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Abstract
This paper focuses on the problem of proportional-plus-derivative (PD) feedback H∞
control for uncertain singular neutral systems. The parameter uncertainties are
assumed to be time-varying norm-bounded and appearing not only in the state
matrix but also in the derivative matrix. This paper introduces new effective criteria
which make the systems stable and meet the H∞ performance by PD feedback
controller. Different from most existing methods, this study attempts to introduce the
information between derivative matrices. Based on such an idea, the PD feedback
controller for singular neutral systems is first of all proposed which makes the
derivative matrices (especially neutral matrix) meet the requirement which
guarantees the existence of the solution for the system. So the criteria in this paper
are less conservative to some extent. Finally, illustrate examples are given to
demonstrate the effectiveness of the proposed approach.
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1 Introduction
Since the late s, interests have been focused on the study of the H∞ control problem
[] due to its practical and theoretical importance. Various approaches have been devel-
oped and a great number of results for continuous systems as well as discrete systems
have been reported in the literature: [] discussed the State space solutions to standard
H and H∞ control problems; [] studied delay-dependent robust H∞ controller synthesis
for discrete singular delay systems; [] stated H∞ control for descriptor systems: a matrix
inequalities approach; [] addressed non-fragile H∞ control for linear systems with mul-
tiplicative controller gain variations. It should be pointed out that all of the works men-
tioned above are concerned with the H∞ control problem for conventional state-space
systems as well as conventional singular systems. However, many practical processes can
be modeled as neutral delay systems [–] such as networks of interconnected systems
[], lossless transmission lines, partial element equivalent circuits in electrical engineer-
ing, controlled constrained manipulators in mechanical engineering [, ], and certain
implementation schemes of predictive controllers []. So there are many results for the
study of the neutral systems [, ] performance. For example, [] studied estimates of
perturbation of nonlinear indirect interval control system of neutral type; [] studied a
stabilization method in neutral type direct control systems; [] studied stabilization of
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neutral-type indirect control systems to absolute stability state; etc. Most of the literature
studies the stability [–] for the linear neutral systems. But it appears that little results
are available so far on H∞ control of the neutral systems [, ] as well as the neutral
singular systems [–]. The above results are all for the theoretical research of this kind
of system. For the practical application research is rarely. In the future, we can achieve
more practical results from the application background; for example, results as regards a
dissolving tank of chemical process, a large circuit system, and recent general data-driven
methods [, ].

Circuit analysis, power systems, chemical process simulation, etc. can be modeled as a
general form of neutral type system, i.e. neutral singular systems. Therefore, the study of
stability problems for neutral singular systems is of theoretical and practical importance.
It is well known that the stability of the differential operator � is the prerequisite condi-
tion for the stability of neutral systems []. Its stability is determined by the derivative
matrices. In most previous literature [–] the differential operator � is presumed to be
stable. That is to say, derivative matrices need to meet certain conditions. This has great
significance. However, not all of the neutral systems have a stable operator. To make the
system meaningful, one should design the controller which makes the operator of the sys-
tem is stable. Owing to the operator being related to the state with derivative, we only
use derivative feedback control to stabilize the operator. To the best of our knowledge,
little attention has been given to the neutral singular systems with the operator � unsta-
ble. Up to now, the proportional-plus-derivative (PD) feedback control problem of neu-
tral singular systems with the operator � unstable has not been investigated when the
H∞ performance of the closed-loop system is required. The main objective of this pa-
per is to present the PD feedback controller for neutral singular systems. It can make the
systems asymptotically stable with an H∞ disturbance attenuation γ >  for all nonzero
w(t) ∈ LP

 [, +∞].
The remaining sections of this paper are organized as follows. The neutral singular sys-

tem description and some relevant lemmas are given in Section . Section  presents an
H∞ performance analysis of the neutral singular systems and Section  designs PD state
feedback stabilizing controllers. In Section , numerical examples are presented to illus-
trate the effectiveness of the proposed theoretical results in this paper. Finally, conclusions
are given in Section .

The following notation will be used throughout the paper: R denotes the set of real num-
bers. Rn denotes the n-dimensional Euclidean space. Rn×m denotes the set of n × m matri-
ces with real elements and Rn×m(s) denotes the set of n×m matrices of rational functions.
Let P be a square matrix. The matrix P is symmetric if P = PT . For symmetric matrices X
and Y , the notation X ≥ Y (respectively, X > Y ) means that the matrix X – Y is positive
semi-definite (respectively, positive definite). I is the identity matrix with appropriate di-
mension. The superscripts ‘T ’ and ‘∗’ represent the transpose and the complex conjugate
transpose. ℘n,τ = ℘([–τ , ], Rn) denotes the Banach space of continuous vector functions
mapping the interval [–τ , ] into Rn with the topology of uniform convergence. ‖x‖ is
the Euclidean norm of the vector x. Matrices, if not explicitly stated, are assumed to have
compatible dimensions. λ(G, E) = {α|det(G – αE) = } means generalized eigenvalue set
of matric G and E. �(, ) is a circle with  as a center and  as circle radius.
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2 System description and preliminaries
In this paper, we consider the following uncertain singular neutral delay system:

(E + �E)ẋ(t) = (A + �A)x(t) + (A + �A)x(t – h)

+ (G + �G)ẋ(t – τ ) + Bw(t) + Bu(t), (a)

z(t) = Cx(t). (b)

We have the initial condition

x(t + θ ) = φ(θ ), ∀θ ∈ [–τ̄ , ], (t,φ) ∈ R+ × ℘v
n,τ̄ ,

where x(t) ∈ Rn is the state variable vector; u(t) ∈ Rm is the control input vector; z(t) ∈ Rq is
the output vector; w(t) ∈ L[,∞) is the disturbance input vector; and φ(t) are continuous
functions defined on (–∞, ]. E (rank(E) ≤ n), A, A, G, B, B, C, D are given constant
matrices with appropriate dimensions, and τ̄ = max{h, τ } is a constant time-delay. �E,
�G, �A, �A are unknown real norm-bounded matrix functions which represent time-
varying parameter uncertainties. In this paper, the uncertainties are assumed to be of the
form

[
�E �G �A �A

]
= HF(t)

[
Ne Ng Na Na

]
.

Here H , Na, Na, Ne, Ng are known real constant matrices with appropriate dimensions,
for ∀t, F(t) is an unknown real matrix satisfying F(t)FT (t) ≤ I . I is a unit matrix with
appropriate dimensions.

The nominal unforced singular neutral system of the system (a) and (b) can be written
as

Eẋ(t) = Ax(t) + Ax(t – h) + Gẋ(t – τ ) + Bw(t) + Bu(t), (a)

z(t) = Cx(t), (b)

x(t + θ ) = φ(θ ), ∀θ ∈ [–τ̄ , ], (t,φ) ∈ R+ × ℘v
n,τ̄ .

In the following, we introduce some of the data that will be used later.
When E = I , the system (a) reduces to the uncertain neutral system with time delays.
Define the operator � : ℘n,τ → Rn as follows:

�xt = Ex(t) – Gx(t – τ ),

which will play a major role in the subsequent analysis.
For a given scalar γ > , the H∞ performance index of the system (a) and (b) is defined

to be

J(w) =
∫ ∞



[
zT (t)z(t) – γ wT (t)w(t)

]
dt. ()

Definition  [] Suppose � : C → Rn is linear, continuous and let C� = {� ∈ C : �� = }.
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The operator � is said to be stable if the zero solution of the homogeneous difference
equation

�yt = , t ≥ , y = � ∈ C�

is uniformly asymptotically stable.

It is noted that the regularity of the neutral singular system (a) and the stability of
operator � can ensure the existence and uniqueness of the solution, which is shown in
the following lemma.

Lemma  The differential operator �xt = Ex(t) – Gx(t – τ ) is stable if and only if λ(G, E) ⊂
{�(, ) – }.

Proof Take the Laplace transform for the equation

Ex(t) – Gx(t – τ ) = . ()

Then we have

(
E – e–sτ G

)
X(s) = . ()

The characteristic equation of equation () is

det
(
E – e–sτ G

)
= .

That is,

det
(
–e–sτ )det

(
–esτ E + G

)
= .

Obviously det(–e–sτ ) �= , so

det
(
G – esτ E

)
= . ()

Let esτ = α, then s = 
τ
{ln |α| + i Argα}.

Equation () can be rewritten as

det(G – αE) = .

If  < |α| < , that is, {λ(G, E) – {}} ⊂ �(, ), then Re s < .
Conversely, if Re s < , then  < |α| < , that is, {λ(G, E) – {}} ⊂ �(, ).
The Taylor series expansion of e–sτ around s =  is

e–sτ =  + (–sτ ) +

!

(–sτ ) +

!

(–sτ ) + · · · . ()

Substituting () into (), we obtain

EX(s) –
[

 + (–sτ ) +

!

(–sτ ) +

!

(–sτ ) + · · ·
]

GX(s) = . ()



Wang et al. Advances in Difference Equations  (2016) 2016:29 Page 5 of 16

When s → , the limit of equation () is

lim
s→

{
EX(s) –

[
 + (–sτ ) +


!

(–sτ ) +

!

(–sτ ) + · · ·
]

GX(s)
}

= . ()

According to the final value theorem for the Laplace transform, when {λ(G, E) – {}} ⊂
�(, ), that is to say, all the singularities of sX(s) are in the left half of the s plane, then
limt→+∞ x(t) = lims→ sX(s) is true. Therefore the solution x(t) of equation () is asymp-
totically stable if and only if limt→+∞ x(t) = lims→ sX(s) = . Then, equation () has the
following form:

(E – G)X() = .

So X() exists and has a unique value if and only if det(E – G) �= . Here λ(G, E) ⊂ {�(, ) –
} implies det(E – G) �= . Then we have the desired result immediately. This completes the
proof. �

Lemma  is from the paper ‘Robust stability analysis and stabilization of uncertain neu-
tral singular systems’, which is accepted by the IJSS.

From Lemma , we see that E – G is an invertible matrix. So the system (a) can be
rewritten as the following equation:

ẋ(t) = σAx(t) + σAx(t – h) + σG
∫ t

t–τ

ẍ(θ ) dθ + σBw(t) + σBu(t), ()

where σ = (E – G)–.
It is well known that the stability of the differential operator � is the prerequisite con-

dition for the stability analysis of neutral systems. Then according to Lemma , derivative
matrix needs to meet certain conditions. However, only the derivative feedback changes
the derivative matrix. So the purpose of this paper is to design a derivative feedback con-
troller which makes the system (a) and (b) asymptotically stable with an H∞ disturbance
attenuation γ >  for all nonzero w(t) ∈ LP

 [, +∞].

Lemma  For any vectors a and b of appropriate dimensions, X = XT >  satisfying XT X <
I , we have

–aT b < aT X–a + bT XT Xb.

Lemma  is from the paper ‘Robust stability analysis and stabilization of uncertain neu-
tral singular systems’, which is accepted by the IJSS.

Lemma  [] Let A, L, E, and F be real matrices of appropriate dimensions, with F sat-
isfying FT F ≤ I . Then we have:

i. For any scalar ε > ,

LFE + ET FT LT ≤ ε–LLT + εET E.
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ii. For any matrix P >  and scalar ε >  such that εI – EFET > ,

(A + LFE)T P(A + LFE) ≤ AT PA + AT PE
(
εI – ET PE

)–ET PA + εLT L.

3 H∞ performance analysis
In this section, we will focus on the H∞ performance analysis of the neutral singular sys-
tems (a), (b) and (a), (b) and establish the following results.

Theorem  For given scalar τ , h > , the nominal system (a) and (b) with u(t) =  is
asymptotically stable with an H∞ disturbance attenuation γ >  for all nonzero w(t) ∈
LP

 [, +∞] if there exist positive matrices P = PT > , Qi = QT
i >  (i = , ), U = UT > , and

any matrices Nj (j = , ), such that the following LMIs are feasible:

(E – G)P(E – G)T > , ()
[

–I U
UT –I

]

< , ()

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

ϒ ϒ ϒ   B ϒ ϒ  
∗ –Q        
∗ ∗ –Q       
∗ ∗ ∗ ϒ N    ϒ 
∗ ∗ ∗ ∗ ϒ     U
∗ ∗ ∗ ∗ ∗ –γ I    
∗ ∗ ∗ ∗ ∗ ∗ –I   
∗ ∗ ∗ ∗ ∗ ∗ ∗ –Q  
∗ ∗ ∗ ∗ ∗ ∗ ∗  –U 
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –I

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

< , ()

where

ϒ = (E – G)PAT + AP(E – G)T , ϒ = AQ,

ϒ = –G, ϒ = (E – G)PCT , ϒ = (E – G)P,

ϒ = τ Q – NC – CT NT
 , ϒ = NT

 + N, ϒ = CT NT
 .

Proof Due to E – G is an invertible matrix, we have (E – G)P(E – G)T > .
Next, we choose a candidate Lyapunov functional V (x(t)) as follows:

V
(
x(t)

)
= V + V + V,

V = xT (t)P–x(t),

V =
∫ t

t–h
xT (α)Q–

 x(α) dα,

V = τ

∫ 

–τ

∫ t

t+β

ẍT (θ )Qẍ(θ ) dθ dβ .
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For any matrices N, N with appropriate dimensions, we obtain


[
ẍT (t)N + z̈T (t)N

][
z̈(t) – Cẍ(t)

]
= .

Calculating the derivative of V (x(t)) along the solution of the nominal system () yields

V̇
(
x(t)

)
+ ZT (t)Z(t) – γ wT (t)w(t) ≤

⎡

⎢⎢
⎢⎢⎢
⎢⎢
⎢
⎣

x(t)
x(t – h)

∫ t
t–τ

ẍ(θ ) dθ

ẍ(t)
ÿ(t)
w(t)

⎤

⎥⎥
⎥⎥⎥
⎥⎥
⎥
⎦

T

�

⎡

⎢⎢
⎢⎢⎢
⎢⎢
⎢
⎣

x(t)
x(t – h)

∫ t
t–τ

ẍ(θ ) dθ

ẍ(t)
ÿ(t)
w(t)

⎤

⎥⎥
⎥⎥⎥
⎥⎥
⎥
⎦

, ()

� =

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎣

ATχT + χA + Q–
 + CT C χA –χG   χB

∗ –Q–
    

∗ ∗ –Q   
∗ ∗ ∗ τ Q – NC – CT NT

 N – CT NT
 

∗ ∗ ∗ ∗ N + NT
 

∗ ∗ ∗ ∗ ∗ –γ I

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎦

,

where χ = P–(E – G)–, P = PT > , Qi = QT
i >  (i = , ).

From (), (), the Schur complement lemma, and Lemma , we have � < . That is,
V̇ (xt) + ZT (t)Z(t) – γ wT (t)w(t) < . The initial condition x() =  implies that J(w) < .
This completes the proof. �

Remark  Most researchers solve the differential operator stability problems by the use
of derivative matrices with decomposition []. That is, there exist two invertible matrices
K and S such that

KES =

[
E 
 

]

,

KGS =

[
G 
 G

]

.

This requires the matrices E and G to be very special. It is not generally true to make two
matrices diagonalization simultaneously. Furthermore, the corresponding computational
complexities are large. However, this theorem holds as long as det(E–G) �= . So Theorem 
is more effective than the previous results.

Theorem  For given scalar τ , h > , the uncertain neutral system (a) and (b) is asymp-
totically stable with an H∞ disturbance attenuation γ >  for all nonzero w(t) ∈ LP

 [, +∞]
if there exist positive matrices P = PT > , Qi = QT

i >  (i = , ), Ui = UT
i >  (i = , ) and

any matrices Nj (j = , ) and scalar εj > , j = , . . . , , such that the following LMIs are
feasible:

[
(G – E)P(E – G)T + εHHT (E – G)P(Ne – Ng)T

(Ne – Ng)P(E – G) –εI

]

< , ()
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[
–I Ui

UT
i –I

]

< , ()

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

ϒ ϒ ϒ   B ϒ ϒ        H 
∗ –Q           ϒ    
∗ ∗ –Q              ϒ

∗ ∗ ∗ ϒ N    ϒ        
∗ ∗ ∗ ∗ ϒ     U       
∗ ∗ ∗ ∗ ∗ –γ I           
∗ ∗ ∗ ∗ ∗ ∗ –I       ϒ   
∗ ∗ ∗ ∗ ∗ ∗ ∗ –Q       ϒ  
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –U        
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –I       
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –εI ϒ     
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –εI     
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –εI    
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –εI   
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –εI  
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –U 
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –I

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< , ()

where

ϒ = ϒ + (ε + ε + ε + ε + ε)HHT , ϒ = QT
 NT

a, ϒ = NT
g UT

 ,

ϒ = CP(Ne – Ng)T , ϒ = P(Ne – Ng)T , ϒ = NaP(Ne – Ng)T .

Proof Let

A = (G – E)P(E – G)T + εHHT + ε–
 (E – G)P(Ne – Ng)T (Ne – Ng)P(E – G). ()

According to the Schur complement lemma, () is equivalent to A < .
From () and Lemma , we obtain

A ≥ (G – E)P(E – G)T + (G – E)P(Ne – Ng)T FT (t)HT

+ HF(t)(Ng – Ne)P(E – G)T

> (G – E)P(E – G)T + (G – E)P(�E – �G)T

+ (�G – �E)P(E – G)T – (�E – �G)P(�E – �G)T .

That is,

(E + �E – G – �G)P(E + �E – G – �G)T > .

If E, G, A and A in () are replaced by E + HF(t)Ne, G + HF(t)Ng , A + HF(t)Na, and
A + HF(t)Na, respectively, then () is rewritten as the following formula:

� + �hF(t)�T
neg + �negFT (t)�T

h + �hF(t)�T
na + �naFT (t)�T

h

+ �hF(t)�T
negc + �negcFT (t)�T

h + �hF(t)�T
ne + �neFT (t)�T

h

< ,
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where

� =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

ϒ ϒ ϒ   B ϒ ϒ  
∗ –Q        
∗ ∗ –Q       
∗ ∗ ∗ ϒ N    ϒ 
∗ ∗ ∗ ∗ ϒ     U
∗ ∗ ∗ ∗ ∗ –γ I    
∗ ∗ ∗ ∗ ∗ ∗ –I   
∗ ∗ ∗ ∗ ∗ ∗ ∗ –Q  
∗ ∗ ∗ ∗ ∗ ∗ ∗  –U 
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –I

⎤

⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

,

�T
h =

[
HT         

]
,

�neg =
[
(Ne – Ng)PNT

a FT (t)HT         
]
,

�na =
[
 NaQ        

]
,

�negc =
[
      (Ne – Ng)PCT   

]
,

�ne =
[
       (Ne – Ng)P  

]
.

By Lemma , for the system (a) and (b) there exists εi >  (i = , . . . , ), applying the Schur
complement lemma again, we see that () and () hold. This completes the proof. �

4 Stabilizing controllers of uncertain neutral singular system
In this section we design PD state feedback controllers to make the resulting closed loop
systems asymptotically stable with an H∞ disturbance attenuation γ >  for all nonzero
w(t) ∈ LP

 [, +∞].
For the system (a) and (b), our interest is to design a state derivative feedback controller

u(t) = keẋ(t) + kgẋ(t – τ ) + kax(t) + kax(t – h). ()

When we apply the controller () to the system (a), the resulting closed loop system can
be written as

Ecẋ(t) = Acx(t) + Acx(t – τ ) + Gcẋ(t – τ ) + Bw(t), ()

where

Ec = E + �E – Bke,

Gc = G + �G + Bkg ,

Ac = A + �A + Bka,

Ac = A + �A + Bka.

The following results present the solvability conditions for the state feedback stabilizing
control problems for the uncertain neutral singular system (a) with the controller ().



Wang et al. Advances in Difference Equations  (2016) 2016:29 Page 10 of 16

Theorem  For given scalar τ , h > , considering the neutral singular system (a) and (b),
there exists a controller () such that the resulting closed loop system () without parame-
ter uncertainties is asymptotically stable with an H∞ disturbance attenuation γ >  for all
nonzero w(t) ∈ LP

 [, +∞] if there exist positive matrices P = PT > , Qi = QT
i >  (i = , ),

U = UT >  and any matrices Nj (j = , ), X, Xa Xa, Kg such that the following LMIs are
feasible:

⎡

⎢⎢
⎢
⎣

M   –BX
 –P –XT BT

 
 –BX M 

–XT BT
   –P

⎤

⎥⎥
⎥
⎦

< , ()

[
–I U
UT –I

]

< , ()

⎡

⎢⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎣

T T T   B T T   BX BXa

∗ –Q          
∗ ∗ –Q         
∗ ∗ ∗ ϒ N    ϒ   
∗ ∗ ∗ ∗ ϒ     U  
∗ ∗ ∗ ∗ ∗ –γ I      
∗ ∗ ∗ ∗ ∗ ∗ –I     
∗ ∗ ∗ ∗ ∗ ∗ ∗ –Q    
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –U   
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –I  
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –P 
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –P

⎤

⎥⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎦

< , ()

where

M = (G – E)P(E – G)T + (G – E)XT BT
 + BX(E – G)T ,

T = (E – G)PAT + AP(E – G)T + (E – G)XT
a BT

 + BXa(E – G)T – BXAT – AXT BT
 ,

T = AQ + BXa, T = –G – BKg , T = (E – G)PCT – BXCT ,

T = (E – G)P – BX, ϒ = τ Q – NC – CT NT
 , ϒ = NT

 + N,ϒ = CT NT
 .

In this case, the PD state H∞ controller can be chosen as

u(t) =
(
XP– – Kg

)
ẋ(t) + Kgẋ(t – τ ) + XaP–x(t) + XaQ–

 x(t – h). ()

Proof In (), E is replaced by E + BKe, then () is rewritten as the following condi-
tion:

(E – BKe – G – BKg)P(E – BKe – G – BKg)T > . ()

Let K = Ke + Kg , X = KP.
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According to the Schur complement lemma, () becomes the following LMI:

[
M jBX

jXT BT
 –P

]

< , ()

where j is the imaginary unit. Then () is equivalent to the LMI ().
If E, G, A, and A in () are replaced by E + BKe, G + BKg , A + BKa, and A + BKa,

respectively, let Xa = KaP, Xa = KaQ, according to the Schur complement lemma and
Lemma , () is equivalent to the LMI (). This completes the proof. �

Remark  As far as we know the methods of controller design for neutral systems do
not include a derivative feedback because of the complexity of the neutral term in neutral
systems. Theorem  provides the derivative feedback method which uses the knowledge
of complex matrix inequalities []. So the gain matrices are all real matrices.

Remark  Based on this theorem, there is no longer the assumption that the differential
operator � is to be stable. For example, for the nominal system (a) with the coefficient
matrices E =

[  
 

]
, G =

[ . 
. 

]
, according the previous conclusions, see [], we will not

be able to judge the performance of the system. This is so because most results are based
on the assumption that the differential operator � is stable. But through Theorem , we
can make the differential operator � stable and then design the controller.

Theorem  For given scalar τ , h > , considering the uncertain neutral singular system
(a) and (b), there exists a controller () such that the resulting closed loop system ()
is asymptotically stable with an H∞ disturbance attenuation γ >  for all nonzero w(t) ∈
LP

 [, +∞] if there exist positive matrices P = PT > , Qi = QT
i >  (i = , ), Ui = UT

i > 
(i = , ), and any matrices Nj (j = , ), X, Xa, Xa, Kg and scalar εj > , j = , . . . ,  such that
the following LMIs are feasible:

[
ψ –�

–� ψ

]

< , ()

[
–I Ui

UT
i –I

]

< , ()

⎡

⎢
⎣

�
�

×

∗ �

⎤

⎥
⎦ < , ()

where

M = (G – E)P(E – G)T + (E – G)XT BT
 + BX(E – G)T + εHHT ,

M = (E – G)P(Ne – Ng)T – BX(Ne – Ng)T ,

T = (E – G)PAT + AP(E – G)T + (E – G)XT
a BT

 + BXa(E – G)T

– BXAT – AXT BT
 +

∑

i=

εiHHT ,
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� =

⎡

⎢
⎣

M M 
∗ –ε 
∗ ∗ –P

⎤

⎥
⎦ , � =

⎡

⎢
⎣

  BX
∗  
∗ ∗ 

⎤

⎥
⎦ ,

� =
[
BX BXa

]
, � =

[
–P 
 –P

]

,

� =

⎡

⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

T T T   B T T        H 
∗ –Q           ϒ    
∗ ∗ –Q              ϒ
∗ ∗ ∗ ϒ N    ϒ        
∗ ∗ ∗ ∗ ϒ     U       
∗ ∗ ∗ ∗ ∗ –γ I           
∗ ∗ ∗ ∗ ∗ ∗ –I       ϒ   
∗ ∗ ∗ ∗ ∗ ∗ ∗ –Q       ϒ  
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –U        
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –I       
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –εI ϒ     
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –εI     
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –εI    
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –εI   
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –εI  
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –U 
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –I

⎤

⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< .

Proof The proof can be carried out by following a similar line to the proof of Theorem ,
and thus it is omitted. �

Remark  Obviously, the normal condition det(E – G) �=  guarantees the existence and
uniqueness of solutions to the neutral singular systems. So knowing the information of
derivative matrices is particularly important. The main improvement in the theorems in
this paper is that the derivative matrices E and G can become the desired matrices by the
PD feedback controller. Generally speaking, a static state feedback cannot get the desired
results.

5 Numerical examples
In this section, we provide numerical examples to show the effectiveness and applicability
of the results proposed in this paper.

Example  Consider the nominal system (a). The parameters of the system are assumed
as follows:

E =

[
 
 

]

, G =

[
–. 
 

]

, A =

[
. 
 –

]

,

A =

[
–. .

 –

]

, B = , C = I.

Obviously in this system det(E – G) = –. �=  satisfies the condition () of Theorem , so
the solution of the system exists. In terms of Theorem , when τ ≤ ., this system is
asymptotically stable.

With the initial conditions x(t) = [. – .]T , the numerical simulation is carried
out using the Simulink in Matlab. The result of the numerical simulation is presented in
Figure , which shows the asymptotical stability of the system.
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Figure 1 State response of nominal system.

Example  Consider the nominal system (a) and (b) with the following parameters:

E =

[
 
 

]

, G =

[
 
 .

]

, A =

[
 
 –.

]

,

A =

[
– –.
 –

]

, B = , B =

[



]

, C = I,

when u(t) = , by solving LMIs conditions in Theorem  via the Matlab LMI toolbox,
we cannot obtain feasible solutions. That is, the nominal neutral singular system is not
stable. The state responses of the system with initial conditions x(t) = [. ]T are given in
Figure (a). Solving LMIs in Theorem  with γ = . via the Matlab LMI toolbox, we can
get the feasible solutions:

P– =

[
. .
. .

]

, Q–
 =

[
. –.
–. .

]

.

This solution leads to the following state feedback controller gains:

Ke =
[
–. –.

]
, Kg =

[
 –.

]
,

Ka =
[
. .

]
, Ka =

[
. .

]
,

(a) (b)

Figure 2 The state response of Example 2 when (a) u(t) = 0, (b) u(t) �= 0.
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and the PD state feedback controller is

u(t) = (K – Kg)ẋ(t) + Kgẋ(t – τ ) + Kax(t) + Kax(t – h).

The state responses of the closed-loop system with the initial condition x(t) = [. ]T

is given in Figure (b), which demonstrates the applicability of the proposed method.

Example  Consider the uncertain neutral singular system (a) and (b). The parameters
of the system are assumed as follows:

E =

[
 
 

]

, G =

[
–. 
–. –.

]

, A =

[
– 
 –

]

,

A =

[
 

– 

]

, B =

[
 
 

]

, B =

[



]

, C = I,

H = , Na = Na =
[
. .

]
, Ne = Ng = .

It is assumed that the uncertain matrix is given as F(t) = [sin t sin t]T .
We take γ = ., when u(t) = , by solving the LMIs conditions in Theorem  via the

Matlab LMI toolbox, we cannot obtain feasible solutions. That is, the uncertain neutral
singular system is not stable. The state responses of the system with the initial conditions
x(t) = [. .]T are given in Figure (a). By solving LMIs in Theorem  via the Matlab LMI
toolbox, we can get the feasible solutions:

P– =

[
. –.

–. .

]

, Q–
 =

[
. .
. .

]

.

This solution leads to the following PD state feedback controller gains:

Ke =
[
. –.

]
, Kg =

[
. .

]
,

Ka =
[
–. .

]
, Ka =

[
. –.

]
.

(a) (b)

Figure 3 The state response of Example 3 when (a) u(t) = 0, (b) u(t) �= 0.
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It is assumed that the uncertain matrix Ec, Gc in closed-loop system () are given as
F(t) = [sin t sin t]T . For any t ∈ [, +∞] and with the above designed controller, the deter-
minant of the derivative matrices of the corresponding closed-loop system is

det(Ec – Gc) = . �= ,

which implies that the derivative matrix Ec – Gc of the closed loop system is invertible.
The state responses of the closed-loop system with initial condition x(t) = [. .]T is

given in Figure (b), which demonstrates the applicability of the proposed method.

6 Conclusions
In this article, we have dealt with the H∞ performance analysis and the H∞ control prob-
lem for uncertain neutral singular systems with norm-bounded parameter uncertainties.
By using the free-weight matrix method and the LMI technique, we have novel criteria
which ensure the neutral singular system under consideration to be stable while satisfying
a prescribed H∞ performance level. Based on this, sufficient conditions for the existence
of PD state H∞ controllers have been proposed. Compared with some existing results, the
obtained PD state H∞ controller can change the derivative matrices. Based on the crite-
ria, numerical examples have been provided to illustrate the effectiveness of the proposed
method.
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