
Wang and Liu Advances in Difference Equations  (2016) 2016:5 
DOI 10.1186/s13662-015-0728-8

R E S E A R C H Open Access

Exponential stability of a class of
networked control systems with disturbed
controllers
Jufeng Wang1 and Chunfeng Liu2*

*Correspondence:
lcf_spring@163.com
2School of Management, Hangzhou
Dianzi University, Hangzhou,
310018, P.R. China
Full list of author information is
available at the end of the article

Abstract
This paper studies the exponential stability problem for a class of networked control
systems (NCSs) with time delays and packet dropouts. By considering the disturbed
state-feedback controller, the closed-loop NCS is modeled as a new discrete-time
switched system. A sufficient condition is established for the exponential stability of
the NCS under a packet-dropout rate. The state-feedback controller gain is obtained
through the cone complementarity linearization approach. A numerical example is
provided to show the effectiveness of the proposed method.
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1 Introduction
With the fast development of network technology, the network is being applied to the
control field by researchers. Networked control systems (NCSs) whose control loops are
connected via communication networks offer many advantages such as low cost of instal-
lation, ease of maintenance, high resource utilization, simple installation. Hence, NCSs
have received increasing attention [–].

In the meantime, the introduction of network makes the analysis and design of system
complexity. Due to the sampling data transmission through the network, the time delay
and packet dropout are always inevitable, which often cause deterioration of system per-
formance and instability of system. It is well known that the stability is one of the most im-
portant problems in the controller design. Therefore, the stability of systems has attracted
much research interest [–]. It should be pointed out that the results in the aforesaid
references do not apply to the stability of NCS.

Compared to the NCSs with only packet dropouts or time delays [–], it is more dif-
ficult to analyze the NCSs with both time delays and packet dropouts. When considering
the packet-dropout problem, it is significant to establish the quantitative relation between
the packet-dropout rate and the stability of the NCS. On this topic, only a few results have
been presented [–]. In [], the plant considered is a discrete-time one, therefore, the
result of the paper does not be applied to the NCS when the plant is a continuous-time sys-
tem. In [, ], the NCS with a continuous-time plant is studied. It should be pointed out
that the delay is a constant or takes values in a finite set. However, the results are invalid
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Figure 1 The structure of the NCS.

when one encounters infinite possible values for the delay. In [], the delay considered
can be an arbitrary value in a finite interval. A sufficient condition is obtained for the ex-
ponential stability of the closed-loop NCS with the plant being a continuous-time one. It
is worthwhile noting that the controller gain is unchanged.

In practice, due to interference (for example, machine aging and measurement error),
there is a certain change in the controller parameters. This change may destroy the stable
performance of the closed-loop systems. At this time, if considering the constant con-
troller gain in the analysis of the system, the system may exhibit a high degree of vulnera-
bility, which motivates the present research.

This paper studies a class of NCSs with disturbed controllers. The delay can arbitrarily
take values in a finite interval which is smaller than the sampling period. A new discrete-
time switched NCS model is proposed. A sufficient condition is obtained for the expo-
nential stability of the closed-loop NCS under the maximum packet-dropout rate. The
discrete-time feedback controller gain is derived by solving a set of linear matrix inequal-
ities with inversion constraints. A numerical example verifies the developed theory.

2 Model for networked control system
The structure of the NCS is shown in Figure . The plant is a continuous-time linear system
described by

ẋ = Apx(t) + Bpv(t), ()

where x(t) ∈ Rn is the state, v(t) ∈ Rm is the plant input, Ap and Bp are constant matrices
of appropriate dimensions.

In the NCS, the discrete-time state-feedback controller is event-driven, the sensor is
time-driven and the sampling period is T . The zeroth-order hold device does not update
the output value until the new value arrives. The network-induced delay τk satisfies  ≤
τmin ≤ τk ≤ τmax < T . x(k) is the value of x(t) at the sampling instant kT .

The output value of the disturbed state-feedback controller corresponding to x(k) is
denoted by u(k),

u(k) := ˜K(k)x(k),

˜K (k) = K + �(k),
()
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where K is the designed feedback gain and �(k) is the controller gain perturbation that
satisfies

�T(k)�(k) ≤ δI.

By considering the network-induced delay, the plant input is

v(t) =

⎧

⎨

⎩

û(k – ), if kT < t ≤ kT + τk ,

û(k), if kT + τk < t ≤ (k + )T ,
()

where

û(k) =

⎧

⎨

⎩

u(k), if u(k) and x(k) is successfully transmitted,

û(k – ), if u(k) or x(k) is lost during transmission.

From (), system () with sampling period T is discretized to

x(k + ) = Ax(k) + Bû(k – ) + Bû(k), ()

where

A = exp{ApT}, B =
∫ T

T–τk

exp{Aps}dsBp, B =
∫ T–τk


exp{Aps}dsBp. ()

During each sampling period, two cases may arise, which can be listed as follows:
• Packet dropout happens; () can be written as

x̃(k + ) = Ã(k)x̃(k), ()

where

x̃(k) =

[

x(k)
û(k – )

]

, Ã(k) =

[

A B
 I

]

, B =
∫ T


exp{Aps}dsBp. ()

• No packet dropout happens; () can be written as

x̃(k + ) = Ã(k)x̃(k), ()

where

Ã(k) =

[

A + B(τk)˜K(k) B(τk)
˜K (k) 

]

=

[

A + (B + DF(τk)E)˜K(k) B – DF(τk)E
˜K(k) 

]

, ()

B, B, D, and E are constant matrices, F(τk) satisfies FT(τk)F(τk) ≤ I .
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If Ap has non-zero mutually different eigenvalues λ, . . . ,λn and � is the corresponding
eigenvector matrix, choose a, . . . , an satisfying λ(T – a – τk) < , . . . , λn(T – an – τk) < ,
then B, B, D, E, and F(τk) can be represented as

E = �–Bp,

B = �diag

(

–

λ

, . . . , –

λn

)

�–Bp,

B = �diag

(


λ

exp{λT}, . . . ,

λn

exp{λnT}
)

�–Bp,

D = �diag

(


λ

exp{λa}, . . . ,

λn

exp{λnan}
)

,

F(τk) = diag
(

exp
{

λ(T – a – τk)
}

, . . . , exp
{

λn(T – an – τk)
})

.

If Ap has zero eigenvalues or multiple eigenvalues, for example, Ap has one zero
eigenvalue, one r multiple eigenvalue λ∗, and non-zero mutually different eigenvalues
λ, . . . ,λn–r , in this case, Ap can be represented as

Ap = �diag(, J, J)�–,

where J is a diagonal matrix corresponding to λ, . . . ,λn–r , J is the Jordan block cor-
responding to λ∗. Choose ai, i = , , . . . , n – r, satisfying a > τk , λl(T – τk – al) < ,
l = , , . . . , n – r. Then we have

B = �diag(T , J̃, J̃)�–Bp,

B = �diag(, Ĵ, Ĵ)�–Bp,

D = �diag

(

a,

λ

exp{λa}, . . . ,


λn–r
exp{λn–ran–r}, P

)

,

F(τk) = diag

(

–
τk

a
, exp

{

λ(T – a – τk)
}

, . . . , exp
{

λn–r(T – an–r – τk)
}

, P–
 J̄

)

,

where P is a invertible diagonal matrix and satisfies ‖P–
 J̄‖ < , and

J̃ =

⎡

⎢

⎢

⎣

– 
λ

. . .
– 

λn–r

⎤

⎥

⎥

⎦

,

Ĵ =

⎡

⎢

⎢

⎣

– 
λ

exp{λT}
. . .

– 
λn–r

exp{λn–rT}

⎤

⎥

⎥

⎦

.
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When λ∗ �= ,

Ĵ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣


λ∗ exp{λ∗T}


λ∗

(λ∗T – ) exp{λ∗T} . . .
...

. . .

λr∗

∑r
k=(–)k– (λ∗T)r–k

(r–k)! exp{λ∗T} · · · 
λ∗

(λ∗T – ) exp{λ∗T} 
λ∗ exp{λ∗T}

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

J̄ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣


λ∗ exp{x}


λ∗

(x – ) exp{x} . . .
...

. . .

λr∗

∑r
k=(–)k– xr–k

(r–k)! exp{x} · · · 
λ∗

(x – ) exp{λ∗x} 
λ∗ exp{x}

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

x = λ∗(T – τk),

J̃ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

– 
λ∗

– 
λ∗

. . .
...

. . .
(–)r 

λr∗ · · · – 
λ∗

– 
λ∗

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

When λ∗ = ,

Ĵ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

 · · · 
T


. . .

...
...

. . . . . .
Tr

r! · · · T

 

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

J̄ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

–τk

(T–τk )


. . .

...
. . .

(T–τk )r

r! · · · (T–τk )

 –τk

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

J̃ = diag(T , T , . . . , T).

Combining () and () one obtains the following discrete-time switched system model:

x̃(k + ) = Ãσ (k)(k)x̃(k). ()

σ (k) is called a switching signal. σ (k) =  implies there is no packet dropout, while σ (k) = 
implies packet dropout.

3 Exponential stability analysis
Lemma  [] For constant matrices M, N , a symmetric matrix W , and scalar ε > , the
following inequality holds:

W + MFN + NTFTMT < ,
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where F satisfies FTF ≤ I , if and only if that there exists a matrix ε > 

W + εMMT + ε–NTN < .

Lemma  [] For the system (), if there exist a Lyapunov function V (x̃(k)) = x̃(k)TP̃x̃(k)
and positive scalars α, α, such that

α
r
 α

–r
 > , ()

[

–P̃– αÃ

∗ –P̃

]

≤ , ()

[

–P̃– αÃ

∗ –P̃

]

≤ , ()

then the system is exponentially stable with the packet-dropout rate r ≤ r.

Theorem . For given positive scalars r, α, α, if there exist positive definite matrices
P, Q, such that

α
r
 α

–r
 > , ()

⎡

⎢

⎢

⎢

⎣

–P–  αA αB
∗ –Q–  αI
∗ ∗ –P 
∗ ∗ ∗ –Q

⎤

⎥

⎥

⎥

⎦

≤ , ()

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

–P–  αA + αBK αB εαD  ε
√

δαB   
∗ –Q– αK    ε

√
δαI   

∗ ∗ –P   KTET 
√

δI ε
√

δI 
∗ ∗ ∗ –Q  –ET    
∗ ∗ ∗ ∗ –εI     
∗ ∗ ∗ ∗ ∗ –εI    E
∗ ∗ ∗ ∗ ∗ ∗ –εI   
∗ ∗ ∗ ∗ ∗ ∗ ∗ –εI  
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –εI 
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –εI

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< , ()

then the system is exponentially stable with the packet-dropout rate r ≤ r.

Proof For the system (), construct the Lyapunov function:

V (k) = x̃T(k)P̃x̃(k)

P̃ =

[

P 
 Q

]

,

where P, Q are positive definite matrices.
Then () can be written as () and () can be written as follows:

⎡

⎢

⎢

⎢

⎣

–P–  αA + α(B + DF(τk)E)˜K(k) αB – αDF(τk)E)
∗ –Q– α˜K(k) 
∗ ∗ –P 
∗ ∗ ∗ –Q

⎤

⎥

⎥

⎥

⎦

≤ , ()
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which can be described as

⎡

⎢

⎢

⎢

⎣

–P–  αA + αB˜K(k) αB

∗ –Q– α˜K(k) 
∗ ∗ –P 
∗ ∗ ∗ –Q

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

αD




⎤

⎥

⎥

⎥

⎦

F(τk)

⎡

⎢

⎢

⎢

⎣




˜K(k)TET

–ET

⎤

⎥

⎥

⎥

⎦

T

+

⎡

⎢

⎢

⎢

⎣




˜K(k)TET

–ET

⎤

⎥

⎥

⎥

⎦

F(τk)T

⎡

⎢

⎢

⎢

⎣

αD




⎤

⎥

⎥

⎥

⎦

T

≤ . ()

From Lemma , inequality () is true if and only if there exists a scalar ε >  such that
the following inequality holds:

⎡

⎢

⎢

⎢

⎣

–P–  αA + αB˜K(k) αB

∗ –Q– α˜K(k) 
∗ ∗ –P 
∗ ∗ ∗ –Q

⎤

⎥

⎥

⎥

⎦

+ ε

⎡

⎢

⎢

⎢

⎣

αD




⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

αD




⎤

⎥

⎥

⎥

⎦

T

+ ε–


⎡

⎢

⎢

⎢

⎣




˜K(k)TET

–ET

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣




˜K(k)TET

–ET

⎤

⎥

⎥

⎥

⎦

T

≤ . ()

It then follows from the Schur complement that inequality () is equivalent to the fol-
lowing matrix inequality:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

–P–  αA + αB˜K(k) αB εαD 
∗ –Q– α˜K(k)   
∗ ∗ –P   ˜K(k)TET

∗ ∗ ∗ –Q  –ET

∗ ∗ ∗ ∗ –εI 
∗ ∗ ∗ ∗ ∗ –εI

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< ,

which can be written as

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

–P–  αA + αBK αB εαD 
∗ –Q– αK   
∗ ∗ –P   KTET

∗ ∗ ∗ –Q  –ET

∗ ∗ ∗ ∗ –εI 
∗ ∗ ∗ ∗ ∗ –εI

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

αB

αI





⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

�(k)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣



I




⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

T
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×

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣



I




⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

�T(k)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

αB

αI





⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

T

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣



I




⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

�T(k)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣






E

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

T

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣






E

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

�(k)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣



I




⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

≤ . ()

From Lemma , inequality () is true if and only if there exists a scalar ε > , ε > 
such that the following inequality holds:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

–P–  αA + αBK αB εαD 
∗ –Q– αK   
∗ ∗ –P   KTET

∗ ∗ ∗ –Q  –ET

∗ ∗ ∗ ∗ –εI 
∗ ∗ ∗ ∗ ∗ –εI

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+ ε
√

δ

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

αB

αI





⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

√
δ

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

αB

αI





⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

T

+ ε–


√
δ

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣



I




⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

√
δ

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣



I




⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

T

+ ε
√

δ

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣



I




⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

√
δ

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣



I




⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

T

+ ε–


√
δ

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣






E

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

√
δ

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣






E

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

T

≤ . ()

From the Schur complement, we see that () is equivalent to ().
From Lemma , we see that if (), (), and () hold, then the system () has expo-

nential stability.
The conditions in Theorem . are a set of LMIs with inversion constraints. K can be

solved by an iterative LMI approach which is called cone complementarity linearization
[, ]. �

4 Numerical example
Consider the following system from []:

ẋ(t) =

[

 
 –.

]

x(t) +

[


.

]

v(t). ()

Choose the sampling period T = . s, and suppose  ≤ τk ≤ . s, r = ., δ = .. Using
Theorem ., we get

K = [–. –.].
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Figure 2 State trajectories of the NCS.

Suppose that the initial condition is xT() = [. – .]. Figure  shows the state trajec-
tories of the NCS. We can see that the networked control system is exponentially stable.

In [], the designed state-feedback gain is unchanged. When the feedback controller
is disturbed, it cannot guarantee the system stability. However, from Theorem ., the
designed-state feedback gain subject to a certain additive interference still can make the
system stable.

5 Conclusions
In this paper, a new discrete-time switched NCSs model that can deal simultaneously with
packet dropout and time delay is presented. The criterion for the exponential stability of
the system is derived. The gain of the disturbed state-feedback controller can be solved by
the proposed method.
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