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Abstract
In this article, a numerical study is introduced for solving the fractional wave
equations by using an efficient class of finite difference methods. The proposed
scheme is based on the Hermite formula. The stability and the convergence analysis
of the proposed methods are given by a recently proposed procedure similar to the
standard von Neumann stability analysis. A simple and accurate stability criterion valid
for different discretization schemes of the fractional derivative, arbitrary weight factor,
and arbitrary order of the fractional derivative, are given and checked numerically.
Finally, a numerical example is presented to confirm the theoretical results.
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1 Introduction
In recent years, it has turned out that many phenomena in engineering, physics, chem-
istry, and other sciences can be described very successfully by models using mathemati-
cal tools from fractional calculus, i.e. the theory of derivatives and integrals of fractional
(non-integer) order. There are many applications of the fractional differential equations
(FDEs), see [–], and the studied models have received a great deal of attention like in
the fields of viscoelastic materials [], solutes in natural porous or fractured media [], and
anomalous diffusion. Most FDEs do not have exact solutions, so approximate and numer-
ical techniques must be used [–]. Recently, several numerical methods to solve FDEs
have been given such as the variational iteration method [], the Adomian’s decomposi-
tion method [], the collocation method [–], and the finite difference method [,
, ]. In this section, we introduce the Riemann-Liouville definitions of the fractional
derivative operator Dα [, ].

Definition  The Riemann-Liouville derivative Dα of order α of the function y(x) is de-
fined by

Dαy(x) =


�(n – α)
dn

dxn

∫ x



y(τ )
(x – τ )α–n+ dτ , x > ,α > , ()
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where n is the smallest integer exceeding α and �(·) is the Gamma function. If α = m ∈ N ,
then the above definition coincides with the classical mth derivative y(m)(x).

In this paper, we will study the numerical solutions of the following fractional differential
wave equation:

Dαu(x, t) = uxx(x, t) + f (x, t),  < α ≤ , ()

on a finite domain  < x < L,  ≤ t ≤ T , where f (x, t) is the source term and Dα is the
Riemann-Liouville derivative of order α with respect to the time t. Under the zero bound-
ary conditions

u(, t) = u(L, t) = , ()

and the following initial conditions

u(x, ) = g(x) and ut(x, ) = g(x), ()

here g(x) and g(x) are given functions.
In the last few years there have appeared many papers studying the proposed model ()-

() [, ]. In this paper, we study the time fractional case and use an efficient class of
finite difference methods based on the Hermite formula to solve this model.

The plan of the paper is as follows. In Section , we give some approximate formulas of
the fractional derivatives and numerical finite difference scheme. In Section , we study the
stability and the accuracy of the presented scheme. In Section , we introduce numerical
solutions of fractional wave equation. The paper ends with some conclusions in Section .

2 Finite difference scheme of the fractional wave equation
In this section, we introduce an efficient class of FDM and use it to obtain the discretization
finite difference formula of the time fractional wave equation (). For some positive integer
numbers N and M, we use the notations �x and �t for the space-step length and the time-
step length, respectively. The coordinates of the mesh points are xj = j�x (j = , , . . . , N ),
and tm = m�t (m = , , . . . , M) and the values of the solution u(x, t) on these grid points
are u(xj, tm) ≡ um

j � Um
j , where �x = h = L

N , �t = k = T
M .

For more details as regards discretization in fractional calculus see [, , ].
In the first step, the ordinary second order differential operators are discretized as fol-

lows []:

∂u
∂t

∣∣∣∣
xj ,tm

=
um+

j – um
j + um–

j

k + O
(
k). ()

Now, using equation (), we can derive an efficient approximate formula of the fractional
derivative for ∂α

∂tα u(x, t) ( < α ≤ ) at the points (xj, tm) as follows:

∂α

∂tα
u(xj, tm) =


�( – α)

∫ tm



∂

∂t u(xj, s)(tm – s)–α ds

=


�( – α)

m∑
r=

∫ rk

(r–)k

[ur+
j – ur

j + ur–
j

k + O
(
k)](mk – s)–α ds



Khader and Adel Advances in Difference Equations  (2016) 2016:34 Page 3 of 10

=


�( – α)( – α)

m∑
r=

[ur+
j – ur

j + ur–
j

k + O
(
k)]

× [
(m – r + )–α – (m – r)–α

][
k–α

]

=


�( – α)kα

m∑
r=

(
ur+

j – ur
j + ur–

j
)[

(m – r + )–α – (m – r)–α
]

+


�( – α)

m∑
r=

[
(m – r + )–α – (m – r)–α

]
O

(
k–α

)
. ()

The above formula can be rewritten as

∂αu(xj, tm)
∂tα

= Aα,k

m∑
r=

ω(α)
r

(
um–r+

j – um–r+
j + um–r

j
)

+


�( – α)
m–αO

(
k–α

)

= Aα,k

m∑
r=

ω(α)
r

(
um–r+

j – um–r+
j + um–r

j
)

+ O
(
k), ()

where

Aα,k =


�( – α)kα
and ω(α)

r = r–α – (r – )–α . ()

We must note that ω
(α)
r satisfies the following facts:

() ω
(α)
r > , r = , , . . . .

() ω
(α)
r > ω

(α+)
r , r = , , . . . .

Now, we are going to obtain the finite difference scheme of the fractional wave equation
(). To achieve this aim we evaluate this equation at the points of the grid (xj, tm):

∂α

∂tα
u(xj, tm) =

∂u(xj, tm)
∂x + f (xj, tm). ()

Using equations () and (), we have

∂u(xj, tm)
∂x = Aα,k

m∑
r=

ω(α)
r

(
um–r+

j – um–r+
j + um–r

j
)

– f (xj, tm) + O
(
k). ()

In order to get two additional equations, replace j by j –  and j + , respectively, in the
above equation, so we have

∂u(xj–, tm)
∂x = Aα,k

m∑
r=

ω(α)
r

(
um–r+

j– – um–r+
j– + um–r

j–
)

– f (xj–, tm) + O
(
k), ()

and

∂u(xj+, tm)
∂x = Aα,k

m∑
r=

ω(α)
r

(
um–r+

j+ – um–r+
j+ + um–r

j+
)

– f (xj+, tm) + O
(
k). ()
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The Hermite formula with two-order derivatives at the grid point (xj, tm) is

∂u(xj–, tm)
∂x + 

∂u(xj, tm)
∂x +

∂u(xj+, tm)
∂x –


h

(
u(xj–, tm)

– u(xj, tm) + u(xj+, tm)
)

= O
(
h). ()

Substitute from equations ()-() into equation (), and denote u(xj, tm) by um
j , then

with neglect the high order terms and under some simplifications, we can obtain the fol-
lowing form:




hAα,k

m∑
r=

ω(α)
r

(
um–r+

j– – um–r+
j– + um–r

j–
)

– 
(

 +



hAα,k

)
um

j– –
h


f m
j–

+



hAα,k

m∑
r=

ω(α)
r

(
um–r+

j – um–r+
j + um–r

j
)

– 
(




hAα,k – 
)

um
j –

h


f m
j+

+



hAα,k

m∑
r=

ω(α)
r

(
um–r+

j+ – um–r+
j+ + um–r

j+
)

– 
(

 +



hAα,k

)
um

j+ –
h


f m
j

+



hAα,k
(
um+

j– + um–
j– + um+

j+ + um–
j+

)
+




hAα,k
(
um+

j + um–
j–

)
= . ()

Let Um
j be the approximate solution, and let Tm

j = um
j – Um

j , j = , , . . . , N , m = , , . . . , M
be the error, then we have the error formula




hAα,k

m∑
r=

ω(α)
r

(
Tm–r+

j– – Tm–r+
j– + Tm–r

j–
)

+



hAα,k

m∑
r=

ω(α)
r

× (
Tm–r+

j – Tm–r+
j + Tm–r

j
)

+



hAα,k

m∑
r=

ω(α)
r

(
Tm–r+

j+ – Tm–r+
j+ + Tm–r

j+
)

– 
(

 +



hAα,k

)
Tm

j– – 
(




hAα,k – 
)

Tm
j – 

(
 +




hAα,k

)
Tm

j+

+



hAα,k
(
Tm+

j– + Tm–
j– + Tm+

j+ + Tm–
j+

)
+




hAα,k
(
Tm+

j + Tm–
j–

)
= , ()

with

Tm
 = Tm

N = , m = , , . . . , M. ()

Proposition  Assuming that the solution of () has the form Tm
j = ξmeiβjh, then

ξm =

 hAα,k( + cos(βh))

( + 
 hAα,k) cos(βh) + 

 hAα,k – 

×
[
ξm+ + ξm– +

m∑
r=

ω(α)
r (ξm–r+ – ξm–r+ + ξm–r)

]
, ()

where β = πm.
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Proof Substitute in () by Tm
j = ξmeiβjh and divide by eiβjh, we get




hAα,k

m∑
r=

ω(α)
r (ξm–r+ – ξm–r+ + ξm–r)e–iβh – 

(
 +




hAα,k

)
ξme–iβh

+



hAα,k

m∑
r=

ω(α)
r (ξm–r+ – ξm–r+ + ξm–r) – 

(



hAα,k – 
)

ξm

+



hAα,k

m∑
r=

ω(α)
r (ξm–r+ – ξm–r+ + ξm–r)eiβh – 

(
 +




hAα,k

)
ξmeiβh

+



hAα,k
(
ξm+e–iβh + ξm–e–iβh + ξm+eiβh + ξm–eiβh)

+



hAα,k
(
ξm+ + ξm–e–iβh) = . ()

Using some trigonometric formulas and some simplifications we can obtain




hAα,k
(
 + cos(βh)

) m∑
r=

ω(α)
r (ξm–r+ – ξm–r+ + ξm–r)

– 
[


(

 +



hAα,k

)
cos(βh) +




hAα,k – 
]
ξm +




hAα,k
(
 + cos(βh)

)
ξm+

+



hAα,k
(
 + cos(βh)

)
ξm– = , ()




hAα,k
(
 + cos(βh)

) m∑
r=

ω(α)
r (ξm–r+ – ξm–r+ + ξm–r)

– 
[


(

 +



hAα,k

)
cos(βh) +




hAα,k – 
]
ξm +




hAα,k
(
 + cos(βh)

)
ξm+

+



hAα,k
(
 + cos(βh)

)
ξm– = , ()

from which we can obtain the required formula and this completes the proof. �

3 Stability analysis
In this section, we use the von Neumann method to study the stability analysis of the finite
difference scheme () for the force free case (i.e., f (x, t) = ).

Proposition  Assume that kα < h

�(–α) , then


 hAα,k( + cos(βh))

( + 
 hAα,k) cos(βh) + 

 hAα,k – 
≤ . ()

Proof Since Aα,k = k–α

�(–α) , kα = 
Aα,k�(–α) and, by using the assumption that kα < h

�(–α) , we
can obtain


Aα,k

<
h


, ()
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so,


(

 +



hAα,k

)
<




hAα,k – , ()

and since  – cos(βh) ≤ , we have


(

 +



hAα,k

)(
 – cos(βh)

)
< 

(



hAα,k – 
)

, ()

which implies that


(

 +



hAα,k

)
cos(βh) +




hAα,k –  > . ()

Now, since –hAα,k < hAα,k , hAα,k – hAα,k –  < hAα,k – hAα,k – , and since
cos(βh) ≤ , we have

[
hAα,k – hAα,k – 

]
cos(βh) < hAα,k – hAα,k – , ()

i.e.,

hAα,k + hAα,k cos(βh) <  cos(βh) + hAα,k cos(βh) + hAα,k – , ()

so

hAα,k
(
 + cos(βh)

)
< 

[(
 + hAα,k

)
cos(βh) + hAα,k – 

]
, ()

i.e.,

hAα,k
(
 + cos(βh)

)
< ()()

[

(

 +



hAα,k

)
cos(βh) +




hAα,k – 
]

, ()

which together with () completes the proof of the proposition. �

Proposition  Assume that ξm (m = , , . . . , M) is the solution of (), with the condition
kα < h

�(–α) , then |ξm| ≤ |ξ| (m = , , . . . , M).

Proof It is easy to prove it by the mathematical induction together with Proposition .
�

We know that

∥∥Tm∥∥
 =

∞∑
N=–∞

∣∣ξm(N)
∣∣. ()

Theorem  The finite difference scheme () is stable under the condition

kα <
h

�( – α)
. ()
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Proof From Proposition  and (), ‖Tm‖ ≤ ‖T‖, m = , , . . . , M, which means that the
difference scheme is stable. �

By the Lax equivalence theorem [] we can show that the numerical solution converges
to the exact solution as h, k → .

4 Numerical results
In this section, we will test the proposed method by considering the following numerical
example. Consider the fractional wave equation () in the interval [, ] with the following
source term:

f (x, t) =
[

t–α(t + α – )
�( – α)

+ π
]

sin(πx), ()

and the initial conditions u(x, ) = , ut(x, ) = – sin(πx).
The exact solution of equation () in this case is u(x, t) = sin(πx)(t – t).
In Figures -, the behavior of the exact solution and the numerical solution of the frac-

tional wave equation () by means of the fractional finite difference method based on the
Hermite formula with different values of α, �x, �t and the final time T is given.

From these figures, we can conclude that the numerical solution of the proposed method
are in excellent agreement with the exact solution. Tables  and  show the magnitude of
the maximum error between the exact solution and the numerical solution obtained by
using the fractional FDM based on the Hermite formula discussed above with different
values of α, �x, �t, and the final time T .

Figure 1 The behavior of the exact solution and
the numerical solution of the fractional wave
equation (2) by means of the proposed method
for α = 1.73, �x = 1

60 , �t = 1
1,000 , and T = 0.75.

Figure 2 The behavior of the exact solution and
the numerical solution of the fractional wave
equation (2) by means of the proposed method
for α = 1.75, �x = 1

200 , �t = 1
200 , and T = 2.
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Figure 3 The behavior of the exact solution and
the numerical solution of the fractional wave
equation (2) by means of the proposed method
for α = 1.66, �x = 1

100 , �t = 1
150 , and T = 4.

Table 1 The maximum error with different values of �x and �t for α = 1.5 and T = 0.2

�x 1
5

1
10

1
20

1
30

1
30

1
40

1
40

1
45

�t 1
50

1
100

1
150

1
150

1
200

1
200

1
210

1
220

max. error 0.01149 0.00361 0.00120 0.00115 0.00021 0.00019 0.00006 0.00004

Table 2 The maximum error with different values of �x, �t for α = 1.7 and T = 0.4

�x 1
10

1
20

1
30

1
50

1
50

1
60

1
60

1
70

�t 1
50

1
100

1
200

1
250

1
300

1
400

1
450

1
480

max. error 0.01396 0.01064 0.00736 0.00653 0.00586 0.00494 0.00460 0.00443

Figure 4 The behavior of the numerical solution of the fractional wave equation (2) by means of the
proposed method for α = 1.5, �x = 1

150 , �t = 1
120 , and T = 2.

From Figure , we can see that the numerical solution is unstable, since the stability
condition () is not satisfied.

5 Conclusion and remarks
This paper presents a class of numerical methods for solving the fractional wave equations.
This class of methods depends on the finite difference method based on the Hermite for-
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mula. Special attention is given to the study of the stability and the convergence of the
fractional finite difference scheme. To execute this aim we have resorted to a kind of frac-
tional von Neumann stability analysis. From the theoretical study we can conclude that
this procedure is suitable for the proposed fractional finite difference scheme and leads to
very good predictions for the stability bounds. Numerical solutions and exact solutions
of the proposed problem are compared and the derived stability condition is checked nu-
merically. From this comparison, we can conclude that the numerical solutions are in ex-
cellent agreement with the exact solutions. All computations in this paper were run with
the Matlab programming package.
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