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Abstract

In this work, we consider the delta shape operator of a surface parameterized by the
product of two arbitrary time scales. In particular, we present a matrix representation
of the delta shape operators with respect to partial delta derivatives.
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1 Introduction

The calculus of time scales, which has recently received a lot of attention, was introduced
by Hilger in his PhD thesis in 1988 (supervised by Aulbach) in order to create a theory
that can unify discrete and continuous analysis [1]. Then Hilger and Aulbach published
[1] and [2] in 1990. A time scale is an arbitrary nonempty closed subset of the real num-
bers. Thus R, Z, N, Ng are examples of time scales [1, 2]. Linear and nonlinear Hamiltonian
systems were studied on time scales by Ahlbrandt et al. in [3]. The authors unify symplec-
tic flow properties of discrete and continuous Hamiltonian systems. An introduction to
the study of dynamic equations on time scales was developed in [4] in 2001. A general-
ization of the notion of regular curve, tangent vector, and natural parametrization were
introduced by Guseinov and Ozyilmaz in [5]. The theory of time scales has proved to
be useful in the mathematical modeling of several important dynamic processes [6—8].
In [9], the notion of pseudospherical surfaces in asymptotic coordinates on time scales
was presented by Cieslinski. Thus the author extended the well-known notions of discrete
and smooth pseudospherical surfaces. Also they presented the Gaussian curvature of the
surface. Some applications of a vector field along a curve and a derivative mapping on
a time scale were studied by Kusak and Caliskan in [10]. Some properties of directional
nabla-derivative according to vector fields and curves on n-dimensional time scales were
presented by Aktan et al. in [11]. The normal and osculating planes of the curves on time
scales were developed by Pasali Atmaca in [12]. Also the authors defined the concept of
vector-valued functions on time scales. A connection of a vector field in the direction of
another vector field was accomplished on time scales in [13]. The forward curvature of
a curve and some its properties were studied by Seyyidoglu et al. in [14]. Nabla 1-forms
for multivariable functions on an n-dimensional time scale were presented Aktan et al. in
[15]. In [16, 17], Lie brackets, the parameter map, and the velocity vector are introduced.
A theoretical framework for surfaces parametrized by the product of two arbitrary time
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scales was developed by Pasali Atmaca and Akguller in [18]. The authors studied the met-
ric properties of the surfaces. The surface normal vector, the first fundamental form, and
the length measurement were presented in the paper. Also some fundamental properties
as regards differential geometry can be obtained in [19, 20].

The general idea in this paper is to investigate the matrix representation of the delta
shape operator (delta Weingarten transformation) which was not considered in the liter-
ature before. Hence we survey here the Weingarten delta shape operator which combines
discrete space and continuous space on time scales.

2 Preliminaries

Let n € N be fixed. Further, for each i € {1,...,n} let T; denote a time scale, that is, T;
is a nonempty closed subset of the real numbers R. Let us set A" =Ty x --- x T, = {t =
(t,...,t;) : t; € T; foralli € {1,...,n}}. We call A" an n-dimensional time scale. The set
A" is a complete metric space with the metric d defined by d(¢,s) = (3 |t — si||2)% for
t,se A" [7].

Lemma 2.1 The delta derivation of the inner product for the two vector-valued functions
x(t) and y(t) is defined with

050
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050
At

a 0
E(ﬁC(t),y(t)) = % -y(8) + 27 (2) -

0

~ [12].

-7 (8) + x(2) -

Lemma 2.2 The delta derivation of the vector product for the two vector-valued functions
x(t) and y(t) is [12]

%(’C(t) x (1)) = BZ—(;) X y(t) + 4% (£) x ai_(:)
ox(t) By_(t)

s x 7 () + x(t) X IR

Definition 2.1 Suppose that the function f is o;-completely delta differentiable at the
point (£%,5°) € A%. Then the directional delta derivative of f at (t°,s°) in the direction of

the vector w(w;, w,) exists and is expressed by the formula [7]

°,°) (%) af(0x(t°),s°)
Aw  Agt e Ays

Wws.

Definition 2.2 The metric of a surface S is determined by the partial A-derivatives of the
surface patch ¢. Let the cross product on time scales be a binary operation on the time

scale spaces A% and be denoted by the symbol x. Aassuming that 2—‘1’; X Aa—‘;s # 0, the tangent
[2

plane to S is spanned by the two tangent vectors 1% and ¢ The surface normal vector
1t Ags

is orthogonal to both tangent vectors and can be computed as [18]

dp @
_ A X ps
T ey de g
127 X 25l
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Definition 2.3 Let V and W be vector field on the space A%. By considering the delta
covariant derivative of W with respect to V implies the following equation:

(AvW)(p) = Ay W,
and the following mapping:

A T(Az) X T(Az) — T(Az)

(Vr W) - AVW;
is called ‘the delta nature connection’ on the time scale [13].

Cﬁl is the set of continuous functions which are o1-completely delta differentiable [5].

Theorem 2.1 Let V, W, Y, Z be vector fields on A%, and f,g € Cﬁl be given for every a,b €

R, then we have some properties of the delta nature connection as follows [13]:

i) Av(fY+g2)=fAvY +gAvZ;

(ii) AfVJrgWY :fAVY"'gAWY;

(i) Ay(fY)= %Y(ol(to),s°) +f(01(t°),01(s%)) AvY

af(ol(t‘)),s")}i oy 9 |
Al V1 axi’

ad
+ 1V + V1
{ MW A,V =
2

. 8,‘ 8zi 0
(V) AV(Y,Z)=(AvY,2) + (AvZY) -y
i=1

A VL ALV, Bx;

2
0z; 3yi(01(¢°),s°) @

— U2 Vi —
Ha 1;A1VI A2V2 8x,-

Definition 2.4 The Lie parenthesis operator has the expression

Vs, A%
Vi, Vs =V, Vo =V, V; — V] -—V .
Wi z]v(f) V2 v, V1t VI:Vxl 1[f] YV 2[f]:|

Similarly if the delta derivation of the Lie parenthesis operator is taken:

f1- —Wa[f]

Vs LAY
Wi, V- =Ay, Vo= Ay, V; —V .
% 2]A(f) v, V2 Vs 1+M|:Axl 1 Ay j|

Here v = p(x) —x and u = o (x) —x [16].

3 Main result

Definition 3.1 Let M is a surface and N = (N7, N»,...,N,,) be the normal vector field of
M; x (M) be the vector field space of M; T;(P) be the tangent space of M at the point P;
and A is the delta nature connection in A”; the normal vector N is o1-completely delta
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differentiable; V € x (M) is a vector field;

Sa(V)=-AyN =—~(V[Ni], VIN2], ..., VIN,])
_ (ONy 0N,
= —<A—V,..., A—V)

or we may find the delta shape operator at the point P as follows:

SAp(Vp) = _AVPN =—(Vp[N1],..., Vp[Nn])
_ (3Ni N,
 \AV, T AY,

defined with the above value Sa,(V),) transformation the surface M at the P point in V),
direction is called the ‘Delta shape operator’ or the ‘Delta Weingarten transformation’. To
facilitate the notation, we will denote the Sx,(V),) transformation with S, (V).

Theorem 3.1 The delta shape operator SA(V) is linear.
Proof The proof is obvious. d

Theorem 3.2 Let M be a surface defined with A" time scales. The x (M) shows vector fields
space of the surface M, and the Sa delta shape operator is the conversion defined by

Sa: x (M) — x (M)

V — Sa(V)=AyN.

Proof Since the N is the normal vector, the inner product (N; N) = 1is obtained. If we take
the vector field derivation of both sides of this equation in the direction of V vector field,
i.e. by making use of the V[(N,N)] = V[1] equation, and for the solution, by making use
of the properties of the Ay connection, we obtain

0= (AyN,N) + (N, AyN) - Vi)
i=1

dN; ON; 0
AV AV 0x;

n

VZ ON; ON;(o1(2°),s°) o
= 1[21 Al Vl AZVZ 896;'.

Here, to facilitate the equations, let us take the coefficient of u; as §; and the coefficient
of iy as 8,. Then

2(AyN,N) = 1181 — 1282 (3.1)

is obtained. If we take T; x T, = R x R, the properties u; = 0, up = 0 and (AyN,N) =
0 are satisfied. From this, it is observed that AyN L N, i.e. AyN € Tp(Az). In the case
Ty x T, #R x R it becomes Ay N € x(M). Thus the theorem is proven. O

Theorem 3.3 The delta shape operator Sy is not symmetrical for A* = Ty x Ty; however,
in the case Ty = Ty = R, it is symmetrical, i.e. self-adjoint.
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Proof (Sa(X),Y) = (X,SA(Y)). For VX, Y € x(M), (X,N) =0 and (Y,N) = 0. When the
derivation of the inner product of (X,N) = 0 is taken, and the derivation of the inner
product for Ay({(X,N)) = 0 and (Y,N) = 0 is taken, subtract these two equations from
each other by making use of the properties of the Ax(Y,N) = 0 connections;

0= (AyX,N) + (AyN, X) Yi 0X; ONi 9
= ) + ) - MU n
v ¥ 1ot — AY) MY 0x;

IN; 3Xi(o1(£%),s°) o
— o Y
Ha IZAlYl A2Y2 8x,

0=(AxY,N) + (AxN,Y) Xi:ayi ONi_ 9
= ) ) 2 b
X X 14 P AIXI A1X1 Bxi

i ON; 3Yi(01(°),s°) 8
H24 1 Ale A2X2 Bx,- )

Here, let us use the letters 4, b, ¢, d to the right side of i, u, to facilitate and abbreviate:

(AyX = AxY,N) +[(Sa(Y),X) = (Sa(X), Y)] - 1(a@ = ¢) = ua(b—d) = 0

[(Sa(Y), X) = (Sa(X), Y)] = ~(AyX = AxY,N) + p1(a - ¢) + ua(b - d).
As seen in the above equation, in the case T; # R and Ty # R, i.e. on any time scale, the
delta shape operator is not symmetrical. However, in Ty =R and Ty = R, p; = 2 = 0 and
(AyX—-AxY,N) =0.Itis observed that (Sx(Y),X) = (Sa(X), Y). In other words, the Sx (V)
delta shape operator is observed to be symmetrical when the A2 = R x R time scale is

taken. This property coincides with the property that is described by stating that the ‘delta
shape operator is symmetrical’ in the surfaces theory in Euclidean space. d

Theorem 3.4
p:A?— A3
(t,s) = @l(t,s),

are differentiable; let the surface p(A?) = M be given. For the M surface’s N unit vector field,
the following equations are obtained.:

0 oN 0 IN
Sa( )28 g sa ) - 2
Allf Allf AZS AZS

Proof t with a variable value, s with a constant value are taken for the ¢(¢,50) = a(¢) curve,

9 0

=Dy N
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(«OIN], .., a(OINS])

oN
—(t);
Alt()

t with constant value, s with variable value, and ¢(¢y, s) = B(¢),

= (BOWNL,..., BOIN:))

_ 0N ®
B AzS ’ .

Theorem 3.5 Since the principal normal N of the surface ¢ is vertical to z_(f: and z—ft, the

following equations are obtained:

ON 0 92
M) (L) =-(n, 22,
At Aqt Aqt?

N 9 922
(i) (—, )= (N, 220,
AzS AZS AZSZ

ON 0 32p°1
(i) (o) 2} = (N, 22 ),
At Ags AitAys

oN 0 8297
) () (N, 22 )
AQS Alt AQSAlt

Proof (i) When the derivation is taken on both sides of (N, z—‘ft) =0, we have

a dp

—(N,—)=0,

Aqt Aqt
oN 0 32
- _(p + N} L = 0)
At At Aqt?
oN 0 329
- 99N N, 79\
At At A t?

(ii) (N, z—i) = 0; let us take the derivation of both sides of the above equation:

] ap
—(N,—)=0,
AzS AQS

oN 0 329
—’—(p + N’ ¢ :O’
AQS AzS AQSZ

oN 0 32¢2
N de\_ [y )
A2S Azs A252

(iii) (N, 2—;) = 0; let us take the derivation of both sides of the above equation:

] R17)
—(N,—)=0,
Alt A2S
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oN 0 92901
R A . Ay
Alt AzS AltAQS

IN dg\ N e\
Alt’ AQS B ’AltAzs -

(iv) -+ Ags 9_(N, —1) = 0; let us take the derivation of both sides of the above equation:

] R17)
- N)— :0;
AZS Alt
IN 9 822
2% +{N, ¢ =0,
Ags’ At AgsAqt
IN 9 929
R U V. A 0
AzS At AysAqt

Theorem 3.6 Let the ¢ : Ty x Ty C A* — A3 surface be given for the completely differen-
tiable function that is deﬁned as (T x Ty) = M.

If Ty (P) = spf i‘ft |p, Aes |p} and x (M) = sp{ Alt A2S} Sa = x (M) — x (M) the matrix is as
follows according to the figure operator basis {22 L Azs}

-1 (az ¢l dg I -1 (32 972 g I
3 INV2RUNTA Azs 2 99 12 AysAit’ Art’ Azs
S I Alt 121 Azs I I Alz\l I A2SII
A= 2 o
1 3%¢9%1  dg —1 292 dp
det( As) ( %)

A1tAgs’ Art’ Azs e 3 Aos? ’A_lt Azs

2
I 2% 121 2% 1 12511 2%

Proof The matrix of the delta shape operators SA( ) ai—‘ft +b1 3‘” and SA( ) = cA—lt +
d-2e

1,5 May be written as

(@)l )

Then we get

a b
Sa = .
If we take multiplication of S A( ) and S ( Azs) by 2“’ and 8‘” -, respectively, we find the

a, b, ¢, d components of the S matrlx. We have

dg \ d¢ dg dp g
Sal— ), —)={a— +b——
Alt Alt Alt AZS Alt
dg ¢ dp 3¢
=al—,— ) +b{—
Alt Alt A2S Alt
0 0 8 0 9
so (20, 20\ _[, 20, 00 3¢
At A2S All' Ags Ajs

dp ¢ dp Jg
=a\—,— |+ b -~ v D
Alt AzS AZS AzS
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dgp \ ¢ dp dp dg
Sal — ), —)={a— +b—,—
Azs Alt Alt AQS Alt
dp g dp g
=a\—,,—— |t ~ v P
Alt Alt AzS Alt

dp \ dgp dp dp Jg
Sal— ) —)={a—+b—,—
A2S AzS Alt AQS AzS
dp o dp ¢
—a{ —, — )+ b{——, ).
At Ags Ags Ass

Here, from [18], since E = (i—‘ft, z—‘l”t), F= (z—‘ft, 2—?3), G-= (2—?3, Aa—fs) and if the above equa-

tions are made use of we have the following results:

0 0

<SA (_go), _g0> = aE + bF,
At ) Aqt
d d

Sal Z2), 22\ _aF 4+ b6
Alt AQS
d 0

<SA<_(/) >, _<p> = cE + dF,
AzS Alt

d 0
<SA(_¢ ), haa > =cF +dG,
AQS AZS

are obtained. Then for this linear equation system to have a solution, one needs

E F
F G

=EG-F2.

Here, the coefficient matrix determinant must be zero. In addition, since the vector prod-

uct of the parameter curves of the M surface gives the following result:

R17) ap 2 R17) dp ¢ ap
— X — ={— x —,— X —
Aqt Ass Aqt Ars At Ass
dp dp D
|y o g
B (B_W 3_90) <a_<p 3_<P>
A1t’ Ags Ags? Ags

E F
F G

=EG-F*>#0,

there is only one solution for the a4, b, ¢, d unknowns of the above-given linear equation
system. When we write the vectors S A(z—‘ft) and S A(z—fs), which are on the left side on this
equation system as the connection of the vertical vector area, the following equations are

obtained:

ap oN
Sal — Ay N=—,
Aqt At Aqt

sa(22)-ap N
. Ass - A3_2(05 _Azs'
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For the {V1, V;} orthonormal basis system, the basis vectors are defined with

KA KA

Aqt Ajs

1= —E)(lp and V2 = 2
=Y 22|

the delta shape operators are

SaVi) =aVi+ Vs,

SA(Vz) = C3V1 + C4V2.

If the matrix notation is

the elements of this matrix are calculated with the following formulas:
a =(Sa(v1), V1), cs = (Sa(V1), Vi),
¢ = (Sa(V1), Va), ca = (Sa(V), Va).

Thus, the ¢; coefficient is

O 09
CI=<SA(V1)yV1>=<SA< %}; ), @;t >

1220 120

‘e (an) 2
I ZW 112 At ) At
1 <8N 3<p>
A EAVSTNY
1 0 1 dpat
[ S - i)
IIAltII 1t ||A l 1t
d J
1 <T§ers 8¢">
- 2
||A1,||2 IIM Azsll Ast
1 1 8<p dp ™t
- 222 NV NTNT:
IIAItII (Fers A2SII 1t 28 At

~ 1 1 (aq) O e~ )
CIZZIP 2L 122 sin90° \ Art” Ags” Aye?

_ 1 <3<p 0y 8¢"1)
IIAItII?’ || s Art’ Ags’ At

the ¢, coeflicient is

€ = (SA(VI); Vz)

¢ e
:<S < Alt ) Azs >
151/ 1251

Page 9 of 14
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1 1 R17) R
=i e\ 5\ Az ) Ay
5zl 5] Art) " Aas

Ags

1 <8N 8</J>

2—3 3 .
EANEA

Alt’ AzS

1 aZwal
K 9 —(N,
a1 I35 At Ags

ISTLERYVY

d
]

dg
E E] B 3 |’
IRZ1- 1251 L\ I12E x 2211 Artdas

Aqt

1

Ags

K 99 || de , 09
||A—1t|| : ”A_zs””A_lt X Ags

1

Y B .
12212 - 2% |12 sin 90°

B¢ 2 199 12
12212 |2

the c3 coefficient is

(1%
Ags

g

s ) —Alt >
)

1251 1241

¢ = (Sa(Va), Vi) = <SA( 30

1 dp
i (a)
2\ Ao

=0
(e

Ays’ At

1 <8N 8_<p>

T
EATEA

’

dp g %™
X —, ————
|| Ayt Ass” A1tAss

dp dp 3*g™
A1t Ays AtAys

1 dp dp 92N
— AltAzs AltAzS ’

dg
At

1 82(/)”2
el s o)
[brevdlllbrend| 2

il
Ags

- Aqt

K%

) 1 [< Alt

Y B 0
122022 L\ 122 x

1

)
el

a )
A—ZS” Ays - At

I AT AT I7 9
||A—1t||||A—23||||A—1tXA—ZS

1

3¢ y a_(p 82(/702
[\A1t "~ Ags’ AgsAgt

E B .
155112 - 11 3% 112 sin 90°

~ 1 (8(,0
[Pl S P RN

and the ¢4 coefficient is

dp g 3™
Alt Azs AzSAlt

a(p 32(,0(72
Ass AgsAqt ’

D

09
C4=(SA(V2)yV2>=<SA( Bas ) i>

Ll
122

]
122

1 ap e
= o e\l o ) A
a5l 55 Aas ) Aas

Aps !l WAys
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B 1 ON 0J¢
- é g AZS’ AzS

122y 122

1 %2
)
AN Aas

i ]

SN2 L2 x 2L Aos
1 dp dp P

1250122 - sin90° (A_lm_zs Azs>

1 (Bgo g 82g0“2)
[ An” = g 1B\ A1t Azs Ass

Finally, if we make use of the matrix components of the delta shape operator:

-1 t(az 0%l dgp ) -1 (32 002 )
3 e A2 A Azs 3912y 0212 AxsAiL’ Alt Azs
Se = 125 IPIRE EARE L
A= -1 (dwl g ) 1 (d 02 By ) .
) V) Ivers)
I 2% 12 Al Arthas” Aut? Azs 1211 A% 13 Dos? Ay’ Azs

Theorem 3.7 On the surface ¢ : 1, X wo — A3, when my = my = 7, the result will be o) =
oy =0, and then
82(p01 82(,0(72 32(,00

AtAys  AgsAit  AthAos

Thus, ¢y = c3 is found in the delta shape operator.

Theorem 3.8 For the my # my situation, the matrix to the S delta shape operator corre-

sponds is not symmetrical; however, for the ; = 1, situation, the matrix is symmetrical.

4 Numeric examples

Example 1 Let us calculate the matrix representation of the delta shape operator of the
surface ¢(t,s) = (¢,5,¢%). Here, the partial derivations of the ¢(t,s) surface ¢, = (1,0, 2¢),
s = (0,2s,0), o = (0,0,0), g = (0,0,0), ¢ = (0,0,2), @5 = (0,2, 0) are obtained. Also, we
need the equations ||¢;|| = V1+422, losll = 2s, det(py, ¢z, @s) = 4s, and det(gys, p:0s) = 0
det(gqs, 91, ¢s) = 0 for the matrix components. From these equations, we obtain the matrix

of the delta shape operator on Euclidean space without time scales as in the following

equation:
2 __ 0
s=| vy | (4.1)
0 0

Now, we will try to calculate the delta shape operator’s matrix representation of ¢(t,s),
the surface with using time scales T; x T, =R x R. The partial derivations of the ¢(t,s)
surface on time scales

d¢

= (1,0,01(8) + ¢), A (0,02(s) +,0),

g
At
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92 02
4¢ = (07 0} 0)7 —(p = (0; O; O)y
Alt . AQS AQS . Alt
CRIE do (t CRI doa(s
7" (00,229 1), 7 (0,229 10),
Altz Alt A2s2 A2S

are obtained, and here let 07 and o, have delta differentiability. Also, we get the norms

” H 1+ (ou(2) + t) ” z—fs “ =/ (o2(s) +s)2 = 0y(s) +5,

and the determinants

ad dp %™ doq(t
det —w,—w,i :[az(s)+s]- 1(?) +1{,
Alt AzS Altz Alt

dp dp 2™ dp dp 3!
det{ —, —, ——— ) =det{ —, —, ———
Alt AzS Azs . Alt Alt AzS Alt . AzS

9 9 82 o2
=det _(,0 _go =0
1t AzS A282

for the matrix components. From these equations we get

[s+s][a(t +1]
Sa = | (V1?3 (svs) , (4.2)
0 0

which is the matrix of the delta shape operator on the time scales. Note that if we take
the time scale as T; x T, = R x R, the delta shape operator matrix on time scales S, in
equation (4.2) will be equal to the shape operator matrix S on Euclidean space without

time scales in equation (4.1) as follows:

Here, for Ty x Ty = R x R we have 01(£) = £, 05(s) = s. Thus we may find the indiscrete shape
operator from the same matrix of the delta shape operator. In this easier and smoother
method we have only one delta shape operator matrix included in both the discrete and
the indiscrete cases.

If we take the time scale as T; x Ty = Z x Z for the discrete case, the forward jump
operator of the set Z is 01(¢) = ¢ + 1 and o3(s) = s + 1. Hence, the delta shape operator

matrix
=2 9
— |:(4 /1+(2t+1)2)3 :|
0 0

is obtained for T; x Ty = 7Z x Z.

Example 2 The parametric equation of the plane which is passing through the point
A(2,-1,3) and parallel to the vectors # = (1,1,1) and v = (3,2,4) is obtained: ¢(t,s) =
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(2+t+3s,—1+t+4s,3 +t+4s). We can calculate the delta shape operator for the time scales

]R x R and Z x Z. The partial derivatives and their norms are 15 =(1,1, 1), A - =(3,4,4),
(R4 Ak l=+/3 Z“’ || = /41. The partial derivatives are 1ndependent from o7 and o,. Hence
Aftzzzs = A‘;SZZIt = azl‘”;l = 3;‘2”:22 =(0,0,0). Thus for both time scales T; x T, =R x R and

Ty x Ty = Z x Z, the delta shape operator can be found to be the zero matrix, i.e. Sx = [0].
The geometric interpretation shows that the shape operator of a plane which has a con-
stant normal vector should be zero for both the discrete and the indiscrete cases.

Now, in the following example we will examine the delta shape operator of any discrete

asymptotic weak Chebyshev net which is an example in [9].

Example 3 The discrete surfaces are defined as maps r: £;Z x g,Z — R3 such that A;r
and Ayr are linearly independent. A discrete asymptotic weak Chebyshev net (discrete

K-surface) is an immersion r such that

AII' . Alll = Az[‘ . Azn = 0, (4.3)
Air- Air=E, Aor - Aor =G, Air-Ar=F (4.4)

correspond to E = G = 1. Also, for any discrete asymptotic weak Chebyshev net, the Gaus-

sian curvature

(An - Aor)(Agn - Ajr)

K= R - (B — (Arranr)

is constant [9].
In this example, we will try to calculate the delta shape operator of the discrete asymp-

totic weak Chebyshev net. If we take the partial derivatives as 1*; = A;r and = Aorin
the delta shape operator matrix, the delta shape operator matrlx of discrete surface will
be
—det(Aq1r°1,A11,A91) —det(A11°2,A11,Aor)
S | Arr]3 ] Agrl| [ISTIRISE TR
A —det(A12r°1,A1r,Aor) —det(Agor2,A1r,Aor)
[ISEIRISTR [ISTIS R

The delta shape operator of the discrete asymptotic weak Chebyshev net

0 —det(A11°2,Aqr,Agr)
Sh = IA1x)2 ] Apr]?
A —det(A12r°1,Aqr,Aor) 0
ISHRISTE

is obtained using equations (4.3) and (4.4). In other words the delta shape operator of the
discrete asymptotic weak Chebyshev net can be written as

o [y s ] 1 0 Aom-Ar
STLs0AL V) (S04 Va) | Al Al [Am-Aox 0

from the definition of the matrix coefficients ¢, c3, ¢3, c4. Here, we know that

[ ALEl[[| Aoxl = | Arr x Agr||* = EG — F* = (A1r)*(Asr)* — AjrAor.
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Thus we can obtain another representation of the delta shape operator for the discrete
asymptotic weak Chebyshev net:

1 0 Azn . All‘
(Alr)Z(Azr)z - All‘Azl' Ain - Apr 0

The Gaussian curvature is equal to the determinant of the shape operator, i.e.

—(All‘l . Agl’)(Azl‘l . All‘)
(A1r)2(Agr)? — AyrAgr

K= detSA =

as can be found similarly in [9].

5 Conclusion

In this paper we obtained the matrix representation of the shape operator on time scales.
The advantage is the fact that it is an easier and smoother procedure to use the shape op-
erator in discrete differential geometry and the time scale analysis. Therefore it is possible
to use a unique equation of the shape operator for both discrete and continuous geometry.
We hope that our study will be useful for the literature of the geometry on time scales.
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