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Abstract
In this paper, we construct two generalized q-exponential operators with three
parameters and obtain some operator identities. As applications, we give two formal
extensions of the q-Gauss sum. An extension of the q-Chu-Vandermonde sums is also
obtained by the operator technique. In addition, we also deduce a formal extension
of the Askey-Wilson integral and a formal extension of Sears’ two-term summation
formula. Meanwhile, some curious q-series identities are derived.
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1 Introduction and motivation
Following [] we define the q-shifted factorial by

(a; q) = , (a; q)n =
n–∏

k=

(
 – aqk), (a; q)∞ =

∞∏

k=

(
 – aqk),

and (a, a, . . . , am; q)n = (a; q)n(a; q)n · · · (am; q)n, where m is a positive integer and n is a
nonnegative integer or ∞. For a complex number α, we shall also use the notation

(a; q)α = (a; q)∞/
(
qαa; q

)
∞.

The q-binomial coefficients, or the Gauss coefficients, are given by
[

n
k

]
=

(q; q)n

(q; q)k(q; q)n–k
.

The basic hypergeometric series rφs is defined by

rφs

[
a, a, . . . , ar

b, b, . . . , bs

∣∣∣ q; z

]
=

∞∑

k=

(a, a, . . . , ar ; q)k

(q, b, b, . . . , br ; q)k

[
(–)kq(k

)
]+s–rzk .

The usual q-differential operator, or q-derivative are defined by

Dx
{

f (x)
}

=
f (x) – f (qx)

x
, θx

{
f (x)

}
=

f (q–x) – f (x)
q–x

,
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and their Leibniz rules are

Dn
x
{

f (x)g(x)
}

=
n∑

k=

qk(k–n)
[

n
k

]
Dk

x
{

f (x)
}

Dn–k
x

{
g
(
xqk)}, ()

θn
x
{

f (x)g(x)
}

=
n∑

k=

[
n
k

]
θ k

x
{

f (x)
}
θn–k

x
{

g
(
xq–k)}, ()

respectively. Based on this, Chen and Liu [, ] constructed the following augmentation
operator, which is of great significance for deriving identities from its special cases (cf.
[–]):

T(bDx) =
∞∑

n=

(bDx)n

(q; q)n
,

E(bDx) =
∞∑

n=

q(n
)(bθx)n

(q; q)n
.

Later, Chen and Gu [] defined the Cauchy augmentation operator,

T(a, bDx) =
∞∑

n=

(a; q)n

(q; q)n
(bDx)n,

E(a, –bDx) =
∞∑

n=

(a; q)n

(q; q)n
(–bθx)n.

Fang [] and Zhang and Yang [] considered the following finite generalized q-exponential
operators with two parameters:

T

[
q–N , w

v

∣∣∣ q; tDx

]
=

N∑

n=

(q–N , w; q)n

(q, v; q)n
(tDx)n,

E

[
q–N , w

v

∣∣∣ q; tθx

]
=

N∑

n=

(q–N , w; q)n

(q, v; q)n
(tθx)n.

In resent years, some authors applied the aforementioned q-exponential operators to give
a system way of obtaining q-series formulas (cf. [–]). Inspired by their work, in this pa-
per, we construct two generalized q-exponential operator with three parameters and give
some operator identities to further investigate the applications of the operator technique.

Our paper is organized as follows. The next section is devoted to the construction of two
generalized q-exponential operator with three parameters and we establish some operator
identities. The rest of this paper is mainly concerned with applications of these operator
identities. In detail, we will give two formal extensions of the q-Gauss sum. An extension of
the q-Chu-Vandermonde sums are also obtained by the operator technique. In addition,
we also deduce a formal extension of the Askey-Wilson integral and a formal extension
of Sears’ two-term summation formula. Meanwhile, some curious q-series identities are
derived.
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2 Two generalized q-exponential operators and their operator identities
In this section, we first of all establish the following two generalized q-exponential opera-
tors with three parameters:

T

[
u, v
w

∣∣∣ q; tDx

]
=

∞∑

n=

(u, v; q)n

(q, w; q)n
(tDx)n, ()

E

[
u, v
w

∣∣∣ q; tθx

]
=

∞∑

n=

(u, v; q)n

(q, w; q)n
(tθx)n. ()

Clearly, Zhang and Yang’s [] finite q-exponential operators with two parameters can be
considered as special cases of the operator () and () for u = q–N or v = q–N . Based on
the definitions for Dx and θx and their Leibniz rules () and (), we can easily verify the
following explicit formulas by induction.

Lemma  For a nonnegative integer k, we have

θ k
x
{

(xt; q)∞
}

= (–t)k(xt; q)∞,

Dk
x

{


(xt; q)∞

}
=

tk

(xt; q)∞
,

θ k
x

{
(xv; q)∞
(xt; q)∞

}
= tkq–(k

)(v/t; q)k
(xv; q)∞

(xtq–k ; q)∞
,

Dk
x

{
(xv; q)∞
(xt; q)∞

}
= tk(v/t; q)k

(xvqk ; q)∞
(xt; q)∞

,

θ k
x
{

xn} =

⎧
⎨

⎩
(–)kxn–kqk(q–n; q)k if  ≤ k ≤ n,

 if k > n,

Dk
x
{

xn} =

⎧
⎨

⎩
xn–k(qn–k+; q)k if  ≤ k ≤ n,

 if k > n.

Theorem 

T

[
u, v
w

∣∣∣ q; tDx

]{
(xa; q)∞

(xb, xc; q)∞

}

=
(xa; q)∞

(xb, xc; q)∞

∑

n,k≥

(u, v; q)n+k

(q; q)n(w; q)n+k

(a/b, xc; q)k

(q, xa; q)k
(bt)k(tc)n.

Proof By means of the definition () of T
[u, v

w | q; tDx
]

operator and the Leibniz rule () of
the q-derivative operator, we have

T

[
u, v
w

∣∣∣ q; tDx

]{
(xa; q)∞

(xb, xc; q)∞

}

=
∞∑

n=

(u, v; q)ntn

(q, w; q)n

n∑

k=

[
n
k

]
qk(k–n)Dk

x

{
(xa; q)∞
(xb; q)∞

}
Dn–k

x

{


(qkxc; q)∞

}
.
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In view of Lemma , we can evaluate the right-hand side of the last expression in the fol-
lowing form:

∞∑

n=

(u, v; q)ntn

(q, w; q)n

n∑

k=

[
n
k

]
qk(k–n)bk(a/b; q)k

(qkxa; q)∞
(xb; q)∞

(qkc)n–k

(qkxc; q)∞

=
(xa; q)∞

(xb, xc; q)∞

∞∑

n=

(u, v; q)n(ct)n

(q, w; q)n

n∑

k=

[
n
k

]
(a/b, xc; q)k

(xa; q)k
(b/c)k .

Interchanging the summation order and changing by n → n + k on the inner summation
index, we get the desired result. �

We remark that when u = q–N and t = q/c, the last theorem reduces to Zhang and Yang’s
conclusion []. Similar to the procedure of proving Theorem , we establish the follow-
ing operator identity, which leads to Zhang and Yang’s conclusion [] when u = q–N or
v = q–N .

Theorem 

E

[
u, v
w

∣∣∣ q; tθx

]{
(xa, xc; q)∞

(xb; q)∞

}

=
(xa, xc; q)∞

(xb; q)∞

∑

n,k≥

(u, v; q)n+k

(w; q)n+k(q; q)n

(a/b, q/xc; q)k

(q, q/xb; q)k
(–)n(tc)n+kq–(k

)–nk .

Letting c = , the last sum with respect to n in Theorem  and Theorem  vanishes be-
cause n is equal to zero when n > , therefore we get the following identities, respectively.

Corollary 

T

[
u, v
w

∣∣∣ q; tDx

]{
(xa; q)∞
(xb; q)∞

}
=

(xa; q)∞
(xb; q)∞

φ

[
u, v, a/b

w, xa

∣∣∣ q; tb

]
, ()

E

[
u, v
w

∣∣∣ q; tθx

]{
(xa; q)∞
(xb; q)∞

}
=

(xa; q)∞
(xb; q)∞

φ

[
u, v, a/b
w, q/xb

∣∣∣ q; –qt/x

]
. ()

For the symmetry of b and c on both sides of Theorem , we have

∑

n,k≥

(u, v; q)n+k(a/b, xc; q)k

(q; q)n(w; q)n+k(q, xa; q)k
(bt)k(tc)n =

∑

n,k≥

(u, v; q)n+k(a/c, xb; q)k

(q; q)n(w; q)n+k(q, xa; q)k
(ct)k(tb)n.

Similarly, by means of the symmetry of a and c, we get from Theorem 

∑

n,k≥

(u, v; q)n+k

(w; q)n+k(q; q)n
(tc)n+k (a/b, q/xc; q)k

(q, q/xb; q)k
(–)nq–(k

)–nk

=
∑

n,k≥

(u, v; q)n+k

(w; q)n+k(q; q)n
(ta)n+k (b/c, q/xa; q)k

(q, q/xb; q)k
(–)nq–(k

)–nk .
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Letting n + k = m, and extracting the coefficients of (u,v;q)m
(w;q)m

tm from both members of the
last two identities, respectively, we get the following curious transformation formulas.

Example 

φ

[
q–m, a/b, xc

xa

∣∣∣ q; qmb/c

]
= (b/c)m

φ

[
q–m, a/c, xb

xa

∣∣∣ q; qmc/b

]
,

φ

[
q–m, a/b, q/xc

, q/xb

∣∣∣ q; q

]
= (a/c)m

φ

[
q–m, c/b, q/xa

, q/xb

∣∣∣ q; q

]
.

Letting t = –w/uvc, the sum with respect to n in Theorem  reduces to (w/u,w/v;q)∞
(qk w,q–kw/uv;q)∞ by

means of the q-Gauss sum

φ

[
a, b

c

∣∣∣ q; c/ab

]
=

(c/a, c/b; q)∞
(c, c/ab; q)∞

, ()

which results consequently in the following operator identity.

Corollary 

E

[
u, v
w

∣∣∣ q;
–w
uvc

θx

]{
(xa, xc; q)∞

(xb; q)∞

}

=
(xa, xc, w/u, w/b; q)∞

(xb, w, w/uv; q)∞
φ

[
a/b, q/xc, u, v
, q/xb, quv/w

∣∣∣ q; q

]
.

Recalling the q-Chu-Vandermonde sums [], II.,

φ

[
q–n, x

y

∣∣∣ q; q

]
= xn (y/x; q)n

(y; q)n
, ()

and substituting x → xa into the above equation, we derive

n∑

k=

(q–n; q)kqk

(q, y; q)k

(xc; q)∞
(xaqk , xb; q)∞

=
(xa)n(y/xa; q)n(xc; q)∞

(y; q)n(xa, xb; q)∞
. ()

Then applying the operator T
[u, v

w | q; tDx
]

to both sides of () with respect to the variable
x, it is trivial to see that

n∑

k=

(q–n; q)kqk

(q, y; q)k
T

[
u, v
w

∣∣∣ q; tDx

]{
(xc; q)∞

(xaqk , xb; q)∞

}

=
an

(y; q)n
T

[
u, v
w

∣∣∣ q; tDx

]{
xn(y/xa; q)n(xc; q)∞

(xa, xb; q)∞

}
.

Evaluating the left-hand side of the last expression in terms of Theorem , we show from
the last equation the following identity.
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Theorem  For a nonnegative integer n, we have

T

[
u, v
w

∣∣∣ q; tDx

]{
Pn(x, y/a)(xc; q)∞

(xa, xb; q)∞

}

=
(y; q)n

an
(xc; q)∞

(xa, xb; q)∞

n∑

k=

(q–n, xa; q)kqk

(q, y; q)k

∑

i,j≥

(u, v; q)i+j

(q; q)i(w; q)i+j

(c/b, qkxa; q)j

(q, xc; q)j
(tb)j(qkta

)i,

where Pn(a, b) = an(b/a; q)n.

When y = , Theorem  reduces to the following corollary.

Corollary  For a nonnegative integer n, we have

T

[
u, v
w

∣∣∣ q; tDx

]{
xn(xc; q)∞

(xa, xb; q)∞

}

=


an
(xc; q)∞

(xa, xb; q)∞

n∑

k=

(q–n, xa; q)k

(q; q)k
qk

∑

i,j≥

(u, v; q)i+j

(q; q)i(w; q)i+j

(c/b, qkxa; q)j

(q, xc; q)j
(tb)j(qkta

)i.

Analogously, substituting x → xa into (), we can reformulate it as

n∑

k=

(q–n; q)kqk

(q, y; q)k

(xb, xc; q)∞
(xaqk ; q)∞

=
(xa)n(y/xa; q)n(xb, xc; q)∞

(y; q)n(xa; q)∞
.

Applying the operator E
[u, v

w | q; tθx
]

to both sides of the last expression with respect to the
variable x, we confirm that

n∑

k=

(q–n; q)kqk

(q, y; q)k
E

[
u, v
w

∣∣∣ q; tθx

]{
(xb, xc; q)∞
(xaqk ; q)∞

}

=
an

(y; q)n
E

[
u, v
w

∣∣∣ q; tθx

]{
xn(y/xa; q)n(xb, xc; q)∞

(xa; q)∞

}
.

Rewriting the left-hand side of the last expression by means of Theorem , we obtain the
following identity.

Theorem  For a nonnegative integer n, we have

E

[
u, v
w

∣∣∣ q; tθx

]{
Pn(x, y/a)(xb, xc; q)∞

(xa; q)∞

}

=
(y; q)n

an
(xc, xb; q)∞

(xa; q)∞

n∑

k=

(q–n, xa; q)kqk

(q, y; q)k

×
∑

i,j≥

(u, v; q)i+j

(q; q)i(w; q)i+j
(bt)i+j (cq–k/a, q/xb; q)j

(q, q–k/xa; q)j
(–)iq–( j

)–ij,

where Pn(a, b) = an(b/a; q)n.
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When b = q/x, the inner sum with respect to j vanishes, and then changing the conse-
quent summation order, in view of the q-Chu-Vandermonde sum (), we get from Theo-
rem 

E

[
u, v
w

∣∣∣ q; tθx

]{
Pn(x, y/a)(xc; q)∞

(xa; q)∞

}

=
xn(y/xa; q)n(xc; q)∞

(xa; q)∞
φ

[
u, v
w

∣∣∣ q; –qt/x

]
.

For t = –wx/uvq, the right-hand side of the last identity can be evaluated by (). We there-
fore establish the following operator identity.

Corollary 

E

[
u, v
w

∣∣∣ q; –
wx
uvq

θx

]{
Pn(x, y/a)(xc; q)∞

(xa; q)∞

}
=

xn(y/xa; q)n(xc, w/u, w/v; q)∞
(xa, w, w/uv; q)∞

.

3 Some applications
Throughout this section, we address the applications of the theorems and corollaries ob-
tained in the previous section.

3.1 Two formal generalizations of the q-Gauss sum
Recalling the q-binomial theorem [], II.,

∞∑

n=

(a; q)n

(q; q)n
xn =

(xa; q)∞
(x; q)∞

, ()

multiplying (xc;q)∞
(xb;q)∞ to both sides of the last identity, and applying T

[u, v
w | q; tDx

]
to both

sides of the consequent identity with respect to the parameter x, we have

∞∑

n=

(a; q)n

(q; q)n
T

[
u, v
w

∣∣∣ q; tDx

]{
xn(xc; q)∞

(xa, xb; q)∞

}
= T

[
u, v
w

∣∣∣ q; tDx

]{
(xc; q)∞

(x, xb; q)∞

}
.

By means of Theorem  and Corollary , we have the following theorem.

Theorem 

∞∑

n=

(a; q)n

(q; q)n
a–n

n∑

k=

(q–n, xa; q)k

(q; q)k
qk

∑

i,j≥

(u, v; q)i+j

(q; q)i(w; q)i+j

(c/b, qkxa; q)j

(q, xc; q)j
(bt)j(qkta

)i

=
(xa; q)∞
(x; q)∞

∑

i,j≥

(u, v; q)i+j

(q; q)i(w; q)i+j

(c, xb; q)j

(q, xc; q)j
tj(tb)i.

If c =  and t = w/uvb, the sum with respect to j on the right-hand side of the last theorem
vanished and the sum with respect to i can be evaluated by the q-Gauss sum (). We find
consequently the following curious summation formula where the parameter b only exists
in the left-hand side.
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Corollary 

∞∑

n=

(a; q)n

(q; q)n
a–n

n∑

k=

(q–n, xa; q)k

(q; q)k
qk

×
∑

i,j≥

(u, v; q)i+j

(q; q)i(w; q)i+j

(/b, qkxa; q)j

(q, x; q)j

(
w
uv

)j(qkwa
uvb

)i

=
(xa, w/u, w/v; q)∞
(x, w, w/uv; q)∞

.

Further, if we specify with a �→  in the last corollary, we find the following curious
summation formula, which reduces to the q-Gauss sum () when b = .

Corollary 

∑

i,j≥

(u, v; q)i+j

(q; q)i(w; q)i+j

(/b; q)j

(q; q)j

(
w
uv

)j( w
uvb

)i

=
(w/u, w/v; q)∞
(w, w/uv; q)∞

.

Letting i + j = m, and then extracting the coefficients of (u,v;q)m
(w;q)m

tm from two members of
Theorem , we get the following result.

Corollary 

∞∑

n=

(a; q)n

(q; q)n
am–n

n∑

k=

(q–n, xb; q)k

(q; q)k
q(+m)k

×
m∑

j=

(q–m, c/b, qkxa; q)j

(q, xc; q)j
(–)jq–( j

)
(
bqm–k/a

)j

= bm (xa; q)∞
(x; q)∞

φ

[
q–m, c, xb

xc

∣∣∣ q; qm/b

]
.

When a = , the last sums with respect to n and k vanish because of the q-shift factorial
(; q)n is equal to zero when n > . Then we get the following transformation formula.

Example 

φ

[
q–m, c/b, x

xc

∣∣∣ q; qmb

]
= bm

φ

[
q–m, c, xb

xc

∣∣∣ q; qm/b

]
.

Similarly, multiplying (xb;q)∞
(xc;q)∞ to both sides of equation () and applying E

[u, v
w | q; tθx

]
to

both sides of the consequent identity with respect to the parameter x, we have

∞∑

n=

(a; q)n

(q; q)n
E

[
u, v
w

∣∣∣ q; tθx

]{
xn(x, xb; q)∞

(xc; q)∞

}

= E

[
u, v
w

∣∣∣ q; tθx

]{
(xa, xb; q)∞

(xc; q)∞

}
. ()
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On the one hand, letting y =  and substituting with a → c, c →  in Theorem , we have

E

[
u, v
w

∣∣∣ q; tθx

]{
xn(x, xb; q)∞

(xc; q)∞

}

=

cn

(xb, x; q)∞
(xc; q)∞

n∑

k=

(q–n, xc; q)kqk

(q; q)k

×
∑

i,j≥

(u, v; q)i+j

(q; q)i(w; q)i+j
(bt)i+j (q–k/c, q/xb; q)j

(q, q–k/xc; q)j
(–)iq–( j

)–ij.

On the other hand, in view of Theorem , we get

E

[
u, v
w

∣∣∣ q; tθx

]{
(xa, xb; q)∞

(xc; q)∞

}

=
(xa, xb; q)∞

(xc; q)∞

∑

n,k≥

(u, v; q)n+k

(w; q)n+k(q; q)n
(tb)n+k (a/c, q/xb; q)k

(q, q/xc; q)k
(–)nq–(k

)–nk .

Combining the last two expressions with (), we get the following theorem.

Theorem 
∞∑

n=

(a; q)n

(q; q)n


cn

n∑

k=

(q–n, xc; q)kqk

(q; q)k

∑

i,j≥

(u, v; q)i+j(bt)i+j

(q; q)i(w; q)i+j

(q–k/c, q/xb; q)j

(q, q–k/xc; q)j
(–)iq–( j

)–ij

=
(xa; q)∞
(x; q)∞

∑

n,k≥

(u, v; q)n+k

(w; q)n+k(q; q)n
(tb)n+k (a/c, q/xb; q)k

(q, q/xc; q)k
(–)nq–(k

)–nk .

If a = c, the sum with respect to k on the right-hand side of the above theorem vanishes.
Further setting t = –w/uvb in the consequent expression, we get the following summation
formula, which returns to the q-Gauss sum () when a = .

Corollary 

∞∑

n=

(a; q)n

(q; q)n


an

n∑

k=

(q–n, xa; q)kqk

(q; q)k

∑

i,j≥

(u, v; q)i+j

(q; q)i(w; q)i+j

(q–k/a, q/xb; q)j

(q, q–k/xa; q)j

× (–w/uv)i+j(–)iq–( j
)–ij

=
(xa, w/u, w/v; q)∞
(x, w, w/uv; q)∞

.

3.2 A formal generalization of q-exponential function
Theorem 

∞∑

n=

q(n
)xn

(q; q)n

n∑

k=

(q–n, u, v; q)k

(q, w; q)k

(
–

qw
xuv

)k

=
(–x, w/u, w/v; q)∞

(w, w/uv; q)∞
.

Proof Recalling the q-exponential function [], II.

∞∑

n=

q(n
)

(q; q)n
xn = (–x; q)∞
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and then applying E
[u, v

w | q; w
uvθx

]
to the both sides of the last identity, we have

∞∑

n=

q(n
)

(q; q)n
E

[
u, v
w

∣∣∣ q;
w
uv

θx

]
{

xn} = E

[
u, v
w

∣∣∣ q;
w
uv

θx

]
{

(–x; q)∞
}

. ()

On the one hand, letting b = , a = – and t = w/uv in (), we can write the right-hand side
of () as

E

[
u, v
w

∣∣∣ q;
w
uv

θx

]
{

(–x; q)∞
}

=
(–x, w/u, w/v; q)∞

(w, w/uv; q)∞

by means of the q-Gauss sum ().
On the other hand, in view of the definition () and the equation of θ k

x {xn} obtained in
Lemma , we can easily verify that

E

[
u, v
w

∣∣∣ q; w/uvθx

]
{

xn} = xn
φ

[
q–n, u, v

w, 

∣∣∣ q; –qw/uvx

]
.

Inserting the last two expressions into (), we obtain the desired result which reduces to
the q-exponential function when u =  or v = . �

3.3 A generalization of q-Chu-Vandermonde sums
In view of the fact that

(a; q)n =
(a; q)∞

(qna; q)∞

and

(q/a; q)n = (–a)–nq(n+
 ) (q–na; q)∞

(a; q)∞
,

we can reformulate the q-Chu-Vandermonde sums () as

n∑

k=

(q–n; q)kqk

(q, c; q)k


(xqk ; q)∞

=
(–)ncnq(n

)

(c; q)n

(q–nx/c; q)∞
(x, qx/c)∞

.

Applying T
[u, v

w | q; tDx
]

to both sides of the last expression, we have

n∑

k=

(q–n; q)kqk

(q, c; q)k
T

[
u, v
w

∣∣∣ q; tDx

]{


(xqk ; q)∞

}

=
(–)ncnq(n

)

(c; q)n
T

[
u, v
w

∣∣∣ q; tDx

]{
(q–nx/c; q)∞

(x, qx/c)∞

}
.

On the one hand, specifying with a =  and b = qk , we can restate () as

T

[
u, v
w

∣∣∣ q; tDx

]{


(xqk ; q)∞

}
=


(qkx; q)∞

φ

[
u, v
w

∣∣∣ q; qkt

]
.
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On the other hand, in view of Theorem , it is not hard to derive

T

[
u, v
w

∣∣∣ q; tDx

]{
(q–nx/c; q)∞

(x, qx/c)∞

}

=
(q–nx/c; q)∞
(x, qx/c; q)∞

∑

i,k≥

(u, v; q)i+k

(q; q)i(w; q)i+k

(q–n/c, qx/c; q)k

(q, q–nx/c; q)k
ti+k(q/c)i.

Combining the last three expression, we get the following result, which is an extension
of the q-Chu-Vandermonde sums (). We remark that it leads to Zhang and Yang’s result
([], Theorem .), when u or v equals q–N and t = c.

Theorem 

n∑

k=

(q–n, x; q)kqk

(q, c; q)k
φ

[
u, v
w

∣∣∣ q; qkt

]

=
xn(c/x; q)n

(c; q)n

∑

i,k≥

(u, v; q)i+k

(q; q)i(w; q)i+k

(q–n/c, qx/c; q)k

(q, q–nx/c; q)k
ti+k(q/c)i.

Supposing n =  and t = w/uv, we can reduce the previous theorem as follows.

Corollary 

∑

i,k≥

(u, v; q)i+k

(q; q)i(w; q)i+k

(q/c; q)k

(q; q)k
(w/uv)i+k(q/c)i =

(w/u, w/v; q)∞
(w, w/uv; q)∞

.

Letting i + k = m, and then extracting the coefficients of (u,v;q)m
(w;q)m

tm from both members
of Theorem , we get the following curious transformation formula, which results in the
q-Chu-Vandermonde sums () when m = .

Corollary 

φ

[
q–n, x

c

∣∣∣ q; qm+

]
=

(c/x; q)n

(c; q)n
xn(q/c)m

φ

[
q–m, q–n/c, qx/c

q–nx/c

∣∣∣ q; qm–c

]
.

3.4 A formal generalization of Sears’ formula
Recalling the Sears two-term summation formula [], Eq. (..)

∫ d

c

(qt/c, qt/d, abcdet; q)∞
(at, bt, et; q)∞

dqt =
d( – q)(q, qd/c, c/d, abcd, acde; q)∞

(ac, ad, bc, bd, ce, de; q)∞
, ()

we can restate it as

∫ d

c

(qt/c, qt/d; q)∞
(bt, et; q)∞

(abcdet; q)∞
(at, acde; q)∞

dqt

=
d( – q)(q, qd/c, c/d; q)∞

(bd, ce, de; q)∞
(abcd; q)∞
(ac, ad; q)∞

.
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Further applying T
[u, v

w | q; sDx
]

to both sides of the above identity with respect to the vari-
able a, we write down immediately that

∫ d

c

(qt/c, qt/d; q)∞
(bt, et; q)∞

T

[
u, v
w

∣∣∣ q; sDx

]{
(abcdet; q)∞
(at, acde; q)∞

}
dqt

=
d( – q)(q, qd/c, c/d; q)∞

(bd, ce, de; q)∞
T

[
u, v
w

∣∣∣ q; sDx

]{
(abcd; q)∞
(ac, ad; q)∞

}
.

Applying Theorem  to both sides of the last identity, we therefore establish the following
transformation formula.

Theorem 
∫ d

c

(qt/c, qt/d, abcdet; q)∞
(at, bt, et; q)∞

∞∑

n,k=

(u, v; q)n+ksn+k

(q; q)n(w; q)n+k

(at, bt; q)k

(q, abcdet; q)k
(cde)ktn dqt

=
d( – q)(q, qd/c, c/d, abcd, acde; q)∞

(ac, ad, bc, bd, ce, de; q)∞

∞∑

n,k=

(u, v; q)n+ksn+k

(q; q)n(w; q)n+k

(bd, ad; q)k

(q, abcd; q)k
ckdn.

Letting n + k = m, and then extracting the coefficients of (u,v;q)m
(w;q)m

sm from both members
of the last theorem, we derive the following result which leads to the Sears two-term sum-
mation formula () when m = .

Corollary 

∫ d

c

tm(qt/c, qt/d, abcdet; q)∞
(at, bt, et; q)∞

φ

[
q–m, at, bt

abcdet

∣∣∣ q; qmcde/t

]
dqt

=
dm+( – q)(q, qd/c, c/d, abcd, acde; q)∞

(ac, ad, bc, bd, ce, de; q)∞
φ

[
q–m, ad, bd

abcd

∣∣∣ q; qmc/d

]
.

3.5 A formal generalization of Askey-Wilson integral
Recalling the Askey-Wilson integral []

∫ π



h(cos θ ; ) dθ

h(cos θ ; b, c, d, x)
=

π

(q, bc, bd, cd; q)∞
(xbcd; q)∞

(xb, xc, xd; q)∞
, ()

we express it as
∫ π



h(cos θ ; )
h(cos θ ; b, c, d)

(xb; q)∞
(xeiθ , xe–iθ ; q)∞

dθ =
π

(q, bc, bd, cd; q)∞
(xbcd; q)∞
(xc, xd; q)∞

.

Applying T
[u, v

w | q; tDx
]

to both sides of the above identity with respect to the variable x,
we get

∫ π



h(cos θ ; )
h(cos θ ; b, c, d)

T

[
u, v
w

∣∣∣ q; tDx

]{
(xb; q)∞

(xeiθ , xe–iθ ; q)∞

}
dθ ()

=
π

(q, bc, bd, cd; q)∞
T

[
u, v
w

∣∣∣ q; tDx

]{
(xbcd; q)∞
(xc, xd; q)∞

}
. ()
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By means of Theorem , we get, respectively,

T

[
u, v
w

∣∣∣ q; tDx

]{
(xb; q)∞

(xeiθ , xe–iθ ; q)∞

}

=
(xb; q)∞

(xeiθ , xe–iθ ; q)∞

∑

n,k≥

(u, v; q)n+k

(q; q)n(w; q)n+k

(be–iθ , xe–iθ ; q)k

(q, xb; q)k

(
teiθ )k(te–iθ )n

and

T

[
u, v
w

∣∣∣ q; tDx

]{
(xbcd; q)∞
(xc, xd; q)∞

}

=
(xbcd; q)∞
(xc, xd; q)∞

∑

n,k≥

(u, v; q)n+k

(q; q)n(w; q)n+k

(bd, xd; q)k

(q, xbcd; q)k
(tc)k(td)n.

Substituting the last two expressions into the identity (), we have the following extension
of the Askey-Wilson integral.

Theorem  For max{|b|, |c|, |d|, |x|} < , we have

∫ π



h(cos θ ; )
h(cos θ ; b, c, d, x)

∑

n,k≥

(u, v; q)n+ktn+k

(q; q)n(w; q)n+k

(be–iθ , xe–iθ ; q)k

(q, xb; q)k
e(k–n)iθ dθ

=
π (xbcd; q)∞

(q, bc, bd, cd, xb, xc, xd; q)∞

∑

n,k≥

(u, v; q)n+k

(q; q)n(w; q)n+k

(bd, xd; q)k

(q, xbcd; q)k
(tc)k(td)n.

Letting n + k = m, and then extracting the coefficients of (u,v;q)m
(w;q)m

tm from both members
of the last theorem, we thus give the following transformation formula, which leads to the
Askey-Wilson integral () when m = .

Corollary 

∫ π



h(cos θ ; )
h(cos θ ; b, c, d, x)

m∑

k=

[
m
k

]
(be–iθ , xe–iθ ; q)k

(xb; q)k
e(k–m)iθ dθ

=
dmπ (xbcd; q)∞

(q, bc, bd, cd, xb, xc, xd; q)∞

m∑

k=

[
m
k

]
(bd, xd; q)k

(xbcd; q)k
(c/d)k .
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