +  sinh[π i(μ + μ)]
.

(.)
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Figure 11 The soliton solution curve of u(x, y, n) for μ1 = 0.05i, p1 = 1, μ2 = 0.06i, p2 = 2, l1 = 3, l2 = 6,
n = 5, η01 = 2, η02 = 2, α = 1.5, β = 2, y = 0.05, x ∈ [–10, 10].

Figure 12 The soliton solution curve of u(x, y, n) for μ1 = 0.05i, p1 = 1, μ2 = 0.06i, p2 = 2, l1 = 3, l2 = 6,
n = 5, η01 = 2, η02 = 2, α = 1.5, β = 2, x ∈ [–10, 10].

We now plot the graph for u(x, y, n) in order to analyze the two-periodic solutions (.).
Figures  and  describe the curve of u(x, y, n) of fixed y and real μ, μ, respectively,
for y = . and y = –. From the two curves show that the shape of the solution is not
affected by y, but y has influence on translation. The corresponding solution for varying
y is presented in Figure , from which we see that this solution is periodic in the space
coordinate.

Similarly, we consider the imaginary value for μ = .i and μ = .i. A solution
curve of u(x, y, n) for a fixed y is presented in Figures  and . The corresponding solution
for varying y is presented in Figure , from which we see that this solution is periodic in
the space coordinate.

The imaginary part of the periodic solution (.) is presented in Figures  and , from
which we see that the solutions are periodic in the space coordinate. �
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