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Abstract
In this work, we use a reproducing kernel method for investigating the sine-Gordon
equation with initial and boundary conditions. Numerical experiments are studied to
show the efficiency of the technique. The acquired results are compared with the
exact solutions and results obtained by different methods. These results indicate that
the reproducing kernel method is very effective.
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1 Introduction
The nonlinear one-dimensional sine-Gordon (SG) equation came into sight in the dif-
ferential geometry and attracted a lot of attention because of the collisional behaviors of
solitons that arise from this equation. Numerical solutions of the SG equation have been
widely investigated in recent years [–]. Compact finite difference and diagonally implicit
Runge-Kutta-Nyström (DIRKN) methods were used []. The authors of [] introduced a
numerical method for solving the SG equation by using collocation and radial basis func-
tions. The boundary integral equation technique is presented in []. Bratsos [, ] has
researhed a numerical technique for solving the one-dimensional SG equation and a third-
order numerical technique for the two-dimensional SG equation. A numerical technique
using radial basis functions for the solution of the two-dimensional SG equation has been
shown in []. Some authors advised spectral techniques and Fourier pseudospectral tech-
nique for solving nonlinear wave equation taking a discrete Fourier series and Chebyshev
orthogonal polynomials [–]. Ma and Wu [] used a meshless technique by using a
multiquadric (MQ) quasi-interpolation. In this paper, we investigate the one-dimensional
nonlinear sine-Gordon equation

∂u
∂τ  (η, τ ) =

∂u
∂η (η, τ ) – sin

(
u(η, τ )

)
,  ≤ η ≤ , τ ≥ , ()

with initial conditions

u(η, ) = f (η),  ≤ η ≤ ,

∂u
∂τ

(η, ) = g(η),  ≤ η ≤ ,
()
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and boundary conditions

u(, τ ) = h(τ ), u(, τ ) = h(τ ), τ ≥ , ()

by using the reproducing kernel method (RKM). We can get numerical results in very short
time. By this method nonlinear problems can be solved easily like linear problems. Repro-
ducing kernel functions are very important for numerical results. We can change the inner
product in the spaces and obtain different reproducing kernel functions for better results.
These are advantages of this method. Homogenizing the initial and boundary conditions
is very significant for this method. We give a general transformation to homogenize the
initial and boundary conditions in Section .

The theory of reproducing kernels [] was used for the first time at the beginning of the
th century by Zaremba. Reproducing kernel theory has important implementations in
numerical analysis, differential equations, and probability and statistics [–]. The effi-
ciency of the method was used by many authors to research several scientific implemen-
tations. The reproducing kernel functions can be represented by piecewise polynomials,
and the higher the order of derivatives, the simpler the reproducing kernel function state-
ments. Such statements of reproducing kernel functions are the simplest from the compu-
tational viewpoint, and the speed and accuracy can be significantly improved in scientific
and engineering implementations. The productivity of such reproducing kernel functions
is indicated to be very exhorting by experimental results [].

This work is arranged as follows. Section  introduces several useful reproducing ker-
nel functions. A representation of solution inW (,)

 (�) is given in Section . Section 
presents the essential results: exact and approximate solutions of ()-(); enhancement of
the method to some problems in the reproducing kernel space; and convergence of the ap-
proximate solution. Some numerical examples are discussed in Section . There are some
conclusions in the final section.

2 Reproducing kernel functions
We obtain some useful reproducing kernel functions in this section.

Definition  [] Let E be a nonempty set. A function K : E × E −→ C is called a repro-
ducing kernel function of the Hilbert space H if

(a) ∀τ ∈ E, K(·, τ ) ∈ H ,
(b) ∀τ ∈ E, ∀ϕ ∈ H , 〈ϕ(·), K(·, τ )〉 = ϕ(τ ).

Definition  [] A Hilbert space H defined on a nonempty set E is called a reproducing
kernel Hilbert space if there exists a reproducing kernel function K(η, τ ).

Definition  [] We define the W 
 [, ] by

W 
 [, ] =

{
u | u, u′, u′′ are absolutely continuous real-valued functions in [, ],

u() ∈ L[, ],η ∈ [, ], u() = , u() = 

}

.

The inner product and the norm in W 
 [, ] are defined respectively by

〈u, v〉W 


= u()v() + u′()v′() + u′()v′() +
∫ 


u()(η)v()(η) dη, u, v ∈ W 

 [, ],
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and

‖u‖W 


=
√

〈u, u〉W 


, u ∈ W 
 [, ].

Definition  [] We define the space F
 [, T] by

F
 [, T] =

{
u | u, u′, u′′ are absolutely continuous in [, T],

u() ∈ L[, T], τ ∈ [, T], u() = , u′() = 

}

with the inner product and norm

〈u, v〉F


=
∑

i=

u(i)()v(i)() +
∫ 


u()(T)v()(τ ) dτ , u, v ∈ F

 [, T],

and

‖u‖F


=
√

〈u, u〉F

, u ∈ F

 [, T].

The space F
 [, T] is a reproducing kernel space, and its reproducing kernel function rs is

given by

rs(τ ) =

{

 sτ  + 

 sτ  – 
 sτ  + 

τ , τ ≤ s,

 sτ  + 

 sτ  – 
τ s + 

 s, τ > s.

Definition  [] We define the space H
[, T] by

H
[, T] =

{
u | u is absolutely continuous in [, ],

u′ ∈ L[, T], τ ∈ [, T]

}

the inner product and norm

〈u, v〉H


= u()v() +
∫ τ


u′(T)v′(τ ) dτ , u, v ∈ H

[, T],

and

‖u‖H


=
√

〈u, u〉H

, u ∈ H

[, T].

Its reproducing kernel function qs is

qs(τ ) =

{
 + τ , τ ≤ s,
 + s, τ > s.

Definition  [] We define the space G
[, ] by

G
[, ] =

{
u | u is absolutely continuous in [, ],

u′ ∈ L[, ],η ∈ [, ]

}
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with the inner product and norm

〈u, v〉G


= u()v() +
∫ 


u′(η)v′(η) dη, u, v ∈ G

[, ],

and

‖u‖G


=
√

〈u, u〉G

, u ∈ G

[, ].

The space G
[, ] is a reproducing kernel space, and its reproducing kernel function Qy

is given by

Qy(η) =

{
 + η, η ≤ y,
 + y, η > y.

Theorem . The reproducing kernel function Ry of W 
 [, ] is

Ry(η) =

{∑
i= ci(y)ηi–, η ≤ y,

∑
i= di(y)ηi–, η > y,

()

where

c(y) = , c(y) = , d(y) =



y, d(y) = –




y,

c(y) = –



y +




y –



y +



y,

c(y) = –


,
y +


,

y –



y +

,
,

y –



y,

c(y) =


,
y –


,

y +


,
y –


,

y,

c(y) = –


,
y +


,

y –


,
y –




y +



,

d(y) = –



y –


,

y –



y +



y,

d(y) = –


,
y +


,

y +
,
,

y –



y,

d(y) =


,
y –


,

y +


,
y +




y,

d(y) = –


,
y +


,

y –


,
y –




y.

Proof Let u ∈ W 
 [, ] and  ≤ y ≤ . Define Ry by (). Note that

R′
y(η) =

{∑
i= ici+(y)ηi–, η < y,

∑
i= idi+(y)ηi–, η > y,

R′′
y (η) =

{∑
i= i(i + )ci+(y)ηi–, η < y,

∑
i= i(i + )di+(y)ηi–, η > y,
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R()
y (η) =

{∑
i= i(i + )(i + )ci+(y)ηi–, η < y,

∑
i= i(i + )(i + )di+(y)ηi–, η > y,

R()
y (η) =

{∑
i= i(i + )(i + )(i + )ci+(y)ηi–, η < y,

∑
i= i(i + )(i + )(i + )di+(y)ηi–, η > y,

and

R()
y (η) =

{
c(y), η < y,
d(y), η > y.

By Definition  and integration by parts we have

〈
u(η), Ry(η)

〉
W 


= u()Ry() + u′()R′

y() + u′()R′
y() + u′′()R()

y ()

– u′′()R()
y () – u′()R()

y () + u′()R()
y () +

∫ 


u′(η)R()

y (η) dη

= u′()
(
R′

y() + R()
y ()

)
+ u′()

(
R′

y() – R()
y ()

)

+ u′′()R()
y () – u′′()R()

y ()

+
∫ y


R()

y (η)u′(η) dη+
∫ 

y
R()

y (η)u′(η) dη

= u′()
(
c(y) + c(y)

)
– u′′()

(
c(y)

)

+ u′()
(
d(y) + d(y) + d(y) – d(y) – d(y)

)

+ u′′()
(
d(y) + d(y) + d(y)

)

+
∫ y


c(y)u(η) dη+

∫ 

y
d(y)u(η) dη

= u(y)
(




)
= u(y).

This completes the proof. �

Definition  [] We define the space W (,)
 (�) by

W (,)
 (�) =

{
u | ∂u

∂η∂τ is completely continuous in � = [, ] × [, τ ],
∂u

∂η∂τ ∈ L(�), u(η, ) = , ∂u(η,)
∂τ

= , u(, τ ) = , u(, τ ) = 

}

with the inner product and norm

〈u, v〉W (,)


=
∑

i=

∫ τ



[
∂

∂τ 
∂ i

∂ηi u(, τ )
∂

∂τ 
∂ i

∂ηi v(, τ )
]

dτ

+
∑

j=

〈
∂ j

∂τ j u(·, ),
∂ j

∂τ j v(·, )
〉

W 


+
∫ 



∫ τ



[
∂

∂η
∂

∂τ  u(η, τ )
∂

∂η
∂

∂τ  v(η, τ )
]

dτ dη, u, v ∈ W (,)
 (�)
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and

‖u‖W =
√〈u, u〉W , u ∈ W (,)

 (�).

Theorem . Let K(y,s)(η, τ ) be a reproducing kernel function W (,)
 (�). We have

K(y,s)(η, τ ) = Ry(η)rs(τ ),

and for any u ∈ W (,)
 (�),

u(y, s) =
〈
u(η, τ ), K(y,s)(η, τ )

〉
W (,)



and

K(y,s)(η, τ ) = K(η,τ )(y, s).

Definition  [] We define the space Ŵ (,)
 (�) by

Ŵ (,)
 (�) =

{
u | u is completely continuos in � = [, ] × [, τ ],

∂u
∂η∂τ

∈ L(�)

}

with the inner product and norm

〈u, v〉Ŵ (,)


=
∫ τ



[
∂

∂τ
u(, τ )

∂

∂τ
v(, τ )

]
dτ +

〈
u(·, ), v(·, )

〉
G



+
∫ 



∫ τ



[
∂

∂η

∂

∂τ
u(η, τ )

∂

∂η

∂

∂τ
v(η, τ )

]
dτ dη, u, v ∈ Ŵ (,)



and

‖u‖Ŵ (,)


=
√

〈u, u〉Ŵ (,)


, u ∈ Ŵ (,)
 .

Ŵ (,)
 (�) is a reproducing kernel space, and its reproducing kernel function G(y,s)(η, τ ) is

given as

G(y,s)(η, τ ) = Qy(η)qs(τ ).

3 Solutions in W (3,3)
2 (�)

In this section, we give the solution of ()-() in the reproducing kernel space W (,)
 (�).

We define the linear operator L : W (,)
 (�) → Ŵ (,)

 (�) as

Lv =
∂v
∂τ  (η, τ ) –

∂v
∂η (η, τ ), v ∈ W (,)

 (�).

If we homogenize the conditions of the model problem ()-(), then it changes to the fol-
lowing problem:

{
Lv = M(η, τ ), (η, τ ) ∈ � = [, ] × [, τ ],
v(η, ) = ∂v

∂τ
(η, ) = v(, τ ) = v(, τ ) = ,

()
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where

M(η, τ ) =
(η – )f (η)h′′

 (τ )
h()

– ηh′′
(τ ) –

f ′(η)h(τ )
h()

–
(η – )f ′′(η)h(τ )

h()

+ f ′(η) + ηf ′′(η) + τ

(
g ′′(η) +

g()f ′(η)
h()

+
(η – )f ′′(η)g()

h()

)

– sin

[
v(η, τ ) – (η–)f (η)h(τ )

h() + ηh(τ ) + ηf (η) – ηh()
+τ (g(η) + (η–)f (η)g()

h() – ηg())

]

and

v(η, τ ) = u(η, τ ) +
(η – )f (η)h(τ )

h()
– ηh(τ ) – ηf (η) + ηh()

– τ

(
g(η) +

(η – )f (η)g()
h()

– ηg()
)

with h() �= .

Lemma . The operator L is bounded linear.

Proof By Definition  we have

‖Lu‖
Ŵ (,)


=
∫ τ



[
∂

∂τ
Lu(, τ )

]

dτ +
〈
Lu(·, ), Lu(·, )

〉
G



+
∫ 



∫ τ



[
∂

∂η

∂

∂τ
Lu(η, τ )

]

dτ dη

=
∫ τ



[
∂

∂τ
Lu(, τ )

]

dτ +
[
Lu(, )

]

+
∫ 



[
∂

∂η
Lu(η, )

]

dη +
∫ 



∫ τ



[
∂

∂η

∂

∂τ
Lu(η, τ )

]

dτ dη.

Since

u(η, τ ) =
〈
u(ξ ,γ ), K(η,τ )(ξ ,γ )

〉
W (,)


,

Lu(η, τ ) =
〈
u(ξ ,γ ), LK(η,τ )(ξ ,γ )

〉
W (,)


,

from the continuity of K(η,τ )(ξ ,γ ) we have

∣∣Lu(η, τ )
∣∣ ≤ ‖u‖W (,)



∥∥LK(η,τ )(ξ ,γ )
∥∥

W (,)


= a‖u‖W (,)


.

Accordingly, for i = , ,

∂ i

∂ηi Lu(η, τ ) =
〈
u(ξ ,γ ),

∂ i

∂ηi LK (η,τ )(ξ ,γ )
〉

W (,)


,

∂

∂τ

∂ i

∂ηi Lu(η, τ ) =
〈
u(ξ ,γ ),

∂

∂τ

∂ i

∂ηi LK(η,τ )(ξ ,γ )
〉

W (,)


,
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and then
∣∣
∣∣

∂ i

∂ηi Lu(η, τ )
∣∣
∣∣ ≤ ei‖u‖W (,)


,

∣∣
∣∣

∂

∂τ

∂ i

∂ηi Lu(η, τ )
∣∣
∣∣ ≤ fi‖u‖W (,)


.

Therefore,

∥
∥Lu(η, τ )

∥
∥

Ŵ (,)


≤
∑

i=

(
e

i + τ f 
i
)‖u‖

W (,)


= A‖u‖
W (,)


,

where A =
∑

i=(e
i + τ f 

i ). �

Now, choose a countable dense subset {(η, τ), (η, τ), . . . } in � and define

ϕi(η, τ ) = G(ηi ,τi)(η, τ ), 	i(η, τ ) = L∗ϕi(η, τ ),

where L∗ is the adjoint operator of L. The orthonormal system {	̂i(η, τ )}∞i= of W (,)
 (�)

can be obtained by the Gram-Schmidt orthogonalization of {	i(η, τ )}∞i= as

	̂i(η, τ ) =
i∑

k=

βik	k(η, τ ).

Theorem . Assume that {(ηi, τi)}∞i= is dense in �. Then {	i(η, τ )}∞i= is a complete system
in W (,)

 (�), and

	i(η, τ ) = L(y,s)K(y,s)(η, τ )|(y,s)=(ηi ,τi).

Proof We have

	i(η, τ ) =
(
L∗ϕi

)
(η, τ ) =

〈(
L∗ϕi

)
(y, s), K(η,τ )(y, s)

〉
W (,)



=
〈
ϕi(y, s), L(y,s)K(η,τ )(y, s)

〉
Ŵ (,)



= L(y,s)K(η,τ )(y, s)|(y,s)=(ηi ,τi)

= L(y,s)K(y,s)(η, τ )|(y,s)=(ηi ,τi).

Clearly, 	i(η, τ ) ∈ W (�). For each fixed u(η, τ ) ∈ W (,)
 (�), if

〈
u(η, τ ),	i(η, τ )

〉
W (,)


= , i = , , . . . ,

then

〈
u(η, τ ),

(
L∗ϕi

)
(η, τ )

〉
W (,)


=
〈
Lu(η, τ ),ϕi(η, τ )

〉
Ŵ (,)


= (Lu)(ηi, τi) = , i = , , . . . .

Since {(ηi, τi)}∞i= is dense in �, (Lu)(η, τ ) = . Therefore, u =  by the existence of L–. �

Theorem . If {(ηi, τi)}∞i= is dense in �, then the solution of () is

u =
∞∑

i=

i∑

k=

βikM(ηk , τk)	̂i(η, τ ). ()
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Proof The system {	i(η, τ )}∞i= is complete in W (,)
 (�). Therefore, we get

u =
∞∑

i=

〈u, 	̂i〉W (,)


	̂i =
∞∑

i=

i∑

k=

βik〈u,	k〉W (,)


	̂i =
∞∑

i=

i∑

k=

βik
〈
u, L∗ϕk

〉
W (,)


	̂i

=
∞∑

i=

i∑

k=

βik〈Lu,ϕk〉Ŵ (,)


	̂i =
∞∑

i=

i∑

k=

βik〈Lu, G(ηk ,τk )〉Ŵ (,)


	̂i

=
∞∑

i=

i∑

k=

βikLu(ηk , τk)	̂i =
∞∑

i=

i∑

k=

βikM(ηk , τk)	̂i.

This completes the proof. �

Now an approximate solution un can be obtained from the n-term intercept of the exact
solution u:

un =
n∑

i=

i∑

k=

βikM(ηk , τk)	̂i(η, τ ).

Obviously,

∥∥un(η, τ ) – u(η, τ )
∥∥ →  (n → ∞).

4 The method implementation
If M is linear, then the analytical solution of () can be obtained directly by (). If M is
nonlinear, then the solution of () can be obtained either by () or by an iterative method
as follows. We construct an iterative sequence un by putting

{
any fixed u ∈ W (,)

 ,
un =

∑n
i= Ai	̂i,

()

where
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A = βM(ηk , τk),
A =

∑
k= βkM(ηk , τk),

· · ·
An =

∑n
k= βnkM(ηk , τk).

()

Lemma . If

un
‖·‖→ û, ‖un‖ is bounded, (ηn, τn) → (y, s), and M(η, τ ) is continuous,

then

M(ηn, τn) → M(y, s).

Proof By the reproducing property and Cauchy-Schwarz inequality we have
∣
∣u(η, τ )

∣
∣ =

∣
∣〈u(y, s), K(η,τ )(y, s)

〉
W (,)



∣
∣

≤ ∥∥u(y, s)
∥∥

W (,)


∥∥K(η,τ )(y, s)
∥∥

W (,)


= N
∥∥u(y, s)

∥∥
W (,)


.
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Thus, we obtain
∣
∣∣
∣
∂u(η, τ )

∂η

∣
∣∣
∣ =

∣
∣∣
∣

〈
u(y, s),

∂K(η,τ )(y, s)
∂η

〉

W (,)


∣
∣∣
∣ ≤

∥∥u(y, s)
∥∥

W (,)


∥
∥∥
∥
∂K(η,τ )(y, s)

∂η

∥
∥∥
∥

W (,)


= N
∥
∥u(y, s)

∥
∥

W (,)


and
∣∣
∣∣
∂u(η, τ )

∂τ

∣∣
∣∣ =

∣∣
∣∣

〈
u(y, s),

∂K(η,τ )(y, s)
∂τ

〉

W (,)


∣∣
∣∣ ≤

∥
∥u(y, s)

∥
∥

W

∥∥
∥∥
∂K(η,τ )(y, s)

∂τ

∥∥
∥∥

W (,)


= N
∥∥u(y, s)

∥∥
W (,)


.

One the one hand, we have

∣∣un–(y, s) – û(y, s)
∣∣ =

∣∣〈un–(η, τ ) – û(η, τ ), K(y,s)(η, τ )
〉
W (,)



∣∣

≤ ∥
∥un–(η, τ ) – û(η, τ )

∥
∥

W (,)


∥
∥K(η,τ )(y, s)

∥
∥

W (,)


= N
∥∥un–(η, τ ) – û(η, τ )

∥∥
W (,)


;

on the other hand, we get

∣∣un–(ηn, τn) – û(y, s)
∣∣ =

∣∣un–(ηn, τn) – un–(y, s) + un–(y, s) – û(y, s)
∣∣

≤ ∣∣∇un–(ξ ,η)
∣∣∣∣(ηn, τn) – (y, s)

∣∣ +
∣∣un–(y, s) – û(y, s)

∣∣.

Using these inequalities with un
‖·‖→ û, we find

∣∣un–(y, s) – û(y, s)
∣∣ → ,

∣∣∇un–(ξ ,η)
∣∣≤

√
c

 +c
‖u‖W (,)


.

Therefore, as n → ∞, using the boundedness of ‖un‖ gives

∣
∣un–(ηn, τn) – û(y, s)

∣
∣ → .

As n → ∞, with the continuity of M(η, τ ) we get

M(ηn, τn) → M(y, s).

This completes the proof. �

Theorem . Assume that ‖un‖ is a bounded in () and that () has a unique solution. If
{(ηi, τi)}∞i= is dense in W (,)

 (�), then the n-term approximate solutions un(η, τ ) converge
to the analytical solution u(η, τ ) of (), and

u(η, τ ) =
∞∑

i=

Ai	̂i(η, τ ),

where Ai is given by ().



Akgül et al. Advances in Difference Equations  (2016) 2016:8 Page 11 of 20

Proof First, we prove the convergence of un(η, τ ). From () we infer that

un+(η, τ ) = un(η, τ ) + An+	̂n+(η, τ ),

The orthonormality of {	̂i}∞i= yields that

‖un+‖ = ‖un‖+A
n+ =

n+∑

i=

A
i . ()

In terms of (), we have that ‖un+‖ > ‖un‖. Since ‖un‖ is bounded, ‖un‖ is convergent,
and there exists a constant c such that

∞∑

i=

A
i = c.

This implies that

{Ai}∞i= ∈ l.

If m > n, then

‖um – un‖ = ‖um – um– + um– – um– + · · · + un+ – un‖

≤ ‖um – um–‖ + ‖um– – um–‖ + · · · + ‖un+ – un‖.

Since

‖um – um–‖ = A
m,

we have

‖um – un‖ =
m∑

l=n+

A
l →  as n → ∞.

The completeness of W (,)
 (�) shows that un → û as n → ∞. We have

û(η, τ ) =
∞∑

i=

Ai	̂i(η, τ ).

Note that

(L̂u)(η, τ ) =
∞∑

i=

AiL	̂i(η, τ )

and

(L̂u)(ηl, τl) =
∞∑

i=

AiL	̂i(ηl, τl) =
∞∑

i=

Ai
〈
L	̂i(η, τ ),ϕl(η, τ )

〉
Ŵ (,)



=
∞∑

i=

Ai
〈
	̂i(η, τ ), L∗ϕl(η, τ )

〉
W (,)


=

∞∑

i=

Ai
〈
	̂i(η, τ ),	l(η, τ )

〉
W (,)


.
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Therefore,

i∑

l=

βil(L̂u)(ηl, τl) =
∞∑

i=

Bi

〈

	̂i(η, τ ),
i∑

l=

βil	l(η, τ )

〉

W (,)


=
∞∑

i=

Bi
〈
	̂i(η, τ ), 	̂l(η, τ )

〉
W (,)


= Al.

In view of (), we have

L̂u(ηl, τl) = M(ηl, τl).

Since {(ηi, τi)}∞i= is dense in �, for each (y, s) ∈ �, there exists a subsequence {(ηnj , τnj )}∞j=

such that

(ηnj , τnj ) → (y, s) (j → ∞).

We know that

L̂u(ηnj , τnj ) = M(ηnj , τnj ).

Let j → ∞; by the continuity of M we have

(L̂u)(y, s) = M(y, s),

which proves that û(η, τ ) satisfies (). �

We obtain an approximate solution ζn(t) as

ζn(t) =
n∑

i=

i∑

k=

σikz
(
tk , ζ (tk)

)
η̂i(t). ()

Remark Let consider a countable dense set

{
(η, τ), (η, τ), . . .

} ∈ �

and define

ϕi = G(ηi ,τi), 	i = L∗ϕi, 	̂i=
i∑

k=

βik	k .

Then the coefficients βik can be found by

β =


‖	‖ , βii =


√‖	i‖ –
∑i–

k= c
ik

, βij =
–
∑i–

k=j cikβkj
√‖	i‖ –

∑i–
k= c

ik

, cik = 〈	i, 	̂k〉.
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5 Numerical experiments
In this section, we solve two examples were solved with RKM. We show our results by
tables and figures. The numerical results are compared with exact solutions and existing
numerical approximations to illustrate the efficiency and high accuracy of the method.
The method presents the solutions in terms of convergent series with easily computable
components and improves the convergence of the series solution. The method was used

Table 1 Numerical results for Example 5.1

η τ ES AS AE Time
CPU (s)

0.1 0.1 0.2938926262 0.2938930965 4.703× 10–7 3.860
0.2 0.2 0.4755282582 0.4755313577 3.0995× 10–6 3.016
0.3 0.3 0.4755282582 0.4755183355 9.9227× 10–6 2.984
0.4 0.4 0.2938926261 0.2939007109 8.0848× 10–6 3.000
0.5 0.5 0.0 0.0000282140 2.82140× 10–5 3.094
0.6 0.6 –0.2938926264 –0.2939063137 1.36873× 10–5 3.031
0.7 0.7 –0.4755282583 –0.4755305759 2.3176× 10–6 3.031
0.8 0.8 –0.4755282581 –0.4755277748 4.833× 10–7 2.953
0.9 0.9 –0.2938926260 –0.2938966580 4.0320× 10–6 3.204
1.0 1.0 0.0 –3.690702068× 10–7 3.690702068× 10–7 3.578

Table 2 Numerical results for Example 5.1 with τ = 1

η ES
AS

AE
RE

–0.80 0.5877852522 1.756× 10–7

0.5877854278 2.987485639× 10–7

–0.40 0.9510565165 7.70× 10–8

0.9510565935 8.096259125× 10–8

0.40 –0.9510565165 7.70× 10–8

–0.9510565935 8.096259125× 10–8

0.80 –0.5877852522 1.756× 10–7

–0.5877854278 2.987485639× 10–7

Table 3 Comparison of AE and RE for Example 5.1

η AE [27] AE [RKM] RE [27] RE [RKM]

–0.80 1.94E–05 1.756E–07 3.29E–05 2.987485639E–7
–0.40 2.84E–07 7.700E–08 2.98E–07 8.096259125E–8
0.40 2.84E–07 7.700E–08 2.98E–07 8.096259125E–8
0.80 1.94E–05 1.756E–07 3.29E–05 2.987485639E–7

Figure 1 Plots of RKM solution for Example 5.1.
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Figure 2 Plots of absolute error for Example 5.1.

Figure 3 Plots of absolute error for Example 5.1.

Figure 4 Plots of absolute error for Example 5.1.

in a direct way without using restrictive assumptions. Throughout this work, all compu-
tations are implemented by using Maple  software package.

Example . Let us consider the problem with the following initial conditions:

u(η, ) = sin(πη),
∂u
∂τ

(η, ) = .

The exact solution is []

u(η, τ ) =


(
sinπ (η + τ ) + sinπ (η – τ )

)
.

After homogenizing the initial conditions and using our method, we obtain the results
presented in Tables - and Figures -.
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Table 4 Numerical results for Example 5.2

η τ ES AS AE RE Time
CPU (s)

0.1 0.1 0.396702532289366215 0.39670253228936612 9.43× 10–17 2.37× 10–16 0.874
0.2 0.2 0.77443854423966038 0.774438544239660056 3.24× 10–16 4.19× 10–16 0.843
0.3 0.3 1.11790876976715877 1.117908769767159201 4.29× 10–16 3.83× 10–16 0.874
0.4 0.4 1.41753016381685945 1.417530163816859722 2.65× 10–16 1.87× 10–16 0.952
0.5 0.5 1.66943886908587781 1.669438869085877479 3.33× 10–16 1.99× 10–16 0.874
0.6 0.6 1.87415961287513759 1.874159612875137133 4.57× 10–16 2.44× 10–16 0.904
0.7 0.7 2.03492391748435838 2.034923917484357432 9.47× 10–16 4.65× 10–16 0.921
0.8 0.8 2.15626165034295019 2.156261650342951155 9.63× 10–16 4.46× 10–16 0.967
0.9 0.9 2.24305837947587106 2.243058379475871257 1.88× 10–16 8.39× 10–17 0.999
1.0 1.0 2.30002473031364741 2.300024730313647325 8.66× 10–17 3.76× 10–17 0.967

Table 5 Numerical results for Example 5.2 with τ = 1

η ES AS AE RE Time
CPU (s)

–0.80 2.5681097221289163512 2.5681097220865804301 4.2× 10–11 1.6× 10–11 0.842
–0.40 2.9858433445292456583 2.9858433445285564413 6.8× 10–13 2.3× 10–13 0.873
0.00 3.1415926535897932385 3.1415926535905335235 7.4× 10–13 2.3× 10–13 0.936
0.40 2.9858433445292456583 2.9858433445285564413 6.8× 10–13 2.3× 10–13 0.686
0.80 2.5681097221289163512 2.5681097220865804301 4.2× 10–11 1.6× 10–11 0.733

Table 6 Comparison of absolute and relative errors for Example 5.2

η AE
[27]

AE
[RKM]

RE
[27]

RE
[RKM]

–0.80 1.53E–08 4.23359211E–11 5.96E–09 1.64852462241777932E–11
–0.40 3.54E–10 6.89217E–13 1.18E–10 2.30828252012217808E–13
0.00 1.62E–10 7.40285E–13 5.15E–11 2.35640034093567477E–13
0.40 3.54E–10 6.89217E–13 1.18E–10 2.30828252012217808E–13
0.80 1.53E–08 4.23359211E–11 5.96E–09 1.64852462241777932E–11

Table 7 Numerical results for Example 5.2 with η = 2.5

τ ES AS AE RE Time
CPU (s)

0.02 0.013045652299470337726 0.013045652299470429228 9.15× 10–17 7.01× 10–15 1.014
0.04 0.026091027076458045383 0.026091027076458055762 1.03× 10–17 3.97× 10–16 0.905
0.06 0.039135846843901571207 0.039135846843901591760 2.× 10–17 5.25× 10–16 0.873
0.08 0.05217983418557021854 0.052179834185570326022 1.07× 10–16 2.05× 10–15 0.842
0.1 0.065222711791451326376 0.06522271179145110938 2.16× 10–16 3.32× 10–15 0.858
0.3 0.19552959072837645953 0.19552959072837616718 2.9× 10–16 1.49× 10–15 0.749

Table 8 Numerical solutions for Example 5.2 with η = 5.0

τ ES AS AE RE Time
CPU (s)

0.02 0.0010780225516042560299 0.0010780225516046950169 4.3× 10–16 4.07× 10–13 1.233
0.04 0.0021560449466078880312 0.0021560449466103154491 2.4× 10–15 1.12× 10–12 0.655
0.06 0.003234067028410408468 0.0032340670284064571408 3.9× 10–15 1.22× 10–12 0.811
0.08 0.0043120886404116027904 0.0043120886404125186434 9.1× 10–16 2.12× 10–13 0.936
0.1 0.0053901096260116659256 0.0053901096260170153463 5.3× 10–15 9.92× 10–13 1.092
0.3 0.016170250578558993341 0.016170250578577492240 1.8× 10–14 1.14× 10–12 1.139
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Table 9 Numerical results for Example 5.2 with η = 7.5

τ ES AS AE RE Time
CPU (s)

0.02 0.0000884934721388573766 0.0000884934721392853003 4.2× 10–16 4.8× 10–12 0.827
0.04 0.0001769869441910896592 0.0001769869441950110056 3.9× 10–15 2.2× 10–11 0.749
0.06 0.0002654804160700717544 0.0002654804160796786727 9.6× 10–15 3.6× 10–11 0.889
0.08 0.0003539738876891785695 0.0003539738876799533295 9.2× 10–15 2.6× 10–11 0.967
0.1 0.0004424673589617850136 0.0004424673589703796322 8.5× 10–15 1.9× 10–11 0.812
0.3 0.0013274020335728111501 0.0013274020333220852196 2.5× 10–13 1.8× 10–10 1.326

Table 10 Numerical results for Example 5.2 with η = 10.0

τ ES AS AE RE Time
CPU (s)

0.02 0.00000726398874701739435 0.0000072639887470122372 5.1× 10–18 7.0× 10–13 0.874
0.04 0.00001452797749398687768 0.0000145279774939233104 6.3× 10–17 4.3× 10–12 0.936
0.06 0.00002179196624086053894 0.0000217919662408353413 2.5× 10–17 1.1× 10–12 0.998
0.08 0.00002905595498759046712 0.0000290559549867947262 7.9× 10–16 2.7× 10–11 1.170
0.1 0.00003631994373412875118 0.000036319943734399877 2.7× 10–16 7.4× 10–12 0.858
0.3 0.00010895983117843073892 0.0001089598311794268356 9.9× 10–16 9.1× 10–12 0.889

Table 11 Comparison of absolute errors for Example 5.2 with η = 2.5 and η = 5.0

τ AE
RKM
η = 2.5

AE
MHPM
η = 2.5 [29]

AE
ADM
η = 2.5 [29]

AE
RKM
η = 5.0

AE
MHPM
η = 5.0 [29]

AE
ADM
η = 5.0 [29]

0.02 9.15E–17 9.25104E–8 9.25104E–8 4.3E–16 5.22002E–11 5.22002E–11
0.04 1.03E–17 7.40084E–7 7.40084E–7 2.4E–15 4.17602E–10 4.17602E–10
0.06 2.E–17 2.49778E–6 2.49778E–6 3.9E–15 1.40941E–9 1.40941E–9
0.08 1.07E–16 5.92068E–6 5.92068E–6 9.1E–16 3.34082E–9 3.34082E–9
0.1 2.16E–16 1.15638E–5 1.15638E–5 5.3E–15 6.52506E–9 6.52506E–9
0.3 2.9E–16 3.12304E–4 3.12304E–4 1.8E–14 1.76230E–7 1.76230E–7

Table 12 Comparison of absolute errors for Example 5.2 with η = 7.5 and η = 10.0

τ AE
RKM
η = 7.5

AE
MHPM
η = 7.5 [29]

AE
ADM
η = 7.5 [29]

AE
RKM
η = 10.0

AE
MHPM
η = 10.0 [29]

AE
ADM
η = 10.0 [29]

0.02 4.2E–16 2.88750E–14 2.88750E–14 5.1E–18 1.59700E–17 1.59700E–17
0.04 3.9E–15 2.31000E–13 2.31000E–13 6.3E–17 1.27763E–16 1.27763E–16
0.06 9.6E–15 7.79626E–13 7.79626E–13 2.5E–17 4.31201E–16 4.31201E–16
0.08 9.2E–15 1.84800E–12 1.84800E–12 7.9E–16 1.02210E–15 1.02210E–15
0.1 8.5E–15 3.60939E–12 3.60939E–12 2.7E–16 1.99629E–15 1.99629E–15
0.3 2.5E–13 9.74833E–11 9.74833E–11 9.9E–16 5.39165E–14 5.39165E–14

Table 13 Numerical results for Example 5.2 with η = 0.06

τ ES AS AE RE Time
CPU (s)

0.02 0.07984560896434381352 0.079845608964343853426 3.99× 10–17 4.99× 10–16 0.889
0.04 0.15962763841261813303 0.15962763841261815794 2.49× 10–17 1.56× 10–16 1.232
0.06 0.23928281206851416623 0.23928281206851423765 7.14× 10–17 2.98× 10–16 0.920
0.08 0.31874845652859878735 0.31874845652859888367 9.63× 10–17 3.02× 10–16 0.904
0.1 0.39796279376194770105 0.39796279376194771082 9.77× 10–18 2.45× 10–17 0.858
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Table 14 Numerical results for Example 5.2 with η = 0.06

τ ES AS AE RE Time
CPU (s)

0.02 0.079734118548588251664 0.079734118548588199339 5.23× 10–17 6.56× 10–16 0.811
0.04 0.15940492340173257962 0.15940492340173286314 2.83× 10–16 1.77× 10–15 0.796
0.06 0.23894940199533129661 0.23894940199533120491 9.17× 10–17 3.83× 10–16 0.889
0.08 0.31830514045634341908 0.31830514045634405770 6.38× 10–16 2.0× 10–15 0.982
0.1 0.39741061409807554739 0.39741061409807569743 1.5× 10–16 3.77× 10–16 0.811

Table 15 Numerical results for Example 5.2 with η = 0.1

τ ES AS AE RE Time
CPU (s)

0.02 0.079591154289758679228 0.079591154289759560107 8.8× 10–16 1.1× 10–14 0.874
0.04 0.15911933466140392832 0.15911933466140305331 8.75× 10–16 5.49× 10–15 0.874
0.06 0.23852186564169922344 0.23852186564169936963 1.46× 10–16 6.12× 10–16 0.920
0.08 0.31773666512002042948 0.31773666512002071579 2.86× 10–16 9.01× 10–16 1.295
0.1 0.396702532289366215 0.39670253228936612 9.43× 10–17 2.37× 10–16 0.874

Table 16 Comparison of absolute errors for Example 5.2

τ AE
RKM
η = 0.06

AE
MDM
η = 0.06 [30]

AE
RKM
η = 0.08

AE
MDM
η = 0.08 [30]

AE
RKM
η = 0.1

AE
MDM
η = 0.1 [30]

0.02 3.99E–17 2.22045E–16 5.23E–17 4.49640E–15 8.8E–16 4.47420E–14
0.04 2.49E–17 2.22045E–16 2.83E–16 4.44089E–15 8.75E–16 4.44644E–14
0.06 7.14E–17 1.94289E–16 9.17E–17 4.38538E–15 1.46E–16 4.41314E–14
0.08 9.63E–17 1.94289E–16 6.38E–16 4.38538E–15 2.86E–16 4.36318E–14
0.1 9.77E–18 1.94289E–16 1.5E–16 4.32987E–15 9.43E–17 4.29656E–14

Figure 5 Plots of absolute error for Example 5.1.

Example . We solve the SG equation () in the region � with the following initial con-
ditions:

u(η, ) = ,
∂u
∂τ

(η, ) =  sec h(η).

The exact solution is []

u(η, τ ) =  arctan
(
sec h(η)τ

)
.

After homogenizing the initial conditions by RKM, we get the results presented in Ta-
bles - and Figures -.
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Figure 6 Plots of absolute error for Example 5.1.

Figure 7 Plots of absolute error for Example 5.1.

Figure 8 Plots of absolute error for Example 5.1.

Remark In Tables -, we abbreviate the exact solution and the approximate solution by
AS and ES, respectively. AE stands for the absolute error, that is, the absolute value of the
difference of the exact and approximate solutions, whereas RE indicates the relative error,
that is the absolute error divided by the absolute value of the exact solution.

6 Conclusion
Linear and nonlinear SG equations were investigated by RKM in this work. Homogeniz-
ing the initial and boundary conditions is very crucial for this method. We gave a general
transformation to homogenize the conditions. This transformation will be very useful for
researches who study RKM. We obtained very accurate numerical results and showed
them by tables and figures. The computational results confirmed the efficiency, reliability,
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and accuracy of our method, which is easily applicable. RKM produced a rapidly conver-
gent series with easily computable components using symbolic computation software. The
results obtained by RKM are very effective and convenient with less computational work
and time.
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