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Abstract
We consider two-dimensional predator-prey systems with
Beddington-DeAngelis-type functional response on periodic time scales. For this
special case, we try to find the necessary and sufficient conditions for the considered
system when it has at least one w-periodic solution. This study is mainly based on
continuation theorem in coincidence degree theory and will also give beneficial
results for continuous and discrete cases. Especially, for the continuous case, by using
the study of Cui and Takeuchi (J. Math. Anal. Appl. 317:464-474, 2006), to obtain the
globally attractive w-periodic solution of the given system, an inequality is given as a
necessary and sufficient condition. Additionally, for the continuous case in this study,
the open problem given in the discussion part of the study of Fan and Kuang (J. Math.
Anal. Appl. 295:15-39, 2004) is solved.
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1 Introduction
The relationships between species and the outer environment and the connections be-
tween different species are the description of the predator-prey dynamic systems, which
are the subject of mathematical ecology in biomathematics. Various types of functional re-
sponses in a predator-prey dynamic system such as Monod-type, semi-ratio-dependent,
and Holling-type have been studied in [–].

The key concepts in this study are the functional response in the periodic environment
and the time-scale calculus.

First of all, we investigate the predator-prey system with Beddington-DeAngelis-type
functional response for a general time scale and its continuous case. This type of func-
tional response first appeared in [] and []. At low densities, with this type of functional
response, some of the singular behaviors of ratio-dependent models are avoided. Also,
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predator feeding can be described much better over a range of predator-prey abundances
by using Beddington-DeAngelis-type functional response.

Secondly, being in a periodic environment is important because, in such an environ-
ment, the global existence and stability of a positive periodic solution is a significant prob-
lem in population growth model. This plays a similar role as a globally stable equilibrium
in an autonomous model. Therefore, it is important to consider under which conditions
the resulting periodic nonautonomous system would have a positive periodic solution that
is globally asymptotically stable, and the globally asymptotically stable periodic solution
of the given system in the continuous case is investigated in this study as an application.
For nonautonomous case, there are many studies on the existence of periodic solutions of
predator-prey systems in continuous and discrete models based on the coincidence theory
such as [, –].

Additionally, for the continuous case, the studies of Fan and Kuang [] and Cui and
Takeuchi [] have very important contributions on the predator-prey dynamic systems
with Beddington-DeAngelis-type functional response. They have investigated the follow-
ing equation:

x̃′(t) = a(t)x̃(t) – b(t)x̃(t) –
c(t)ỹ(t)x̃(t)

α(t) + β(t)x̃(t) + m(t)ỹ(t)
,

ỹ′(t) = –d(t)ỹ(t) +
f (t)x̃(t)ỹ(t)

α(t) + β(t)x̃(t) + m(t)ỹ(t)
.

()

Here x̃ and ỹ represent the densities of the populations of the prey and predator. In
other words, they represent the numbers of individuals in the prey and predator popula-
tion per unit area, respectively. For general nonautonomous case, Fan and Kuang studied
the permanence, extinction, and global asymptotic stability of the given system. For the
periodic case, Fan and Kuang established two sufficient criteria for the existence of a posi-
tive periodic solution by using Brouwer fixed point theorem and continuation theorem in
coincidence degree theory, respectively. These criteria are easy to be verified for the given
system in the form of (). At the same time, authors pointed that these criteria have room
for further improvement. They presented numerical simulation to indicate that () may
admit positive periodic solutions when the conditions in the theorems fail.

On the basis of these obtained results for system () with periodic coefficients, Cui and
Takeuchi continue the study on the periodic solution and permanence of that system. Cui
and Takeuchi obtained some new conditions for the permanence and existence of a pos-
itive periodic solution of system (). These results improve those obtained by Fan and
Kuang []. In addition to this improvement, in their paper [], they also give the equiv-
alence between the permanence and satisfaction of the inequality in Theorem . in [].
However, they could not show whether there is the equivalence between the existence of
at least one w-periodic solution and satisfaction of the inequality in Theorem . in [].

In this study, for the continuous case, this equivalence is shown by using coincidence
degree theory as an application of general time-scale case. In addition to that, we also show
the global attractivity or global asymptotic stability of this w-periodic solution. In other
words, the contribution of this paper is that we prove that any predator-prey dynamic
systems with Beddington-DeAngelis-type functional response satisfying the inequality in
Theorem . in paper [] have the same meaning with having globally attractive w-periodic
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solution. Therefore, we are able to show that to obtain a periodic solution for the periodic
case of system (), the improvement of this inequality becomes impossible.

Thirdly, the unification of continuous and discrete analysis is also significant for this
study. To unify the study of differential and difference equations, the theory of time-scale
calculus is initiated by Stephan Hilger []. In [, ] unification of the existence of periodic
solutions of population models modeled by ordinary differential equations and their dis-
crete analogues in the form of difference equations and extension of these results to more
general time scales is studied. The aim of this study is to find a necessary and sufficient
condition for the periodic solution of the given system with Beddington-DeAngelis-type
functional response for a general time scale and apply this result to the continuous case.

In this paper, we investigate the system

x�(t) = a(t) – b(t) exp
(
x(t)

)
–

c(t) exp(y(t))
α(t) + β(t) exp(x(t)) + m(t) exp(y(t))

,

y�(t) = –d(t) +
f (t) exp(x(t))

α(t) + β(t) exp(x(t)) + m(t) exp(y(t))
.

()

HereT is periodic, that is, if t ∈ T then t +w ∈ T, and a(t), b(t), c(t), d(t), f (t), α(t), β(t), m(t)
are w-periodic functions in T. We define w-periodic functions h(t) in T by h(t + w) = h(t).
All the coefficient functions are positive. This system on time scales was studied in [,
–].

2 Preliminaries
The necessary information is taken from []. Let X, Z be normed vector spaces, L :
Dom L ⊂ X → Z be a linear mapping, and N : X → Z be a continuous mapping. The map-
ping L will is called a Fredholm mapping of index zero if dim Ker L = codim Im L < +∞ and
Im L is closed in Z. If L is a Fredholm mapping of index zero and there exist continuous
projections P : X → X and Q : Z → Z such that Im P = Ker L and Im L = Ker Q = Im(I – Q),
then it follows that L|Dom L∩Ker P : (I – P)X → Im L is invertible. We denote the inverse of
that map by KP . If � is an open bounded subset of X, then the mapping N is called L-
compact on � if QN(�) is bounded and KP(I – Q)N : � → X is compact. Since Im Q is
isomorphic to Ker L, there exists an isomorphism J : Im Q → Ker L.

Definition  ([]) The codimension (or quotient or factor dimension) of a subspace L of
a vector space V is the dimension of the quotient space V /L; it is denoted by codimV L or
simply by codim L and is equal to the dimension of the orthogonal complement of L in V ,
and we have dim L + codim L = dim V .

The given information is necessary for the following continuation theorem.

Theorem  ([], continuation theorem) Let L be a Fredholm mapping of index zero, and
N be L-compact on �. Let the following conditions be satisfied:

(a) For each λ ∈ (, ), every solution z of Lz = λNz is such that z /∈ δ�;
(b) QNz �=  for each z ∈ δ� ∩ Ker L, and the Brouwer degree

deg{JQN , δ� ∩ Ker L, } �= .
Then the operator equation Lz = Nz has at least one solution in Dom L ∩ δ�.
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Definition  ([]) A subset A ⊂ Crd(X,R) is said to be rd-equicontinuous if the following
items are satisfied:

• For all right dense points of t ∈ X and for each ε > , there exists δ >  such that for
all t ∈ T, we have

∣∣f (t) – f (t)
∣∣ < ε for all f ∈ A, |t – t| < δ.

• For all left dense points of t ∈ X , there exists a δ-neighborhood Uld of t such that

∣∣f
(
t′) – f

(
t′′)∣∣ < ε for all f ∈ A,

∣∣t′ – t′′∣∣ < δ.

The above definition is significant for the explanation of the following Arzela-Ascoli
theorem for time scales.

Theorem  ([], Arzela-Ascoli theorem for time scales) Suppose that A is a subset of
Crd(X,R) where X is the compact subspace of T, and that the following items are satisfied:

• A is uniformly bounded subset of Crd(X,R).
• A is rd-equicontinuous in X .

Then A is a relatively compact subset of Crd(X,R).

We also give the following lemma, which is essential for the proof of the consequent
theorems.

Lemma  ([]) Let τ, τ ∈ [,ω] and t ∈ T. If f : T →R is ω-periodic, then

f (t) ≤ f (τ) +
∫ ω



∣∣f �(s)
∣∣�s and f (t) ≥ f (τ) –

∫ ω



∣∣f �(s)
∣∣�s.

Remark  In [] predator-prey dynamic models with several types of functional re-
sponses with impulses on time scales are studied and a general result is obtained. On the
other hand, in their study, only the effect of functional response is seen on the prey, but the
effect of the given functional response cannot be seen on predator. Therefore, our results
are also important since the impact of Beddington-DeAngelis-type functional response is
taken into account for both prey and predator.

3 Main result
3.1 General case
Remark  ([]) Let T = R. In (), by taking exp(x(t)) = x̃(t) and exp(y(t)) = ỹ(t), we ob-
tain equality (), which is the standard predator-prey system with Beddington-DeAngelis
functional response governed by ordinary differential equations. Many studies have been
done on this system, and [, , ] are their examples.

Let T = Z. Using equality (), we obtain

x(t + ) – x(t) = a(t) – b(t) exp
(
x(t)

)
–

c(t) exp(y(t))
α(t) + β(t) exp(x(t)) + m(t) exp(y(t))

,

y(t + ) – y(t) = –d(t) +
f (t) exp(x(t))

α(t) + β(t) exp(x(t)) + m(t) exp(y(t))
.
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Here again by taking exp(x(t)) = x̃(t) and exp(y(t)) = ỹ(t) we obtain

x̃(t + ) = x̃(t) exp

[
a(t) – b(t)x̃(t) –

c(t)ỹ(t)
α(t) + β(t)x̃(t) + m(t)ỹ(t)

]
,

ỹ(t + ) = ỹ(t) exp

[
–d(t) +

f (t)x̃(t)
α(t) + β(t)x̃(t) + m(t)ỹ(t)

]
,

()

which is the discrete-time predator-prey system with Beddington-DeAngelis-type func-
tional response and also the discrete analogue of (). This system was studied in [, ],
and []. Since () incorporates () and () as special cases, we call () the predator-prey
dynamic system with Beddington-DeAngelis functional response on time scales.

For equation (), exp(x(t)) and exp(y(t)) denote the densities of the prey and predator.
Therefore, x(t) and y(t) may be negative. By taking the exponentials of x(t) and y(t) we
obtain the numbers of preys and predators that are living per unit of an area. In other
words, for the general time-scale case, our equation is based on the natural logarithm of
the densities of the predator and prey. Hence, x(t) and y(t) may be negative.

For equations () and (), since exp(x(t)) = x̃(t) and exp(y(t)) = ỹ(t), the given dynamic
systems directly depend on the densities of the prey and predator.

Definition  In system (), if for all solutions of x(t) (y(t)), exp(x(t)) (exp(y(t))) tends to 
as t tends to infinity, then we say that the prey (predator) goes to extinction.

Lemma  If

∫ w



(
–d(t) +

f (t)
β(t)

)
�t < ,

then for all solutions of y(t), exp(y(t)) tends to  as t tends to infinity.

Proof Using the second equation of (), we obtain

exp
(
y(t)

) ≤ exp
(
y()

)
exp

(∫ t



(
–d(t) +

f (t)
β(t)

)
�s

)
.

Since,
∫ w

 (–d(t) + f (t)
β(t) )�t < , limt→∞ exp(y(t)) = . �

Lemma  If the predator does not go to extinction, then neither prey does. In other words,
if for all solutions of y(t), exp(y(t)) does not tend to zero as t tends to infinity, then for all
solutions of x(t), exp(x(t)) does not tend to zero as t tends to infinity.

Proof The statement of the lemma is equivalent the statement that if the prey goes to
extinction, then the predator also goes to extinction. Using the second equation in system
() and taking the integral of that equation from  to t, we obtain

exp
(
y(t)

)
= exp

(
y()

)
exp

(∫ t


–d(s) +

f (s) exp(x(s))
α(s) + β(s) exp(x(s)) + m(s) exp(y(s))

�s
)

. ()

If the prey goes to extinction, then exp(x(t)) tends to  as t tends to infinity. Since all the
coefficient functions are positive, f (t) exp(x(t))

α(t)+β(t) exp(x(t))+m(t) exp(y(t)) also tends to  as t tends to in-
finity. For sufficiently large t, the integral

∫ t
 (–d(t) + f (t) exp(x(t))

α(t)+β(t) exp(x(t))+m(t) exp(y(t)) )�s becomes
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negative, and the right-hand side of the equation () tends to  as t tends to infinity, which
means that exp(y(t)) tends to  as t tends to infinity causing the predator to go to extinc-
tion. Hence, the proof follows. �

Theorem  Assume that all the coefficient functions in system () are bounded, positive,
and w-periodic, and from Crd(T,R). Then at least one w-periodic solution exists if and
only if the predator does not go to extinction.

Proof Let X := {[ u
v
] ∈ Crd(T,R) : u(t + w) = u(t), v(t + w) = v(t)} with the norm ‖[ u

v
]‖ =

supt∈[,w]T (|u(t)|, |v(t)|) and Y := {[ u
v
] ∈ Crd(T,R), u(t + w) = u(t), v(t + w) = v(t)} with the

norm ‖[ u
v
]‖ = supt∈[,w]T (|u(t)|, |v(t)|).

In this subsection, from now on, instead of [, w]T, we use [, w].
Let us define the mappings L : Dom L ⊂ X → Y and N : X → Y by

L

([
u
v

])

=

([
u�

v�

])

and

N

([
u
v

])

=

([
a(t) – b(t) exp(u(t)) – c(t) exp(v(t))

α(t)+β(t) exp(u(t))+m(t) exp(v(t))

–d(t) + f (t) exp(u(t))
α(t)+β(t) exp(u(t))+m(t) exp(v(t))

])

.

Then Ker L = {[ u
v
]

:
[ u

v
]

=
[ c

c

]}, where c and c are constants, and

Im L =

{[
u
v

]

:

[∫ w
 u(s)�s

∫ w
 v(s)�s

]

=

[



]}

.

The set Im L is closed in Y , and dim Ker L = codim Im L = . We now show that as follows.
It is obvious that sum of any elements from Im L and Ker L is in Y . Without loss of gener-
alization, take u ∈ Y and

∫ w+κ

κ
u(t)�t = I �= . Let us define the new function g = u – I

mes(w) ,
where mes(t) =

∫ κ+t
κ

�t. Then I
mes(w) is constant because for all κ ,

∫ w+κ

κ
u(t)�t is always

the same by the definition of periodic time scales. Taking the integral of g from κ to w + κ ,
we get

∫ w+κ

κ

g(t)�t =
∫ w+κ

κ

u(t)�t – I = .

Then u ∈ Y can be written as the sum of g ∈ Im L and I
mes(w) ∈ Ker L, since I

mes(w) is constant.
Similar steps are used for v. Then

[ u
v
] ∈ Y can be written as the sum of an element from

Im L and an element from Ker L. Also, it is easy to show that any element in Y is uniquely
expressed as the sum of an element Ker L and an element from Im L. So codim Im L is also
, and we get the desired result. Therefore, L is a Fredholm mapping of index zero.

There exist continuous projectors P : X → X and Q : Y → Y such that

P

([
u
v

])

=


mes(w)

[∫ w
 u(s)�s

∫ w
 v(s)�s

]
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and

Q

([
u
v

])

=


mes(w)

([∫ w
 u(s)�s

∫ w
 v(s)�s

])

.

The generalized inverse KP = Im L → Dom L ∩ Ker P is given by

KP

([
u
v

])

=

[∫ t
 u(s)�s – 

mes(w)
∫ w


∫ t

 u(s)�s�t
∫ t

 v(s)�s – 
mes(w)

∫ w


∫ t
 v(s)�s�t

]

,

and

QN

([
u
v

])

=


mes(w)

([∫ w
 (a(s) – b(s) exp(u(s)) – c(s) exp(v(s))

α(s)+β(s) exp(u(s))+m(s) exp(v(s)) )�s
∫ w

 (–d(s) + f (s) exp(u(s))
α(s)+β(s) exp(u(s))+m(s) exp(v(s)) )�s

])

.

Let

a(t) – b(t) exp
(
u(t)

)
–

c(t) exp(v(t))
α(t) + β(t) exp(u(t)) + m(t) exp(v(t))

= N,

–d(t) +
f (t) exp(u(t))

α(t) + β(t) exp(u(t)) + m(t) exp(v(t))
= N,


mes(w)

∫ w



(
a(s) – b(s) exp

(
u(s)

)
–

c(s) exp(v(s))
α(s) + β(s) exp(u(s)) + m(s) exp(v(s))

)
�s = N̄,


mes(w)

∫ w



(
–d(s) +

f (s) exp(u(s))
α(s) + β(s) exp(u(s)) + m(s) exp(v(s))

)
�s = N̄,

KP(I – Q)N

([
u
v

])

= KP

([
N – N̄

N – N̄

])

=

[∫ t
 (N(s) – N̄(s))�s – 

mes(w)
∫ w


∫ t

 (N(s) – N̄(s))�s�t
∫ t

 (N(s) – N̄(s))�s – 
mes(w)

∫ w


∫ t
 (N(s) – N̄(s))�s�t

]

.

Clearly, QN and KP(I – Q)N are continuous. Since X and Y are Banach spaces and they
only contain the periodic functions, we can use the Arzela-Ascoli theorem for time scales
and find that KP(I – Q)N(�̄) is compact for any open bounded set � ⊂ X. Additionally,
QN(�̄) is bounded. Thus, N is L-compact on �̄ for any open bounded set � ⊂ X.

To apply the continuation theorem, we investigate the operator equation

x�(t) = λ

[
a(t) – b(t) exp

(
x(t)

)
–

c(t) exp(y(t))
α(t) + β(t) exp(x(t)) + m(t) exp(y(t))

]
,

y�(t) = λ

[
–d(t) +

f (t) exp(x(t))
α(t) + β(t) exp(x(t)) + m(t) exp(y(t))

]
.

()

Let
[ u

v
] ∈ X be a solution of system (). Integrating both sides of system () over the

interval [, w], we obtain

{∫ w
 a(t)�t =

∫ w
 (b(t) exp(x(t)) + c(t) exp(y(t))

α(t)+β(t) exp(x(t))+m(t) exp(y(t)) )�t,
∫ w

 d(t)�t =
∫ w

 ( f (t) exp(x(t))
α(t)+β(t) exp(x(t))+m(t) exp(y(t)) )�t,

()
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∫ w



∣∣x�(t)
∣∣�t

≤ λ

[∫ w



∣∣a(t)
∣∣�t +

∫ w



(
b(t) exp

(
x(t)

)
+

c(t) exp(y(t))
α(t) + β(t) exp(x(t)) + m(t) exp(y(t))

)
�t

]

≤ λ

[

∫ w


a(t)�t

]

≤ M, ()

where M := 
∫ w

 a(t)�t,

∫ w



∣∣y�(t)
∣∣�t ≤ λ

[∫ w



∣∣d(t)
∣∣�t +

∫ w



f (t) exp(x(t))
α(t) + β(t) exp(x(t)) + m(t) exp(y(t))

�t
]

≤ λ

[

∫ w


d(t)�t

]

≤ M, ()

where M := 
∫ w

 d(t)�t.
By Theorem . from [], since

[ x
y
] ∈ X, there exist ηi, ξi, i = , , such that

x(ξ) = inf
t∈[,w]

x(t),

x(η) = sup
t∈[,w]

x(t),
()

y(ξ) = inf
t∈[,w]

y(t),

y(η) = sup
t∈[,w]

y(t).
()

By the first equation of () and by () we get x(ξ) < l, where l := ln(
∫ w

 a(t)�t
∫ w

 b(t)�t ). Since x(ξ)
is the infimum of x(t) for t ∈ [, w], there exists t ∈ [, w] such that x(ξ) ≤ x(t) < l.

Using the first inequality in Lemma , we have

x(t) ≤ x(t) +
∫ w



∣∣x�(t)
∣∣�t ≤ x(t) +

(

∫ w


a(t)�t

)

< H := l + M. ()

From the second equation of () we have x(η) > l, where l := ln(
∫ w

 d(t)�t
∫ w

 (f (t)/α(t))�t ). Since
x(η) is the supremum of x(t) for t ∈ [, w], there exists t ∈ [, w] such that x(η) ≥ x(t) >
l. By the second inequality in Lemma  we have

x(t) ≥ x(η) –
∫ w



∣
∣x�(t)

∣
∣�t

≥ x(η) –
(


∫ w


a(t)�t

)

> H := l – M. ()
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By using inequalities () and (), we get supt∈[,w] |x(t)| ≤ B := max{|H|, |H|}. We can
write f (t) exp(x(t))

α(t)+β(t) exp(x(t))+m(t) exp(y(t)) as f (t) exp(y(t))
α(t)+β(t) exp(x(t))+m(t) exp(y(t)) exp(x(t)–y(t)). Therefore, we get

∫ w


d(t)�t <

∫ w



(
f (t)/m(t)

)[
exp

(
x(t) – y(t)

)]
�t

<
[
exp

(
x(η) – y(ξ)

)]∫ w



(
f (t)/m(t)

)
�t.

Since () is true for each t ∈ [, w], we obtain

y(ξ) < H – ln

( ∫ w
 d(t)�t

∫ w
 (f (t)/m(t))�t

)
:= l.

Here y(ξ) is the infimum of y(t) for t ∈ [, w]; therefore, there exists t ∈ [, w] such that
y(ξ) ≤ y(t) < l. Using the first equation of Lemma , we have

y(t) ≤ y(t) +
∫ w



∣∣y�(t)
∣∣�t

≤ y(t) +
(


∫ w


d(t)�t

)

< H := l + M. ()

Since all the coefficient functions in f (t) exp(y(t))
α(t)+β(t) exp(x(t))+m(t) exp(y(t)) are positive and the preda-

tor does not go to extinction, we have

f (t)
m(t)

>
f (t) exp(y(t))

α(t) + β(t) exp(x(t)) + m(t) exp(y(t))
> .

Then, there exists k ∈ N such that

f (t) exp(y(t))
α(t) + β(t) exp(x(t)) + m(t) exp(y(t))

>

k

f (t)
m(t)

> 

and thus

∫ w


d(t)�t =

∫ w



f (t) exp(y(t))
α(t) + β(t) exp(x(t)) + m(t) exp(y(t))

[
exp

(
x(t) – y(t)

)]
�t

≥ [
exp

(
x(ξ) – y(η)

)]∫ w



f (t) exp(y(t))
α(t) + β(t) exp(x(t)) + m(t) exp(y(t))

�t

>
[
exp

(
x(ξ) – y(η)

)] 
k

∫ w



f (t)
m(t)

�t.

Then we obtain

y(η) > x(ξ) – ln

(∫ w
 d(t)�t
/k f (t)

m(t)

)
.
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By () we have

y(η) > H – ln

(∫ w
 d(t)�t
/k f (t)

m(t)

)
:= l.

Since y(η) is the supremum of y(t) for t ∈ [, w], there exists t ∈ [, w] such that y(η) ≥
y(t) > l. Using the second inequality of Lemma , we get

y(t) ≥ y(t) –
∫ w



∣
∣x�(t)

∣
∣�t ≥ y(t) –

(

∫ w


d(t)�t

)

> H := l – M. ()

By () and () we obtain supt∈[,w] |y(t)| ≤ B := max{|H|, |H|}. Obviously, B and B

are both independent of λ. Let M = B + B + . Then maxt∈[,w] ‖
[ x

y
]‖ < M. Let � = {[ x

y
] ∈

X : ‖[ x
y
]‖ < M}, which satisfies condition (a) in Theorem . If

[ x
y
] ∈ Ker L ∩ ∂�,

[ x
y
]

is a
constant with ‖[ x

y
]‖ = M, then

QN

([
x
y

])([∫ w
 (a(s) – b(s) exp(x) – c(s) exp(y)

α(s)+β(s) exp(x)+m(s) exp(y) )�s
∫ w

 (–d(s) + f (s) exp(x)
α(s)+β(s) exp(x)+m(s) exp(y) )�s

])

.

Here we take the operator J : Im V → Ker L as the identity operator. Then, we define the
homotopy Hν = ν(JQN) + ( – ν)G, where

G

([
x
y

])

=

[ ∫ w
 (a(s) – b(s) exp(x))�s

∫ w
 (d(s) – f (s) exp(x)

α(s)+β(s) exp(x)+m(s) exp(y) )�s

]

.

Take DJG as the determinant of the Jacobian of G. Since
[ x

y
] ∈ Ker L, the Jacobian of G

is
⎡

⎣
–ex ∫ w

 b(s)�s 
∫ w


–exf (s)

α(s)+β(s)ex+m(s)ey �s +
∫ w


(ex)f (s)β(s)

(α(s)+β(s)ex+m(s)ey) �s –
∫ w


exeyf (s)m(s)

(α(s)+β(s)ex+m(s)ey) �s

⎤

⎦ .

Since all the functions in the Jacobian of G are positive, sign DJG is always positive.
Hence,

deg(JN ,� ∩ Ker L, ) = deg(G,� ∩ Ker L, ) =
∑

[ x
y

]
∈G–(

[ 


]
)

sign DJG

([
x
y

])

�= .

Thus, all the conditions of Theorem  are satisfied. Therefore, system () has at least one
positive w-periodic solution.

If the given system () has at least one periodic solution, then for all the solutions of y(t),
exp(y(t)) does not go to zero as t goes to infinity, which means that the predator does not
go to extinction. Hence, we are done. �

Remark  It is obvious that if system () has at least one periodic solution, then the in-
equality

∫ w
 d(t)�t <

∫ w


f (t)
β(t)�t must be satisfied. For the continuous case, this was done
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Figure 1 To obtain this figure, we take x(0) = 2 and y(0) = 2.

in []. But although this inequality is satisfied, system () does not have any periodic solu-
tion, which means that the predator can go to extinction by Theorem . Therefore, if we
are able to extend the conditions that make the predator go to extinction, then we have
more information about the systems that have at least one periodic solution.

Example  Let T = [k, k + ], k ∈N, k starting with ,

x�(t) =
(
 sin(π t) + 

)
–

(
. sin(π t) + 

)
exp(x)

–
( +  cos(π t)) exp(y)

(sin(π t) + ) + ( + . cos(π t)) exp(x) +  exp(y)
,

y�(t) = –
(
. sin(π t) + 

)
+

( cos(π t) + .) exp(x)
(sin(π t) + ) + ( + . cos(π t)) exp(x) +  exp(y)

.

Example  Let T = [k, k + ], k ∈N,

x�(t) =
(
 sin(π t) + 

)
–

(
. sin(π t) + 

)
exp(x)

–
( +  cos(π t)) exp(y)

(sin(π t) + ) + ( + . cos(π t)) exp(x) +  exp(y)
,

y�(t) = –
(
. sin(π t) + 

)
+

( cos(π t) + .) exp(x)
(sin(π t) + ) + ( + . cos(π t)) exp(x) +  exp(y)

.

Figures  and  satisfy the results obtained in Theorem .

3.2 Continuous case
.. Preliminaries for continuous case
Definition  ([]) Solutions of a w-periodic system generate a w-periodic semiflow
T(t) : X → X (X is the initial value space) in the sense that T(t)x is continuous in (t, x) ∈
[, +∞) × X, T() = I , and T(t + w) = T(t)T(w) for all t > .
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Figure 2 To obtain this figure, we take x(0) = 2 and y(0) = 2.

Definition  ([]) The periodic semi-flow T(t) is said to be uniformly persistent with
respect to (X, ∂X) if there exists η >  such that for any x ∈ X, lim inft→∞ d(T(t)x,
∂X) ≥ η.

Definition  ([]) Let T : Rn → R
n. The map T is point dissipative if there exists a

bounded set B such that, for each x ∈ R
n, there is an integer n = n(x, B) such that

Tn(x) ∈ B for each n ≥ n.

Lemma  ([]) Let S : X → X be a continuous map with S(X) ⊂ X. Assume that S is
point dissipative, compact, and uniformly persistent with respect to (X, δX). Then there
exists a global attractor A for S in X relative to strongly bounded sets in X, and S has a
coexistence state x ∈ A.

Definition  ([]) System () is called permanent if there exist positive constants r, r,
R, and R such that solution (x̃(t), ỹ(t)) of system () satisfies

r ≤ lim
t→∞ inf x̃(t) ≤ lim

t→∞ sup x̃(t) ≤ R,

r ≤ lim
t→∞ inf ỹ(t) ≤ lim

t→∞ sup ỹ(t) ≤ R.

Theorem  ([]) Assume that all the coefficient functions in system () are positive. Then
system () is permanent and has at least one positive w-periodic solution if


w

∫ w


a(t) dt

(
–d(t) +

f (t)x∗(t)
α(t) + βx∗(t)

)
> , ()

where x∗(t) = –exp(–
∫ w

 a(s) ds)
∫ w

 b(t–s) exp(–
∫ s

 a(t–τ ) dτ ) ds is the unique global asymptotically stable periodic
solution of system () x̃′(t) = x̃(t)(a(t) – b(t)x̃(t)).

In [], the following corollary of Theorem  is given.



Pelen et al. Advances in Difference Equations  (2016) 2016:15 Page 13 of 19

Corollary  ([]) Assume that all the coefficient functions in system () are positive. Then
this system is permanent and has at least one w-periodic solution if

(
f L – dMβM)(a

b

)L

> dMαM, ()

where hM is the maximum of h, and hL is the minimum of h.

Theorem  ([]) Assume that all the coefficient functions in system () are positive. Then
system () is permanent if and only if inequality () holds.

If we take x̃ = exp(x(t)) and ỹ = exp(y(t)), then the following system is equivalent to sys-
tem():

x′(t) = a(t) – b(t) exp
(
x(t)

)
–

c(t) exp(y(t))
α(t) + β(t) exp(x(t)) + m(t) exp(y(t))

,

y′(t) = –d(t) +
f (t) exp(x(t))

α(t) + β(t) exp(x(t)) + m(t) exp(y(t))
.

()

Definition  In system (), for all solutions of x(t) (y(t)), if exp(x(t)) (exp(y(t))) tends to
 as t tends to infinity, then we say that the prey (predator) goes to extinction. In other
words, in system (), if x̃(t) (ỹ(t)) tends to  as t tends to infinity, then we say that the prey
(predator) goes to extinction.

In [], a sufficient and necessary condition for the permanence of system () is estab-
lished by the theorem, which Theorem  in this study. Additionally, in the discussion part
of that paper, the following corollary is stated.

Corollary  ([]) System () goes to extinction if and only if


w

∫ w


a(t) dt

(
–d(t) +

f (t)x∗(t)
α(t) + βx∗(t)

)
≤ .

.. Application of the main result to the continuous case
Theorem  Assume that all the coefficient functions in system () are bounded, positive,
w-periodic, and from C(T,R). Then, there exists at least one w-periodic solution of system
() if and only if inequality () is satisfied.

Proof First, let us assume that inequality () is satisfied. Then system () becomes per-
manent by Theorem , and the predator does not go to extinction. Since system () and
system () are equivalent, the predator does not go to extinction in system (). Then,
by Theorem  we obtain that system () has at least one w-periodic solution. Therefore,
system () also has at least one w-periodic solution.

For the other part, let us assume that our system () has at least one w-periodic solution.
Then system () has at least one w-periodic solution. By Theorem  the predator does
not go to extinction. By Lemma  the prey also does not go to extinction. Then x̃(t) and
ỹ(t) do not go to  as t tends to infinity. Then by Corollary  we obtain that if system ()
does not go to extinction, then inequality () is satisfied. Hence, we are done. �
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The following lemma is similar to Lemma . in [], but with zero impulses.

Lemma  Suppose that inequality () holds. Then, the w-periodic solution of system ()
is globally asymptotically stable or globally attractive.

Proof To get the result, we apply Lemma . Let us consider the following ordinary differ-
ential equation:

z′(t) = F
(
t, z(t)

)
,

z() = φ.
()

Here F ∈ C([,∞) × R
,R), φ ∈ R

, F(t + w, u) = F(t, u). Then, the operator that solves
system () can be written as

T(t)z = ze–λt +
∫ t


e–λ(t–s)[F

(
s, T(s)z

)
+ λT(s)z

]
ds,

where λ is a positive constant. It is obvious that T() = I . Also, we can verify that

u(s) =

{
T(s)z,  ≤ s ≤ w,
T(s – w)T(w)z, w ≤ s ≤ t + w,

is the solution of system () with the initial value u() = z, where s ∈ [, t + w]. By the
uniqueness theorem system () has a unique solution; therefore, T(t + w)z = u(t + w) =
T(t)T(w)z.

To apply Lemma , let S = T(w), S = S ◦ S = T(w) ◦ T(w) = T(w). Here the considered
system () is a periodic system. Therefore, we can apply Theorem  and obtain that T(t)
is a compact operator. Additionally, the compactness of the given operator can also be
shown by the following alternative way. In [], Theorem ., the considered system is

z′(t) = F
(
t, z(t)

)
,

z
(
t+
k
)

– z(tk) = Ik
(
z(tk)

)
,

z() = φ.

()

Here Ik ∈ C(R,R), and the solution operator of system () is defined as

T̂(t)z = ze–λt +
∫ t


e–λ(t–s)[F

(
s, T̂(s)z

)
+ λT̂(s)z

]
ds +

∑

<tk <t

e–λ(t–tk )Ik
(
T̂(tk)z

)
.

If we take Ik as the zero function, then system () is becomes system (), and the solution
operator T̂ becomes equal to the solution operator T . By [] and [], T(t) is a compact
operator. Then S is a compact operator. If we take X+

i = {zi : zi ∈ R, zi ≥ } for i = ,  and
X+

i = {zi : zi ∈R, zi > } for i = , , then X = X+
 ×X+

 , X = X+
 ×X+

 , and δX = X/X. When
system () satisfies inequality (), system () becomes permanent. Therefore, S satisfies
the conditions of Lemma . Therefore, S admits a global attractor, which means that the
system has a globally asymptotically stable or globally attractive w-periodic solution. �
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Corollary  Assume that all the coefficient functions in system () are bounded, positive,
w-periodic, and from C(T,R). Then, there a globally attractive w-periodic solution for
system () exists if and only if inequality () is satisfied.

Proof Proof is immediate from Lemma  and Theorem . �

.. Examples for continuous case
Example  Consider

x′(t) =
(
 sin(π t) + 

)
–

(
. sin(π t) + .

)
exp(x)

–
( +  cos(π t)) exp(y)

(sin(π t) + .) + ( + . sin(π t)) exp(x) + exp(y)
,

y′(t) = –
(
. sin(π t) + .

)
+

(. cos(π t) + .) exp(x)
(sin(π t) + .) + ( + . sin(π t)) exp(x) + exp(y)

.

By some calculations we obtain that x∗ ≥  exp(– cos(π t)
π )

exp(/π ) := x∗∗. Then we get

–
(
. sin(π t) + .

)
+

(. cos(π t) + .)x∗(t)
(sin(π t) + .) + ( + . sin(π t))x∗(t)

> –
(
. sin(π t) + .

)
+

(. cos(π t) + .)x∗∗(t)
(sin(π t) + .) + ( + . sin(π t))x∗∗(t)

> .

This means that Example  satisfies inequality () and has a globally attractive -periodic
solution. Figure  also supports our findings.

Although we change the initial values of the system in Example , we get the same solu-
tion after a while as it is seen in Figure . This shows the global attractivity of the -periodic
solution of Example .

Figure 3 To obtain this figure, we take x(0) = 0.1 and y(0) = 0.5.
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Figure 4 To obtain this figure, we take x(0) = 1 and y(0) = 0.7.

For Example , (f L – dMβM)( a
b )L = (. – () · (.)) · () = . and dMαM =  · (.) =

., but . > .. Therefore, this example does not satisfy inequality () in Corollary ,
but since it satisfies inequality (), we can say that this system has a -periodic globally
attractive solution.

Example  Consider

x′(t) =
(
sin(π t) + 

)
–

(
. sin(π t) + 

)
exp(x)

–
( + cos(π t)) exp(y)

(. sin(π t) + ) + exp(x) +  exp(y)
,

y′(t) = –
(
. sin(π t) + .

)
+

(cos(π t) + ) exp(x)
(. sin(π t) + ) + exp(x) +  exp(y)

.

Here the inequality is as follows:

∫ w


–d(t) +

f (t)
β(t)

dt =
∫ 


–
(
. sin(π t) + .

)
+

(
cos(π t) + 

)
dt = . > .

According to the study of [], if the inequality were
∫ w

 –d(t) + f (t)
β(t) dt < , then we could

obtain the result that system goes to extinction. However, since we find that this inequality
is greater than zero, we cannot make any observation about whether the system goes to
extinction or not. For this reason, we use inequality (). After some calculations we obtain
that x∗ ≤ .. Then we get

–
(
. sin(π t) + .

)
+

(cos(π t) + )x∗(t)
(. sin(π t) + ) + x∗(t)

≤ –
(
. sin(π t) + .

)
+

(cos(π t) + ).
(. sin(π t) + ) + .

< –. < .
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Figure 5 To obtain this figure we take x(0) = 0.5 and y(0) = 0.3.

Since Example  does not satisfy inequality (), the system does not have a periodic
solution, the predator of this system goes to extinction, and Figure  satisfies this result.

All of the figures in this study are obtained by Matlab program.

4 Discussion
In [], Figure , for the continuous case, there was a discussion about why Figure (a) does
not satisfy the conditions of Theorem . in that paper, but the solutions are still periodic.
We can answer this question by using our Theorem . When the coefficient functions in
Figure (a) are bounded, positive, -periodic, continuous, and the predator does not go to
extinction, then we have at least one -periodic solution, which is globally asymptotically
stable. Inequality () was first found by Cui and Takeuchi []. However, what they have
found was the equivalence between satisfaction of inequality () and the permanence of
the predator-prey dynamic systems with Beddington-DeAngelis-type function response.
Although they have found that if system () satisfies inequality (), then it has at least
one w-periodic solution, they could not say anything about when system () has at least
one w-periodic solution, whether it satisfies inequality () or not. In that paper, by using
Theorem  and Theorem , we can say that for system (), having at least one w-periodic
solution of is equivalent to satisfaction of inequality (), which means that a much better
development of the inequality for system () to investigate the periodic solution is impos-
sible. In addition, by using Corollary  we are able to say that satisfaction of inequality ()
is equivalent to the existence of a globally attractive w-periodic solution.

Hence, for any continuous predator-prey dynamic system with Beddington-DeAngelis-
type functional response, there is a globally attractive w-periodic solution if and only if
inequality () is satisfied, and the predator of this system goes to extinction if and only if
inequality () is not satisfied.

As a result, the importance of this paper is that we can enlarge conditions for the
existence of the positive periodic solutions of predator-prey dynamic systems with
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Beddington-DeAngelis functional response for continuous case and for a general time-
scale case.
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