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1 Introduction
We investigate the existence of positive solutions for the following fractional differential
equations containing a p-Laplacian operator (PFDE, for short) and infinite-point bound-
ary value conditions:

{
Dβ

+(ϕp(Dα
+u(t))) + f (t, u(t)) = ,  < t < ,

u() = u′() = · · · = u(n–)() = , Dα
+u() = , u(i)() =

∑∞
j= αju(ξj),

()

where Dα
+, Dβ

+ is the standard Riemann-Liouville derivative, ϕp(s) = |s|p–s, p > , f ∈
C((, ) × J , J), J = (, +∞), R+ = [, +∞). f (t, u) may be singular at t = ,  and u = ,
i ∈ [, n – ] is a fixed integer, n –  < α ≤ n, n ≥ ,  < β ≤ , αj ≥ ,  < ξ < ξ < · · · <
ξj– < ξj < · · · <  (j = , , . . .), � –

∑∞
j= αjξj

α– > , � = (α – )(α – ) · · · (α – i).
In recent years, many excellent results of fractional differential equations have been

widely reported for their numerous applications such as in electrodynamics of a com-
plex medium, control, electromagnetic, polymer rheology, and so on; see [–] for an
extensive collection of such results. In [–], by means of a fixed point theorem and the
theory of the fixed point index together with the eigenvalue with respect to the relevant
linear operator, the existence and multiplicity of positive solutions, pseudo-solutions are
obtained for the m-point boundary value problem of the fractional differential equations

(A) Dα
+u(t) + q(t)f

(
t, u(t)

)
= ,  < t < ,
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subject to the following boundary conditions:

(B) u() = u′() = · · · = u(n–)() = , u() =
m∑

i=

αiu(ξi).

Similar results are extended to more general boundary value problems in []. Motivated by
[], by introducing height functions of the nonlinear term on some bounded sets, we con-
sidered the local existence and multiplicity of positive solutions for BVP (A) with infinite-
point boundary value conditions in []. On the other hand, there have been some papers
dealing with the fractional differential equations involving p-Laplacian operator [–].
The purpose of this paper is to study the existence of at least one positive solution for
PFDE () by means of the upper and lower solutions and the Schauder fixed point theo-
rem. A function u ∈ C[, ] is said to be a positive of problem () if u(t) >  on t ∈ (, )
and u satisfies () on [, ].

Compared to [–], this paper admits the following three new features. First of all, the
fact that the p-Laplacian operator, involved in differential operator and infinite points,
is contained in boundary value problems makes the problem considered more general.
Second, a nonlinear term permits singularities with respect to both the time and the space
variables.

2 Preliminaries and several lemmas
Let E be the Banach space of continuous functions u : [, ] → R equipped with the norm
‖u‖ = max≤t≤ |u(t)|. Here, we list some definitions and useful lemmas from fractional
calculus theory.

Definition  ([]) The Riemann-Liouville fractional integral of order α >  of a function
y : (,∞) → R is given by

Iα
+y(t) =


�(α)

∫ t


(t – s)α–y(s) ds

provided the right-hand side is pointwise defined on (,∞).

Definition  ([]) The Riemann-Liouville fractional derivative of order α >  of a contin-
uous function y : (,∞) → R is given by

Dα
+y(t) =


�(n – α)

(
d
dt

)n ∫ t



y(s)
(t – s)α–n+ ds,

where n = [α] + , [α] denotes the integer part of the number α, provided that the right-
hand side is pointwise defined on (, ∞).

Now, we consider the linear fractional differential equation

{
Dα

+u(t) + y(t) = ,  < t < ,
u() = u′() = · · · = u(n–)() = , u(i)() =

∑∞
j= αju(ξj).

()
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Lemma  ([]) Given y ∈ L[, ], then the unique solution of the problem () can be ex-
pressed by

u(t) =
∫ 


G(t, s)y(s) ds,

where

G(t, s) =


p()�(α)

{
tα–p(s)( – s)α––i – p()(t – s)α–,  ≤ s ≤ t ≤ ,
tα–p(s)( – s)α––i,  ≤ t ≤ s ≤ ,

()

where p(s) = � –
∑

s≤ξj
αj(

ξj–s
–s )α–( – s)i. Obviously, G(t, s) is continuous on [, ] × [, ].

Proof The proof is similar to that in [] except for the convergence of the integral∫ 
 G(t, s)y(s) ds, which is easy to show. We omit it here. �

Lemma  ([]) The function G(t, s) defined by () has the following properties:
() p()�(α)G(t, s) ≥ ms( – s)α––itα–, ∀t, s ∈ [, ];
() p()�(α)G(t, s) ≤ [M + p()n]( – s)α––itα–, ∀t, s ∈ [, ];
() p()�(α)G(t, s) ≤ [M + p()n]s( – s)α––i, ∀t, s ∈ [, ];
() G(t, s) > , ∀t, s ∈ (, ),

where M = sup<s≤
p(s)–p()

s , m = inf<s≤
p(s)–p()

s are positive numbers.

Proof The proof of () and () is almost as the same as that in [] and () is obvious. To
get (), check the proof of Lemma . in []. For  < s ≤ t ≤ , we get

p()�(α)G(t, s) = p(s)( – s)α––itα– – p()(t – s)α–

=
[
p(s) – p()

]
( – s)α––itα– + p()

[
( – s)α––itα– – (t – s)α–]

≤ Ms( – s)α––itα– + p()( – s)α––itα–
[

 –
(

 –
s
t

)][
 +

(
 –

s
t

)

+
(

 –
s
t

)

+ · · · +
(

 –
s
t

)n–]

≤ Ms( – s)α––itα– + p()( – s)α––itα–sn

≤ Ms( – s)α––itα– + p()( – s)α––itα–tn

≤ [
M + p()n

]
( – s)α––itα–.

For  < t ≤ s ≤ , we have

p()�(α)G(t, s) = p(s)( – s)α––itα–

=
[
p(s) – p()

]
( – s)α––itα– + p()( – s)α––itα–

≤ [
M + p()n

]
( – s)α––itα–.
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Let q >  satisfy 
p + 

q = . Then ϕ–
p (s) = ϕq(s). To study the PFDE (), we first consider

the associated linear PFDE,
{

Dβ
+(ϕp(Dα

+u(t))) + y(t) = ,  < t < ,
u() = u′() = · · · = u(n–)() = , Dα

+u() = , u(i)() =
∑∞

j= ηju(ξj),
()

for y ∈ L[, ] and y ≥ . �

Lemma  The unique solution for the associated linear PFDE () can be written

u(t) =
(


�(β)

)q– ∫ 


G(t, s)ϕ–

p

(∫ s


(s – τ )β–y(τ ) dτ

)
ds.

Proof Let w = Dα
+u, v = ϕp(w). Then the initial value problem

{
Dβ

+v(t) + y(t) = , t ∈ (, ),
v() = 

()

has the solution v(t) = ctβ– – Iβy(t), t ∈ [, ]. Noticing that v() = ,  < β ≤ , we have
c = . As a consequence,

v(t) = –Iβy(t), t ∈ [, ]. ()

Considering that Dα
+u = w, w = ϕ–

p (v), we have from ()

{
Dα

+u(t) = ϕ–
p (–Iβ (y(t))),  < t < ,

u() = u′() = · · · = u(n–)() = , u(i)() =
∑∞

j= ηju(ξj).
()

By Lemma , the solution of () can be expressed by

u(t) =
(


�(β)

)q– ∫ 


G(t, s)ϕ–

p

(∫ s


(s – τ )β–y(τ ) dτ

)
ds. �

Definition  A continuous function 
(t) is called a lower solution of the PFDE () if it
satisfies

{
–Dβ

+(ϕp(Dα
+
(t))) ≤ f (t,
(t)),  < t < ,


() ≥ , 
 ′() ≥ , . . . , 
 (n–)() ≥ , Dα
+
() ≥ , 
 (i)() ≥ ∑∞

j= αj
(ξj).

Definition  A continuous function �(t) is called an upper solution of the PFDE () if it
satisfies

{
–Dβ

+(ϕp(Dα
+�(t))) ≥ f (t,�(t)),  < t < ,

�() ≤ , �′() ≤ , . . . , �(n–)() ≤ , Dα
+�() ≤ , �(i)() ≤ ∑∞

j= αj�(ξj).

Let

F =

{
u ∈ C

(
[, ], R

)
, u() = u′() = · · · = u(n–)() = , u(i)() =

∞∑
j=

αju(ξj)

}
.
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Lemma  Let u ∈ F such that –Dα
+u(t) ≥ , t ∈ [, ]. Then u(t) ≥ , t ∈ [, ].

Proof Let –Dα
+u(t) = h(t), here h(t) ≥ , t ∈ [, ]. Noticing that u ∈ F , by Lemma , we

know that

u(t) =
∫ 


G(t, s)h(s) ds.

It follows from Lemma  and h(t) ≥  that u(t) ≥ , t ∈ [, ]. �

Lemma  (Leray-Schauder fixed point theorem) Let T be a continuous and compact map-
ping of a Banach space E into itself, such that the set

{x ∈ E : x = σTx, for some  ≤ σ ≤ } ()

is bounded. Then T has a fixed point.

3 Main results
Denote e(t) = tα–, m = m

p()�(α) , M = M+p()n
p()�(α) . We list below some assumptions used in this

paper.

(H)  <
∫ 

 ϕ–
p (

∫ s
 (s – τ )β–f (τ , e(τ )) dτ ) ds < +∞.

(H) f ∈ C((, ) × J , R+), for any fixed t ∈ (, ), f (t, u) is non-increasing in u, for any c ∈
(, ), there exists λ >  such that for all (t, u) ∈ (, ] × J ,

f (t, cu) ≤ c–λf (t, u). ()

From (), it is easy to see that if c ∈ [, +∞), then

f (t, cu) ≥ c–λf (t, u). ()

Let

P =
{

x ∈ C[, ] : x(t) ≥ , t ∈ [, ]
}

.

Obviously, P is a normal cone in the Banach space E. Now, define a subset D in E as follows:

D =
{

u ∈ P : there exist two positive numbers lu <  < Lu such that

lue(t) ≤ u(t) ≤ Lue(t), t ∈ [, ]
}

. ()

Obviously, D is nonempty since e(t) ∈ P. Now define an operator A as follows:

(Au)(t) =
(


�(β)

)q– ∫ 


G(t, s)ϕ–

p

(∫ s


(s – τ )β–f

(
τ , u(τ )

)
dτ

)
ds, t ∈ [, ]. ()

Theorem  Assume that (H) and (H) hold. Then the PFDE () has at least one positive
solution w∗ ∈ D, and there exist constants  < k <  and K >  such that ke(t) ≤ w∗(t) ≤
Ke(t), t ∈ [, ].
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Proof First, we show that A : D → D is well defined.
In fact, for any u ∈ D, there exist two positive numbers Lu >  > lu such that

lue(t) ≤ u(t) ≤ Lue(t), t ∈ [, ]. ()

We have from (H), (H), Lemma , (), (), and ()

(


�(β)

)q– ∫ 


G(t, s)ϕ–

p

(∫ s


(s – τ )β–f

(
τ , u(τ )

)
dτ

)
ds

≤
(


�(β)

)q–

Mtα–
∫ 


ϕ–

p

(∫ s


(s – τ )β–f

(
τ , lue(τ )

)
dτ

)
ds

≤
(


�(β)

)q–

l–λ(q–)
u M ·

∫ 


ϕ–

p

(∫ s


(s – τ )β–f

(
τ , e(τ )

)
dτ

)
ds · e(t)

<
[(


�(β)

)q–

l–λ(q–)
u M ·

∫ 


ϕ–

p

(∫ s


(s – τ )β–f

(
τ , e(τ )

)
dτ

)
ds + 

]
e(t)

= L∗
ue(t) ()

and

(


�(β)

)q– ∫ 


G(t, s)ϕ–

p

(∫ s


(s – τ )β–f

(
τ , u(τ )

)
dτ

)
ds

≥
(


�(β)

)q–

L–λ(q–)
u m ·

∫ 


s( – s)α––iϕ–

p

(∫ s


(s – τ )β–f

(
τ , e(τ )

)
dτ

)
ds · e(t)

≥ l∗ue(t), ()

where

l∗u = min

{



,
(


�(β)

)q–

L–λ(q–)
u m ·

∫ 


s( – s)α––iϕ–

p

(∫ s


(s – τ )β–f

(
τ , e(τ )

)
dτ

)
ds

}
,

L∗
u =

[(


�(β)

)q–

l–λ(q–)
u M ·

∫ 


ϕ–

p

(∫ s


(s – τ )β–f

(
τ , e(τ )

)
dτ

)
ds + 

]
.

By (H), it is clear that

∫ 


s( – s)α––iϕ–

p

(∫ s


(s – τ )β–f

(
τ , e(τ )

)
dτ

)
ds

≤
∫ 


ϕ–

p

(∫ s


(s – τ )β–f

(
τ , e(τ )

)
dτ

)
ds < +∞.

Thus, from () and (), we know that A : D → D and is well defined.
By Lemma , we know that Au(t) satisfies the following equation:

⎧⎪⎨
⎪⎩

–Dβ
+(ϕp(Dα

+(Au)(t))) = f (t, u(t)),  < t < ,
(Au)() = (Au)′() = · · · = (Au)(n–)() = ,
Dα

+(Au)() = , (Au)(i)() =
∑∞

j= ηj(Au)(ξj).
()
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Now, we are in a position to find a pair of upper and lower solutions for PFDE (). Let

u(t) =
(


�(β)

)q– ∫ 


G(t, s)ϕ–

p

(∫ s


(s – τ )β–f

(
τ , e(τ )

)
dτ

)
ds, t ∈ [, ].

By Lemma , we get

u(t) ≥
(


�(β)

)q–

m
∫ 


ϕ–

p

(∫ s


(s – τ )β–f

(
τ , e(τ )

)
dτ

)
ds · e(t), t ∈ [, ].

As a consequence, there exists a constant k ≥  such that

ku(t) ≥ e(t), ∀t ∈ [, ]. ()

It follows from (H), (H), and () that A is decreasing on u, thus for k > k, we have

(


�(β)

)q– ∫ 


G(t, s)ϕ–

p

(∫ s


(s – τ )β–f

(
τ , ku(τ )

)
dτ

)
ds

≤
(


�(β)

)q– ∫ 


G(t, s)ϕ–

p

(∫ s


(s – τ )β–f

(
τ , ku(τ )

)
dτ

)
ds

≤
(


�(β)

)q– ∫ 


G(t, s)ϕ–

p

(∫ s


(s – τ )β–f

(
τ , e(τ )

)
dτ

)
ds < +∞

and

u(t) ≤
(


�(β)

)q–

M
∫ 


ϕ–

p

(∫ s


(s – τ )β–f

(
τ , e(τ )

)
dτ

)
ds < +∞.

Let ρ = ( 
�(β) )q–M

∫ 
 ϕ–

p (
∫ s

 (s – τ )β–f (τ , e(τ )) dτ ) ds + . Take

k∗ = max

{
k,

[(


�(β)

)q–

m
∫ 


ϕ–

p

(∫ s


(s – τ )β–f (τ ,ρ) dτ

)
ds

] 
λ(q–)

}
.

Then we have

+∞ >
(


�(β)

)q– ∫ 


G(t, s)ϕ–

p

(∫ s


(s – τ )β–f

(
τ , k∗u(τ )

)
dτ

)
ds

≥ (
k∗)–λ(q–)

(


�(β)

)q–

mtα–
∫ 


ϕ–

p

(∫ s


(s – τ )β–f

(
τ , u(τ )

)
dτ

)
ds

≥ (
k∗)–λ(q–)

(


�(β)

)q–

mtα–
∫ 


ϕ–

p

(∫ s


(s – τ )β–f (τ ,ρ) dτ

)
ds

≥ tα–, ∀t ∈ [, ]. ()

Let

�(t) = k∗u(t), 
(t) = (A�)(t). ()
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Then it follows from () and () that

�(t) = k∗
(


�(β)

)q– ∫ 


G(t, s)ϕ–

p

(∫ s


(s – τ )β–f

(
τ , e(τ )

)
dτ

)
ds ≥ tα–, ()


(t) =
(


�(β)

)q– ∫ 


G(t, s)ϕ–

p

(∫ s


(s – τ )β–f

(
τ , k∗u(τ )

)
dτ

)
ds ≥ tα–. ()

In addition, by () and (), we see that

�() = �′() = · · · = �(n–)() = , Dα
+�() = , �(i)() =

∞∑
j=

ηj�(ξj),


() = �′() = · · · = 
 (n–)() = , Dα
+
() = , 
 (i)() =

∞∑
j=

ηj
(ξj).

By (),


(t) = (A�)(t) =
(


�(β)

)q– ∫ 


G(t, s)ϕ–

p

(∫ s


(s – τ )β–f

(
τ , k∗u(τ )

)
dτ

)
ds

≤ k∗
(


�(β)

)q– ∫ 


G(t, s)ϕ–

p

(∫ s


(s – τ )β–f

(
τ , u(τ )

)
dτ

)
ds

= �(t), ∀t ∈ [, ]. ()

Considering the fact that f is non-increasing in u, we see from ()-() that

Dβ
+

(
ϕp

(
Dα

+
(t)
))

+ f
(
t,
(t)

)
= Dβ

+
(
ϕp

(
Dα

+(A�)(t)
))

+ f
(
t,
(t)

)
≥ Dβ

+
(
ϕp

(
Dα

+(A�)(t)
))

+ f
(
t,�(t)

)
= –f

(
t,�(t)

)
+ f

(
t,�(t)

)
= , ()

Dβ
+

(
ϕp

(
Dα

+�(t)
))

+ f
(
t,�(t)

)
= Dβ

+
(
ϕp

(
Dα

+A
(
tα–))) + f

(
t,�(t)

)
= –f

(
t, tα–) + f

(
t,�(t)

)
≤ –f

(
t, tα–) + f

(
t, tα–) = . ()

By () and (), we know that �,
 ∈ P are the desired upper and lower solutions of the
PFDE (), respectively.

Define a function F as follows:

F(t, u) =

⎧⎪⎨
⎪⎩

f (t,
(t)), u < 
(t),
f (t, u(t)), 
(t) ≤ u ≤ �(t),
f (t,�(t)), �(t) < u.

()

This together with (H) shows that F : (, ) × R+ → R+ is continuous.
In the following, we shall show that the fractional boundary value problem

{
Dβ

+(ϕp(Dα
+u(t))) + F(t, u(t)) = ,  < t < ,

u() = u′() = · · · = u(n–)() = , Dα
+u() = , u(i)() =

∑∞
j= αju(ξj),

()

has a positive solution.
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Let

(Tu)(t) =
(


�(β)

)q– ∫ 


G(t, s)ϕ–

p

(∫ s


(s – τ )β–F

(
τ , u(τ )

)
dτ

)
ds, t ∈ [, ]. ()

Then T : E → E and a fixed point of the operator T is a solution of the PFDE (). By (),
(), the definition of F , and the fact that f (t, u) is non-increasing in u, we have

f
(
t,�(t)

) ≤ F
(
t, u(t)

) ≤ f
(
t,
(t)

)
, ∀x ∈ E, ()

and

f
(
t,�(t)

) ≤ F
(
t, u(t)

) ≤ f
(
t, tα–), ∀x ∈ E. ()

By Lemma  and (), for u ∈ E, we have

(Tu)(t) =
(


�(β)

)q– ∫ 


G(t, s)ϕ–

p

(∫ s


(s – τ )β–F

(
τ , u(τ )

)
dτ

)
ds

≤
(


�(β)

)q–

Mtα–
∫ 


ϕ–

p

(∫ s


(s – τ )β–f

(
τ , e(τ )

)
dτ

)
ds < +∞, ()

which means that T is uniformly bounded. Considering the uniform continuity of G(t, s)
on [, ] × [, ], it can easily be seen that T : E → E is completely continuous. In addition,
we see from () that () holds. Thus, Schauder fixed point theorem guarantees that T
has at least one fixed point w.

Now, we are in a position to show that


(t) ≤ w(t) ≤ �(t), t ∈ [, ]. ()

Since w is a fixed point of T , we have by ()

w() = w′() = · · · = w(n–)() = , Dα
+w() = , w(i)() =

∞∑
j=

αjw(ξj), ()

�() = �′() = · · · = �(n–)() = , Dα
+�() = , �(i)() =

∞∑
j=

ηj�(ξj). ()

Let z(t) = ϕp(Dα
+�(t)) – ϕp(Dα

+w(t)). Then

Dβ
+z(t) = Dβ

+
(
ϕp

(
Dα

+�(t)
))

– Dβ
+

(
ϕp

(
Dα

+w(t)
))

= –f
(
t, tα–) + F

(
t, w(t)

) ≤ , t ∈ [, ],

z() = ϕp
(
Dα

+�()
)

– ϕp
(
Dα

+w()
)

= .

By () and (), we know that

z(t) ≤ ,
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which means that

ϕp
(
Dα

+�(t)
)

– ϕp
(
Dα

+w(t)
) ≤ .

We see from the fact that ϕp is monotone increasing

ϕp
(
Dα

+�(t)
) ≤ ϕp

(
Dα

+w(t)
)
, i.e., –ϕp

(
Dα

+(� – w)
)
(t) ≥ .

It follows from Lemma , (), and () that

�(t) – w(t) ≥ .

Thus, we have proved that w(t) ≤ �(t) on [, ]. Similarly, we can get w(t) ≥ 
(t) on [, ].
As a consequence, () holds. So, F(t, w(t)) = f (t, w(t)), t ∈ [, ]. Hence, w(t) is a positive
solution of the PFDE (). Noticing that �,
 ∈ D, by (), we can easily see that there exist
constants  < k <  and K >  such that

ke(t) ≤ w∗(t) ≤ Ke(t), t ∈ [, ]. �

4 An example
Consider the following singular PFDE:

⎧⎪⎪⎨
⎪⎪⎩

D


+(ϕ(D



+u))(t) + 

 t– 
 u– 

 = ,  < t < ,
u() = u′() = u′′() = ,

D


+u() = , u′() =

∑∞
j=


j u( 

j ).

()

In this situation, f (t, u) = 
 t– 

 u– 
 , α = 

 , β = 
 , p = , e(t) = t 

 , � = 
 , αj = 

j , ξj = 
j ,∑∞

j= αjξj
α– ≈ . < �. By a simple computation, we have

 <
∫ 


ϕ–

p

(∫ s


(s – τ )β–f

(
τ , e(τ )

)
dτ

)
ds

=
∫ 



(



∫ s


(s – τ )– 

 τ– 
 τ– 

 dτ

) 


ds

=
∫ 



(



∫ 


( – τ )– 

 τ– 
 dτ

) 


ds =
√

π


< +∞.

Therefore, (H) holds. It is easy to see that (H) is satisfied for λ = 
 . By Theorem , PFDE

() has at least one positive solution w∗ such that there exist constants  < k <  and K > 
with ke(t) ≤ w∗(t) ≤ Ke(t), t ∈ [, ].
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