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Abstract
In this paper, we discuss the existence and multiplicity of positive solutions for
singular fractional differential equations with integral boundary value conditions

⎧
⎪⎨

⎪⎩

CDαu(t) + f (t,u(t)) = 0, 0 < t < 1,

u′′(0) = u′′′(0) = 0,

u′(0) = u(1) = η
∫ 1
0 u(s)ds,

where 3 < α < 4, 0 < η < 2, CDα is the Caputo fractional derivative and f may be
singular at u = 0. Our results are based on the Leray-Schauder nonlinear alternative
and a fixed-point theorem in cones.
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1 Introduction
In this paper, we discuss the following nonlinear fractional differential equations with in-
tegral boundary conditions:

⎧
⎪⎪⎨

⎪⎪⎩

CDαu(t) + f (t, u(t)) = ,  < t < ,

u′′() = u′′′() = ,

u′() = u() = η
∫ 

 u(s) ds,

(.)

where  < α < ,  < η < , CDα is the Caputo fractional derivative, and f may be singular
at u = .

Differential equations with fractional derivative have been proved to be strong tools in
the modeling of many physical phenomena. In consequence the subject of fractional dif-
ferential equations is gaining much importance and attention [–]. Some recent investi-
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gations have shown that many physical systems can be represented more accurately using
fractional derivative formulations. For details, see [–].

Cabada and Wang [] investigated the existence of positive solutions for fractional dif-
ferential equations with integral boundary value conditions

⎧
⎨

⎩

CDαu(t) + f (t, u(t)) = ,  < t < ,

u() = u′′() = , u() = λ
∫ 

 u(s) ds,

by the Guo-Krasnoselskii fixed point theorem, where  < α < ,  < λ < , CDα is the Caputo
fractional derivative, and f is continuous on [, ] × [,∞).

Zhang et al. [] considered the fractional boundary value problem with a p-Laplacian
operator as below:

⎧
⎨

⎩

–Dβ
t (ϕp(Dα

t x))(t) = λf (t, x(t)),  < t < ,

x() = , Dα
t x() = , x() =

∫ 
 x(s) dA(s),

where Dβ
t and Dα

t are the standard Riemann-Liouville derivatives with  < α ≤ ,  < β ≤ ,
ϕp(s) = |s|p–s, p > , and f may be singular at t = ,  and x = . A is a function of the
bounded variation and

∫ 
 x(s) dA(s) denotes the Riemann-Stieltjes integral of x with re-

spect to A. By using the method of upper and lower solutions and the Schauder fixed
point theorem, the existence of positive solutions was established.

Zhou et al. [] investigated the multiplicity of positive solutions of the nonlinear frac-
tional differential equation boundary value problem

⎧
⎨

⎩

Dq
+ u(t) = f (t, u(t)),  < t < ,

u() = u′() = ,

by means of the Leray-Schauder nonlinear alternative, a fixed-point theorem on cones,
and a mixed monotone method, where  < q ≤ , Dq

+ is the standard Riemann-Liouville
derivative. The function f is a given function satisfying some assumptions.

But up to now, there are few papers that have considered the multiplicity of positive
solutions with two integral boundary conditions and a nonlinear term f possessing a sin-
gularity at u = . Motivated by the results mentioned above, the aim of this paper is to
establish the multiplicity of positive solutions for singular fractional differential equations
with two integral boundary value conditions (.).

In this paper, in analogy with boundary value problems for differential equations of inte-
ger order, we first of all derive the corresponding Green’s function known as the fractional
Green’s function. Here we give some properties that relate the expressions of G(t, s) and
G(, s). It is well known that cones play an important role in applying the Green’s function
in research areas. Consequently problem (.) is reduced to an equivalent Fredholm inte-
gral equation. Finally, by using the Leray-Schauder nonlinear alternative and a fixed-point
theorem in cones, the existence and multiplicity of positive solutions are obtained.
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2 Background materials and Green’s function
For the reader’s convenience, we present some necessary definitions from fractional cal-
culus, both theory and lemmas. These definitions can be found in the recent literature
such as [].

Definition . [] For a function f : [,∞] → R, the Caputo derivative of fractional order
α is defined as

CDαf (t) =


�(n – α)

∫ t



f (n)(s)
(t – s)α–n+ ds, n = [α] + ,

where [α] denotes the integer part of the real number α.

Definition . [] The Riemann-Liouville fractional integral of order α for a function f
is defined as

Iαf (t) =


�(α)

∫ t


(t – s)α–f (s) ds, α > ,

provided that such an integral exists.

Lemma . [] Let α > , then the fractional differential equation

CDαu(t) = 

has a solution

u(t) = C + Ct + Ct + · · · + Cn–tn–,

where Ci ∈ R, i = , , , . . . , n – , n = [α] + .

Lemma . [] Let α > , then

IαCDαu(t) = u(t) – C – Ct – Ct – · · · – Cn–tn–,

where Ci ∈ R, i = , , , . . . , n – , n = [α] + .

In the following we present the Green’s function of a fractional differential equation with
integral boundary conditions.

Lemma . Given y ∈ C(, ) ∩ L(, ),  < α < , and  < η < , the unique solution of

⎧
⎪⎪⎨

⎪⎪⎩

CDαu(t) + y(t) = ,  < t < ,

u′′() = u′′′() = ,

u′() = u() = η
∫ 

 u(s) ds,

(.)

is

u(t) =
∫ 


G(t, s)y(s) ds,
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where

G(t, s) =


α( – η)�(α)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

{α( – η) + ηt(α –  + s)}( – s)α– – α( – η)(t – s)α–,

 ≤ s ≤ t ≤ ,

{α( – η) + ηt(α –  + s)}( – s)α–,

 ≤ t ≤ s ≤ .

(.)

Proof By means of the Lemma ., we can reduce (.) to the equivalent integral equation

u(t) = –Iαy(t) + C + Ct + Ct + Ct

= –


�(α)

∫ t


(t – s)α–y(s) ds + C + Ct + Ct + Ct.

From u′′() = u′′′() = , we have C = C = . Then

u(t) = –


�(α)

∫ t


(t – s)α–y(s) ds + C + Ct,

u′(t) = –
α – 
�(α)

∫ t


(t – s)α–y(s) ds + C,

(.)

and by the condition u′() = u() = η
∫ 

 u(s) ds, we have

u′() = C = η

∫ 


u(s) ds,

u() = –


�(α)

∫ 


( – s)α–y(s) ds + C + C = η

∫ 


u(s) ds.

(.)

Then,

C =


�(α)

∫ 


( – s)α–y(s) ds.

From the previous equality, we deduce that

u(t) = –


�(α)

∫ t


(t – s)α–y(s) ds +


�(α)

∫ 


( – s)α–y(s) ds + Ct. (.)

Integrating the equation from  to , we have

∫ 


u(t) dt = –


�(α)

∫ 



∫ t


(t – s)α–y(s) ds dt +


�(α)

∫ 



∫ 


( – s)α–y(s) ds dt

+ C

∫ 


t dt

= –


�(α)

∫ 



( – s)α

α
y(s) ds +


�(α)

∫ 


( – s)α–y(s) ds +




C.

So equation (.) implies that

C = η

∫ 


u(s) ds = –

η

α�(α)

∫ 


( – s)αy(s) ds +

η

�(α)

∫ 


( – s)α–y(s) ds +




Cη.
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Hence, we have

C = –
η

α( – η)�(α)

∫ 


( – s)αy(s) ds +

η

( – η)�(α)

∫ 


( – s)α–y(s) ds.

Therefore, the unique solution of (.) is

u(t) = –


�(α)

∫ t


(t – s)α–y(s) ds +


�(α)

∫ 


( – s)α–y(s) ds

–
ηt

α( – η)�(α)

∫ 


( – s)αy(s) ds +

ηt
( – η)�(α)

∫ 


( – s)α–y(s) ds

= –


�(α)

∫ t


(t – s)α–y(s) ds

+


α( – η)�(α)

∫ 



[
α( – η) + ηt(α –  + s)

]
( – s)α–y(s) ds

=


α( – η)�(α)

×
∫ t



{[
α( – η) + ηt(α –  + s)

]
( – s)α– – α( – η)(t – s)α–}y(s) ds

+


α( – η)�(α)

∫ 

t

[
α( – η) + ηt(α –  + s)

]
( – s)α–y(s) ds

=
∫ 


G(t, s)y(s) ds. �

Lemma . The function G(t, s) defined by (.) has the following properties:
() G(, s) = , for s ∈ [, ] if and only if η = ;
() G(, s) > , for s ∈ (, ) and η ∈ (, );
() tG(, s) ≤ G(t, s) ≤ MG(, s), for  < α < , s ∈ (, ) and η ∈ (, ) where

M = α(η+)
η(α–) ;

() G(t, s) > , for t, s ∈ (, ) and η ∈ (, ).

Proof Observing the expression of G(, s), it is clear that () and () hold.
Here

G(, s) =
η(α –  + s)( – s)α–

α( – η)�(α)
.

In the following we will only prove (), as () can be deduced directly from ().
When  < t ≤ s < , we have

h(t, s) =
G(t, s)
G(, s)

=
α( – η) + ηt(α –  + s)

η(α –  + s)
.

Now, it is immediate to verify the following inequalities:

t =
ηt(α –  + s)
η(α –  + s)

≤ h(t, s) ≤ α( – η) + ηtα
η(α – )

≤ α( – η) + ηα

η(α – )
=

α( + η)
η(α – )

.
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When  < s ≤ t < , we have

h(t, s) =
G(t, s)
G(, s)

=
[α( – η) + ηt(α –  + s)]( – s)α– – α( – η)(t – s)α–

η(α –  + s)( – s)α– ,

and since s ≥ ts, we deduce that

h(t, s) ≥ [α( – η) + ηt(α –  + s)]( – s)α– – α( – η)tα–( – s)α–

η(α –  + s)( – s)α–

=
α( – η) + ηt(α –  + s) – α( – η)tα–

η(α –  + s)

≥ α( – η) + ηt(α –  + s) – α( – η)
η(α –  + s)

= t.

On the other hand, we have

h(t, s) ≤ α( – η) + ηt(α –  + s)
η(α –  + s)

≤ α( + η)
η(α – )

;

then the inequalities () are fulfilled. �

Theorem . (Leray-Schauder alternative) Let E be a Banach space, X a closed, convex
subset of E, U an open subset of X, and p ∈ U . Suppose that A : U → X is a continuous,
compact map, then either

(i) A has a fixed point in U , or
(ii) there is a u ∈ ∂U and λ ∈ (, ) with u = λAU + ( – λ)p.

Theorem . Let X be a Banach space, and let P ⊂ X be a cone. Assume 	, 	 are open
and bounded subsets of X with  ∈ 	 ∈ 	 ⊂ 	, and let T : P ∩ (	 \ 	) → P be a
completely continuous operator such that either

(i) ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂	, and ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂	; or
(ii) ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂	, and ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂	.

Then the operator T has at least one fixed point in P ∩ (	 \ 	).

3 Main results
In this section, we consider the existence and multiplicity of positive solutions of nonlinear
fractional different equation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

CDαu(t) + f (t, u(t)) = ,  < t < ,

u′′() = u′′′() = ,

u′() = u() = η
∫ 

 u(s) ds,

(.)

where  < α < ,  < η < , CDα is the Caputo fractional derivative, and f may be singular
at u = .
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Theorem . Suppose that the following hypotheses hold:

(H) f : [, ] × (,∞) → [,∞) is continuous and

 ≤ f (t, u) = g(u) + h(u), for (t, u) ∈ [, ] × (,∞),

with g(u) >  is nonincreasing and h(u)/g(u) is nondecreasing in u ∈ (,∞);
(H) there exists a constant K >  such that g(ab) ≤ Kg(a)g(b) for all a, b ≥ ;
(H)

∫ 
 g(s) ds < ∞;

(H) there exists a positive number r such that

{

 +
h(r)
g(r)

}

MKg
(

r
M

)∫ 


G(, s)g(s) ds < r;

(H) there exists a positive number R > r with

(

 –

α

)

g(R)
∫ 


G(, s)

{

 +
h( R

M
s)

g( R
M

s)

}

ds ≥ R.

Then problem (.) has a solution u with r ≤ ‖u‖ ≤ R.

Proof Let E = C[, ] be endowed with the maximum norm, ‖u‖ = max≤t≤ |u(t)|, define
the cone K ⊂ E by

K =
{

u ∈ E
∣
∣
∣u(t) ≥ t

M
‖u‖, for t ∈ [, ]

}

,

and let

	 =
{

u ∈ E;‖u‖ < r
}

, 	 =
{

u ∈ E;‖u‖ < R
}

.

Next let T : K ∩ (	 \ 	) → E be defined by

Tu(t) =
∫ 


G(t, s)f

(
s, u(s)

)
ds,  ≤ t ≤ . (.)

First we show T is well defined. To see this, notice that if u ∈ K ∩(	 \	) then r ≤ ‖u‖ ≤ R
and u(t) ≥ t

M
‖u‖ ≥ t

M
r > ,  < t < , from (H) we have

f (t, u) = g
(
u(t)

)
+ h

(
u(t)

)

= g
(
u(t)

)
{

 +
h(u(t))
g(u(t))

}

≤ g
(

tr
M

){

 +
h(R)
g(R)

}

≤ Kg(t)g
(

r
M

){

 +
h(R)
g(R)

}

.
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These inequalities with (H) guarantee that T : K ∩ (	 \ 	) → E is well defined. If u ∈
K ∩ (	 \ 	), then we have

‖Tu‖ ≤
∫ 


MG(, s)f

(
s, u(s)

)
ds,

Tu(t) ≥ t
∫ 


G(, s)f

(
s, u(s)

)
ds ≥ t

M
‖Tu‖,

i.e., Tu ∈ K so T : K ∩ (	 \ 	) → K .
Next we show T : K ∩(	 \	) → K is continuous and compact. Let un, u ∈ K ∩(	 \	)

with ‖un – u‖ →  as n → ∞. Of course r ≤ ‖un‖ ≤ R, r ≤ ‖u‖ ≤ R, un(t) ≥ tr
M

>  and
u(t) ≥ tr

M
> , for  < t < . So

ρn(s) =
∣
∣f

(
s, un(s)

)
– f

(
s, u(s)

)∣
∣ → , s ∈ (, ),

and

ρn(s) ≤ Kg(s)g
(

r
M

){

 +
h(R)
g(R)

}

for s ∈ (, ). Now this together with the Lebesgue dominated convergence theorem guar-
antees that

‖Tun – Tu‖ ≤ sup
t∈[,]

∫ 


G(t, s)ρn(s) ds →  as n → ∞.

Therefore, T : K ∩ (	 \ 	) → K is continuous.
Next, we show that T is uniformly bounded. For u ∈ K ∩ (	 \ 	) we have

‖Tu‖ = sup
t∈[,]

∫ 


G(t, s)f

(
s, u(s)

)
ds ≤

∫ 


MG(, s)g

(
u(s)

)
{

 +
h(u(s))
g(u(s))

}

ds

≤
∫ 


MG(, s)Kg

(
r

M

)

g(s)
{

 +
h(R)
g(R)

}

ds

= MKg
(

r
M

){

 +
h(R)
g(R)

}∫ 


G(, s)g(s) ds.

Hence, T : K ∩ (	 \ 	) → K is bounded.
Finally, we show that T is equicontinuous.
For all ε > , each u ∈ K ∩ (	 \ 	), t, t′ ∈ [, ], t < t′, since G(t, s) is uniformly contin-

uous on t, s ∈ [, ] × [, ], there exists η > , such that when t′ – t < η we have

∣
∣G

(
t′, s

)
– G(t, s)

∣
∣ <

ε

K
∫ 

 g(s) dsg( r
M

){ + h(R)
g(R) }

,

∣
∣(Tu)(t) – (Tu)

(
t′)∣∣ ≤

∫ 



∣
∣G(t, s) – G

(
t′, s

)∣
∣f

(
s, u(s)

)
ds

≤
∫ 



∣
∣G(t, s) – G

(
t′, s

)∣
∣Kg(s)g

(
r

M

){

 +
h(R)
g(R)

}

ds.

By means of the Arzela-Ascoli theorem, T : K ∩ (	 \ 	) → K is compactly continuous.
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Now we prove that

‖Tu‖ ≤ ‖u‖, ∀u ∈ K ∩ ∂	. (.)

To see this, let u ∈ K ∩ ∂	, then ‖u‖ = r and u(t) ≥ tr
M

>  for t ∈ (, ), and we have

(Tu)(t) =
∫ 


G(t, s)f

(
s, u(s)

)
ds

≤
∫ 


G(t, s)g

(
u(s)

)
{

 +
h(u(s))
g(u(s))

}

ds

≤ MKg
(

r
M

){

 +
h(r)
g(r)

}∫ 


G(, s)g(s) ds

< r = ‖u‖.

Therefore, ‖Tu‖ ≤ ‖u‖, i.e. (.) holds.
Finally, we prove that

‖Tu‖ ≥ ‖u‖, ∀u ∈ K ∩ ∂	. (.)

To see this, let u ∈ K ∩ ∂	, then ‖u‖ = R and u(t) ≥ tR
M

>  for t ∈ (, ),

Tu
(

 –

α

)

=
∫ 


G

(

 –

α

, s
)

f
(
s, u(s)

)
ds

≥
(

 –

α

)∫ 


G(, s)g

(
u(s)

)
{

 +
h(u(s))
g(u(s))

}

ds

≥
(

 –

α

)

g(R)
∫ 


G(, s)

{

 +
h( R

M
s)

g( R
M

s)

}

ds

≥ R = ‖u‖.

This implies that (.) holds.
It follows from Theorem ., (.), and (.) that T has a fixed point ũ ∈ K ∩ (	 \ 	).

Clearly this fixed point is a positive solution of (.) satisfying r ≤ ‖̃u‖ ≤ R. �

Theorem . Suppose the conditions (H)-(H) hold. In addition, assume that

(H) for each L > , there exists a function ϕL ∈ C[, ], ϕL > , for t ∈ (, ), such that
f (t, u) > ϕL(t), for (t, u) ∈ (, ) × (, L]. Then (.) has a solution u with  < ‖u‖ < r.

Proof The existence is proved using Theorem ., together with a truncation technique.
The idea is that we first show (.) has a positive solution u satisfying u(t) >  for t ∈ (, ).
Similarly to the proof of Theorem ., we show

u(t) =
∫ 


G(t, s)f

(
s, u(s)

)
ds (.)

has a positive solution.
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Since (H) holds, we can choose n ∈ {, , . . .} such that

{

 +
h(r)
g(r)

}

MKg
(

r
M

)∫ 


G(, s)g(s) ds +


n

< r.

Let N ∈ {n, n + , . . .}. Consider the family of integral equations

(Anu)(t) =
∫ 


G(t, s)fn

(
s, u(s)

)
ds +


n

, (.)

where n ∈ N and

fn(t, u) =

⎧
⎨

⎩

f (t, u) if u ≥ 
n ,

f (t, 
n ) if u ≤ 

n .

Similarly to the proof of Theorem ., we can easily verify that An is well defined and maps
E to K . Moreover, An is continuous and completely continuous. By the Leray-Schauder
alternative principle, we need to consider

u = λAnu + ( – λ)

n

i.e.

u(t) = λ

∫ 


G(t, s)fn

(
s, u(s)

)
ds +


n

, (.)

where λ ∈ (, ). We claim that any fixed point u of (.) for any λ ∈ (, ) must satisfy
‖u‖ �= r. Otherwise, assume that u is a fixed point of (.) for some λ ∈ (, ) such that
‖u‖ = r. Then u(t) ≥ 

n for t ∈ [, ]. Note that

∥
∥u(t)

∥
∥ ≤ 

n
+ λM

∫ 


G(, s)fn

(
s, u(s)

)
ds.

Hence, for all t ∈ [, ], we have

∥
∥u(t)

∥
∥ ≥ 

n
+ λt

∫ 


G(, s)fn

(
s, u(s)

)
ds

≥ 
n

+
t

M

{
∥
∥u(t)

∥
∥ –


n

}

≥ t
M

∥
∥u(t)

∥
∥ =

t
M

r.

Thus we have the condition (H), for all t ∈ [, ],

u(t) = λ

∫ 


G(t, s)fn

(
s, u(s)

)
ds +


n

= λ

∫ 


G(t, s)f

(
s, u(s)

)
ds +


n
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≤
∫ 


MG(, s)f

(
s, u(s)

)
ds +


n

≤
∫ 


MG(, s)g

(
u(s)

)
{

 +
h(u(s))
g(u(s))

}

ds +

n

≤
{

 +
h(r)
g(r)

}∫ 


MG(, s)Kg

(
r

M

)

g(s) ds +

n

≤
{

 +
h(r)
g(r)

}

MKg
(

r
M

)∫ 


G(, s)g(s) ds +


n

.

Therefore,

r = ‖u‖ ≤
{

 +
h(r)
g(r)

}

MKg
(

r
M

)∫ 


G(, s)g(s) ds +


n

.

This a contradiction to the choice of n and the claim is proved.
Now the Leray-Schauder alternative (Theorem .) guarantees An has a fixed point, de-

noted by un, un(t) ≥ 
n in Br = {u ∈ E : ‖u‖ < r}, and it satisfies

un(t) =
∫ 


G(t, s)fn

(
s, un(s)

)
ds +


n

=
∫ 


G(t, s)f

(
s, un(s)

)
ds +


n

.

Next we claim that un(t) have a uniform positive lower bound, i.e., there exists a constant
δ > , independent of n ∈ N, such that

min
t∈[,]

un(t) ≥ δt, (.)

for all n ∈ N. Since (H) holds, there exists a continuous function ϕr(t) >  such that
f (t, u(t)) > ϕr(t) for all (t, u) ∈ (, ) × (, r]. Since un(t) < r, we have

un(t) =
∫ 


G(t, s)f

(
s, un(s)

)
ds +


n

≥
∫ 


G(t, s)ϕr(s) ds

≥ t
∫ 


G(, s)ϕr(s) ds := δt.

In order to pass the fixed point un of the truncation equations (.) to that of the original
equation (.) we need the following fact:

{un} is equicontinuous on [, ] for all n ∈ N. (.)

In fact, for all ε > , each un ∈ Br , t, t′ ∈ [, ], t < t′, since G(t, s) is uniformly continuous
on (t, s) ∈ [, ] × [, ], there exists τ > , such that when t′ – t < τ we have

∣
∣G

(
t′, s

)
– G(t, s)

∣
∣ <

ε

Kg(δ){ + h(r)
g(r) }

∫ 
 g(s) ds

;
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then

∣
∣un(t) – un

(
t′)∣∣ ≤

∫ 



∣
∣G

(
t′, s

)
– G(t, s)

∣
∣f

(
s, un(s)

)
ds

≤ Kg(δ)
∫ 



∣
∣G

(
t′, s

)
– G(t, s)

∣
∣g(s)

{

 +
h(r)
g(r)

}

ds < ε.

The facts ‖un‖ < r and (.) show that {un}n∈N is a bounded and equicontinuous fam-
ily on [, ]. Now the Arzela-Ascoli theorem guarantees that {un}n∈N has a subsequence
{unk }nk∈N , converging uniformly on [, ] to a function u ∈ E. From the facts ‖un‖ < r and
(.), u satisfies δt < u(t) < r for all t ∈ [, ]. Moreover, unk satisfies the integral equation

unk =
∫ 


G(t, s)f

(
s, unk (s)

)
ds +


nk

.

Letting k → ∞, we arrive at

u =
∫ 


G(t, s)f

(
s, u(s)

)
ds.

Therefore, u is a positive solution of (.) and satisfies  < ‖u‖ < r. �

Theorem . Suppose that (H)-(H) are satisfied. Then problem (.) has two positive
solutions u, ũ with  < ‖u‖ < r ≤ ‖̃u‖ ≤ R.

Proof From the proof of Theorem ., we see that (.) has a positive solution ũ(t) with
r ≤ ‖̃u‖ ≤ R, and by Theorem ., we see that (.) has another positive solution u(t) with
 < ‖u‖ < r. Thus (.) has at least two positive solutions. �

Example . Consider the boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

CDαu(t) + u–a(t) + ωub(t) = ,  < t < ,

u′′() = u′′′() = ,

u′() = u() = η
∫ 

 u(s) ds,

(.)

where  < α < ,  < η < ,  < a < , b ≥  and ω >  is a given parameter. Then:
(i) if b < , then (.) has at least one nonnegative solution for each ω > ;

(ii) if b > , then (.) has at least one nonnegative solution for each  < ω < ω, where
ω is some positive constant;

(iii) if b > , then (.) has at least two nonnegative solutions for each  < ω < ω.

Proof We apply Theorem .. Note that (H) holds with φL(t) = L–α . Let

g(u) = u–a, h(u) = ωub, K = .

Then (H) and (H) are satisfied. Since  < a < , condition (H) is also satisfied. Now for
(H) to be satisfied we need

ω <
Ar+a – 

ra+b
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for some r > , where

A =
[

M+a


∫ 


G(, s)s–a ds

]–

.

Therefore (.) has at least one nonnegative solution for

 < ω < ω := sup
r>

Ar+a – 
ra+b .

Note that ω = ∞ if b < , and if b >  set

l(r) :=
Ar+a – 

ra+b .

The function l(r) possesses a maximum at

r :=
(

a + b
(b – )A

) 
a+

>
(


A

) 
a+

;

then ω = l(r) > . We have the desired results (i) and (ii).
If b > , condition (H) becomes

ω ≥ R+a – B
CRa+b , (.)

for some R > , where

B =
α – 

α

∫ 


G(, s) ds,

C =
α – 
αMa+b



∫ 


G(, s)sa+b ds.

Since b > , the right-hand side goes to  as R → +∞. Thus, for any given  < ω < ω, it is
always possible to find an R  r such that (.) is satisfied. Thus, (.) has an additional
nonnegative solution ũ. This implies that (iii) holds. �
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