
Su et al. Advances in Difference Equations  (2016) 2016:30 
DOI 10.1186/s13662-016-0750-5

R E S E A R C H Open Access

The existence and nonexistence of
positive solutions for fractional differential
equations with nonhomogeneous boundary
conditions
Xiaofeng Su, Mei Jia* and Mengmeng Li

*Correspondence:
jiamei-usst@163.com
College of Science, University of
Shanghai for Science and
Technology, Shanghai, 200093,
China

Abstract
In this paper, we study the existence and nonexistence of the positive solutions for a
class of fractional differential equations with nonhomogeneous boundary conditions
and the impact of the disturbance parameters a, b on the existence of positive
solutions. By using the upper and lower solutions method and the Schauder fixed
point theorem, we obtain the sufficient conditions for the boundary value problem to
have at least one positive solution, two positive solutions, and no positive solution,
respectively. Moreover, under certain conditions, we prove that there exists a
bounded and continuous curve L dividing [0, +∞)× [0, +∞) into two separate
subsets �E and �N with L⊆ �E such that the boundary value problem has at least
two positive solutions for each (a,b) ∈ �E \ L, one positive solution for each (a,b) ∈ L,
and no positive solution for any (a,b) ∈ �N . Finally, we give some examples to
illustrate our main results.
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1 Introduction
In recent years, since the fractional differential equation has been widely applied in var-
ious areas such as mathematics, physics, chemistry, biology, and so forth, lots of books
on fractional calculus have appeared, see [–] and the references therein. The boundary
value problems are a very important part of fractional differential equations theory, and
more and more researchers’ attention has been attracted and plenty of meaningful results
have been obtained; see [–]. For example, in [], the authors studied the existence
of multiple positive solutions of systems of the boundary value problems of the Caputo
fractional differential equations

⎧
⎨

⎩

–CDqzi(t) = fi(t, z(t)), for a.e. t ∈ [, ] and i ∈ In,

αzi() – βz′
i() = , γ zi() + δz′

i() = ,
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where z(t) = (z(t), . . . , zn(t)), q ∈ (, ), the parameters α, β , γ , δ are positive real numbers,
and obtained some interesting conclusions. Reference [] studied the existence of at least
one positive solution for the following problem:

⎧
⎨

⎩

Dα
+ u(t) = f (t, u(t)), t ∈ (,∞),

limt→+ t–αu(t) = a, limt→+ Dα–
+ u(t) = b,

where  < α ≤ , a, b ∈R, f : (,∞)×R→R is a continuous function, and f may be singu-
lar at t = , i.e., limt→+ f (t, ·) = +∞. And the paper also considered an infinite fractional
boundary value problem for singular integro-differential equation of mixed type on the
half line

⎧
⎨

⎩

Dα
+ u(t) = f (t, u(t), (Su)(t), (Hu)(t)), t ∈ (,∞),

limt→+ t–αu(t) = a, limt→+ Dα–
+ u(t) = b,

where S, H : (,∞)×(,∞) → [,∞), (Su)(t) =
∫ ∞

 K(t, s)u(s) ds, (Hu)(t) =
∫ t

 H(t, s)u(s) ds.
The authors proved the existence of at least one positive solution for two problems of the
boundary value problem for the fractional differential equation by using a fixed point
theorem in partially ordered sets and the contraction mapping principle.

The disturbance parameter in boundary conditions is a very important factor while solv-
ing the actual problems with the boundary value problems of differential equations and
also it is inevitable that the impact of such a disturbance parameter to the existence of
solutions always exists. However, as far as we know, there are only several papers studying
this kind of impact, see [–]. In [], the authors studied the second-order differen-
tial equation boundary value problem with one-parameter nonhomogeneous boundary
conditions

⎧
⎨

⎩

u′′ + p(t)u′ + g(t) = , t ∈ (, ),

u() = , u() = λ.

And the multi-point boundary value problem

⎧
⎨

⎩

u′′(t) + a(t)f (u) = , t ∈ (, ),

u′() = , u() –
∑n–

i= kiu(ξi) = b

was considered in []. References [, ] studied the two-parameter nonhomogeneous
boundary value problem of the second-order differential equation

⎧
⎨

⎩

u′′(t) = f (t, u, u′), t ∈ (, ),

u() –
∑m

i= aiu(ti) = λ, u() –
∑m

i= biu(ti) = λ.

It was shown that under some assumptions there exists a continuous curve 	 separating
the plane R

 into disjoint regions �E and �N with 	 ⊆ �E such that this boundary value
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problem has at least two solutions on �E \ 	, one solution on 	, and no solution on �N .
The authors also studied the higher order boundary value problems with nonhomoge-
neous boundary conditions in [] and get the some conclusion. Reference [] studied
the existence and nonexistence of positive solutions for the boundary value problems of
the fractional differential equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–CDδu(t) = f (t, u(t)), t ∈ (, ),

mu() – nu′() = ,

mu() + nu′() =
∫ 

 g(s)u(s) ds + a,

where CDδ is the Caputo fractional derivative of order δ. And one studied the impact of the
disturbance parameter a on the existence of positive solutions. Under certain conditions,
the authors also obtained the demarcation point which divides the disturbance parameters
into two subintervals such that the boundary value problem has positive solutions for
the disturbance parameter in one subinterval while there are no positive solutions in the
other.

In this paper, we study the existence and nonexistence of the positive solutions of the
fractional order the boundary value problem which is composed of the equation

Dδ
+ u(t) + f

(
t, u(t)

)
= , for a.e. t ∈ (, ), (.)

and nonhomogeneous boundary conditions with the disturbance parameters a, b

lim
t→+

t–δu(t) = a, u() = b, (.)

where Dδ
+ is the standard Riemann-Liouville fractional derivative of order δ,  < δ < , J =

(, ], disturbance parameters a ≥ , b ≥ , f : [, ] × [, +∞) → [, +∞), and f satisfies
the L-Caratheódory conditions.

We say that f satisfies the L-Caratheódory conditions on [, ] × [, +∞), if
(i) f (·, u) is measurable for all u ∈ [, +∞);

(ii) f (t, ·) is continuous for a.e. t ∈ [, ];
(iii) for every γ > , there exists ϕγ ∈ L[, ] such that |f (t, tδ–u)| ≤ ϕγ (t) for all

u ∈ [,γ ] and a.e. t ∈ [, ].
In the paper, we have the following.
(H) For any t ∈ J , f (t, u) is monotone increasing with respect to u.
We focus on studying the impact of the disturbance parameters a, b on the existence

of positive solutions. We use the upper and lower solutions method and the Schauder
fixed point theorem, and we obtain sufficient conditions so that the problem has at least
one positive solution, two positive solutions, and no positive solution, respectively. In
addition, we also prove that there exists a bounded and continuous curve L dividing
[, +∞)× [, +∞) into two separate subsets �E and �N with L ⊆ �E such that the bound-
ary value problem has at least two positive solutions for each (a, b) ∈ �E \ L, one positive
solution for each (a, b) ∈ L, and no positive solution for any (a, b) ∈ �N under certain con-
ditions.



Su et al. Advances in Difference Equations  (2016) 2016:30 Page 4 of 24

2 Preliminaries
In this section, we present some useful definitions and the related theorems.

Definition . (See []) Let u ∈ L[, ]. The integrals

Ip
+ u(t) =


	(p)

∫ t



u(s)
(t – s)–p ds, t > ,

where p > , is called the Riemann-Liouville fractional integral of order p.

Definition . (See []) The Riemann-Liouville derivative of order p for a continuous
function u : (, +∞) →R is given by

Dp
+ u(t) =


	(n – p)

(
d
dt

)n ∫ t



u(s)
(t – s)p+–n ds =

(
d
dt

)n

In–p
+ u(t),

provided the right side is pointwise defined on (, +∞), where n = [p] +  and n –  < p < n.

Lemma . (See [], Lemma .) The space ACn[, ] (n ∈ N+) consists of those and only
those functions u(t) which can be represented in the form

u(t) =
(
In

+ y
)
(t) +

n–∑

k=

cktk ,

where y(t) ∈ L[, ], ck (k = , , . . . , n – ) are arbitrary constants, and

(
In

+ y
)
(t) =


(n – )!

∫ t


(t – s)n–y(s) ds.

Lemma . (See [], Lemma .) Let p > . If u ∈ L[, ], then the equality

(
Dp

+ Ip
+ u

)
(t) = u(t)

holds a.e. on [, ].

Lemma . (See [], Corollary .) Let p >  and n = [p] + , the equality (Dp
+ u)(t) =  is

valid if, and only if,

u(t) =
n∑

k=

cktp–k ,

where ck ∈ R (k = , , . . .) are arbitrary constants.

Lemma . (See [], Lemma .) Let p >  and n = [p] + . If u ∈ L[, ] and In–p
+ ∈

ACn[, ], then the equality

Ip
+

(
Dp

+ u
)
(t) = u(t) –

n∑

k=

cktp–k

holds a.e. on [, ].
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Let

E := C
–δ[, ] =

{
u ∈ C(, ] : lim

t→+
t–δu(t) < +∞

}
,

then E is a Banach space with the norm ‖u‖ = supt∈[,] t–δ|u(t)|.

Lemma . If Dδ
+ u ∈ L[, ], then I–δ

+ u ∈ AC[, ].

Proof Since Dδ
+ u ∈ L[, ] and (Dδ

+ u)(t) = ( d
dt )I–δ

+ u(t), it follows that I–δ
+ u ∈ AC[, ]

from Lemma .. �

Definition . If u ∈ E, Dδ
+ u ∈ L[, ] and satisfies (.) and (.), u is called a solution

of the fractional boundary value problem (.) and (.). Furthermore, if u(t) > , t ∈ (, ),
u is called a positive solution of the fractional boundary value problem (.) and (.).

Lemma . For any y ∈ L[, ], the boundary value problem

Dδ
+ u(t) + y(t) = , for a.e. t ∈ (, ), (.)

lim
t→+

t–δu(t) = a, u() = b, (.)

has a unique solution

u(t) =
∫ t


G(t, s)y(s) ds + (b – a)tδ– + atδ–, (.)

where

G(t, s) =


	(δ)

⎧
⎨

⎩

(t( – s))δ– – (t – s)δ–,  ≤ s ≤ t ≤ ,

(t( – s))δ–,  ≤ t ≤ s ≤ .
(.)

Proof Suppose u is a solution of the boundary value problem (.) and (.). Since y ∈
L[, ], (.) means that there exists a.e. on [, ] the fractional derivative Dδ

+ u ∈ L[, ].
By Lemma ., I–δ

+ u(t) ∈ AC[, ]. Thus we can apply Lemma ., we have

(
Iδ

+ Dδ
+ u

)
(t) = u(t) –

∑

j=

cjtδ–j,

that is,

u(t) = –Iδy(t) + ctδ– + ctδ–. (.)

By the boundary conditions limt→+ t–δu(t) = a and u() = b, we can show

c =


	(δ)

∫ 


( – s)δ–y(s) ds + (b – a), c = a.
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Then

u(t) = –


	(δ)

∫ t


(t – s)δ–y(s) ds +


	(δ)

∫ 



(
t( – s)

)δ–y(s) ds + (b – a)tδ– + atδ–

=


	(δ)

∫ t



((
t( – s)

)δ– – (t – s)δ–)y(s) ds +


	(δ)

∫ 

t

(
t( – s)

)δ–y(s) ds

+ atδ– – atδ– + btδ–

=
∫ 


G(t, s)y(s) ds + (b – a)tδ– + atδ–.

On the other hand, if u satisfies the (.), then u satisfies the (.), too. Applying the
operator Dδ

+ to both sides of (.), we have

(
Dδ

+ u
)
(t) =

(
d
dt

)

I–δ
+ u(t) = –

(
d
dt

)(
I–δ

+ Iδ
+ y

)
(t) = –

(
d
dt

)

I
+ y(t) = –y(t),

which implies (.) is satisfied.
We can easily show that u satisfies (.). �

Lemma . Let G be defined by (.). Then,
() for any t, s ∈ (, ), G(t, s) > ;
() for any t, s ∈ [, ], G(t, s) is continuous and G(t, s) ≤ 

	(δ) ;
() for  ≤ s < t ≤ , the G(t, s) is monotone increasing with respect to t and for

 ≤ t < s ≤ , the G(t, s) is monotone decreasing with respect to t;
() 

	(δ) (δ – )t( – t)s( – s)δ– ≤ t–δG(t, s) ≤ 
	(δ) s( – s)δ– = G(s, s), t, s ∈ (, ).

Proof () By the expression of G(t, s), it is easy to see G(t, s) > , t, s ∈ (, ).
() By the expression of G(t, s), we can get results easily.
() According to the definition of G(t, s), for  < s < t ≤ , we have

∂G(t, s)
∂t

=
δ – 
	(δ)

(
tδ–( – s)δ– – (t – s)δ–)

≤ δ – 
	(δ)

(
(t – s)δ–( – s)δ– – (t – s)δ–)

≤ .

Therefore, G(t, s) is monotone decreasing with respect to t for  ≤ s < t ≤ .
It is obvious G(t, s) is monotone increasing with respect to t for  ≤ t < s ≤ .
() The result can be found in []. �

Lemma . If u ∈ C
–δ[, ], Dδ

+ u ∈ L[, ], then the boundary value problem (.) and
(.) is equivalent to the integral equation

u(t) =
∫ 


G(t, s)f

(
s, u(s)

)
ds + (b – a)tδ– + atδ–, t ∈ J .

Proof By Lemma ., we can easily see that Lemma . holds. �
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Let

P =
{

u ∈ E : u(t) ≥ , t ∈ J
}

,

then P is a cone in E.
For each u ∈ P, we have

lim
t→+

[

t–δ

∫ 


G(t, s)f

(
s, u(s)

)
ds + (b – a)t + a

]

= a.

Let

Tu(t) =
∫ 


G(t, s)f

(
s, u(s)

)
ds + (b – a)tδ– + atδ– for u ∈ P.

Hence, T : P → E.

Lemma . The operator T : P → P is completely continuous.

Proof It is easy to show T : P → P.
() T is a continuous operator.
If {un} ⊂ P, u ∈ P, and ‖un – u‖ →  as n → ∞, there exists a constant γ > , such that

‖un‖ ≤ γ and ‖u‖ ≤ γ , that is, for any t ∈ J , |t–δun(t)| ≤ γ , |t–δu(t)| ≤ γ .
Therefore, for a.e. s ∈ J , we can show

lim
n→∞ f

(
s, un(s)

)
= lim

n→∞ f
(
s, sδ–s–δun(s)

)
= f

(
s, sδ–s–δu(s)

)
= f

(
s, u(s)

)
,

and there exists ϕγ ∈ L[, ], for a.e. s ∈ J ,

∣
∣f

(
s, un(s)

)
– f

(
s, u(s)

)∣
∣ ≤ ϕγ (s).

Then by the Lebesgue dominated convergence theorem, we can get

lim
n→∞‖Tun – Tu‖ = lim

n→∞ sup
t∈[,]

∣
∣t–δTun(t) – t–δTu(t)

∣
∣

≤ lim
n→∞ sup

t∈[,]
t–δ

∫ 


G(t, s)

∣
∣f

(
s, un(s)

)
– f

(
s, u(s)

)∣
∣ds

≤ 
	(δ)

∫ 


lim

n→∞
∣
∣f

(
s, un(s)

)
– f

(
s, u(s)

)∣
∣ds

= .

So limn→∞ ‖Tun – Tu‖ = .
By Lemma ., a ≥ , and b ≥ , we have Tu(t) ≥ , t ∈ J . Hence, T : P → P is continu-

ous.
() T : P → P is relatively compact.
Let A be any bounded set, then there exists a constant γ >  such that ‖u‖ ≤ γ for each

u ∈ A, that is, supt∈J t–δ|u(t)| ≤ γ .
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There exists ϕγ ∈ L[, ] for any u ∈ A, we have

∣
∣f

(
s, u(s)

)∣
∣ =

∣
∣f

(
s, sδ–s–δu(s)

)∣
∣ ≤ ϕγ (s), s ∈ J ,

∣
∣t–δTu(t)

∣
∣ =

∣
∣
∣
∣

∫ 


t–δG(t, s)f (s, u(s) ds + (b – a)t + a

∣
∣
∣
∣

≤ 
	(δ)

∫ 


ϕγ (s) ds + b + a.

It shows that T(A) is uniformly bounded.
In addition, for any given u ∈ A, because the G(t, s) is continuous for (t, s) ∈ [, ] ×

[, ], then it must be uniformly continuous. So for any ε > , there exists a constant σ ∈
(, ε

(b+a)+ ) such that for any t, t, s, s ∈ [, ], as |t – t| < σ and |s – s| < σ , we can get

∣
∣t–δ

 G(t, s) – t–δ
 G(t, s)

∣
∣ <

ε


∫ 

 ϕγ (s) ds + 
.

Then

∣
∣t–δ

 Tu(t) – t–δ
 Tu(t)

∣
∣

≤
∫ 


|t–δ

 G(t, s) – t–δ
 G(t, s)|∣∣f (s, u(s)

)∣
∣ds + |b – a||t – t|

≤
∫ 



∣
∣t–δ

 G(t, s) – t–δ
 G(t, s)

∣
∣
∣
∣ϕγ (s)

∣
∣ds + |b – a||t – t|

<
ε


∫ 

 ϕγ (s) ds + 

∫ 


ϕγ (s) ds +

ε

(b + a) + 
(b + a)

= ε.

Thus, we have proved T(A) is equicontinuous.
By the Arzela-Ascoli theorem, we know that T is relatively compact.
Therefore, T is completely continuous. �

3 Comparison principle and the existence of solutions
Definition . Let α ∈ E, Dδ

+α ∈ L[, ], we say that α is a lower solution of the boundary
value problem (.) and (.), if

–Dδ
+α(t) ≤ f

(
t,α(t)

)
, for a.e. t ∈ (, ), (.)

lim
t→+

t–δα(t) ≤ a, α() ≤ b. (.)

Let β ∈ E, Dδ
+β ∈ L[, ], we say that β is an upper solution of the boundary value

problem (.) and (.), if

–Dδ
+β(t) ≥ f

(
t,β(t)

)
, for a.e. t ∈ (, ), (.)

lim
t→+

t–δβ(t) ≥ a, β() ≥ b. (.)
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Lemma . If u ∈ E, Dδ
+ u ∈ L[, ] and it satisfies

Dδ
+ u(t) ≤ , for a.e. t ∈ (, ),

lim
t→+

t–δu(t) ≥ , u() ≥ ,

then u(t) ≥ , for t ∈ J .

Proof Denote –Dδ
+ u(t) = y(t), then y(t) ≥ , for a.e. t ∈ (, ).

Let limt→+ t–δu(t) = a, u() = b, then a ≥ , b ≥ .
Now we consider the boundary value problem

–Dδ
+ u(t) = y(t), for a.e. t ∈ (, ),

lim
t→+

t–δu(t) = a, u() = b.

By Lemma ., we have

u(t) =
∫ 


G(t, s)y(s) ds + (b – a)tδ– + atδ–

=
∫ 


G(t, s)y(s) ds + atδ–( – t) + btδ–.

It follows that u(t) ≥  for t ∈ J from Lemma .. �

Theorem . Suppose (H) holds, there exist a nonnegative lower solution α and an upper
solution β of the boundary value problem (.) and (.) such that α(t) ≤ β(t) for t ∈ J .
Then the boundary value problem (.) and (.) has at least one positive solution u and it
satisfies α(t) ≤ u(t) ≤ β(t) for t ∈ J .

Proof Let

f(t, u) =

⎧
⎪⎪⎨

⎪⎪⎩

f (t,β(t)), u > β(t),

f (t, u), α(t) ≤ u ≤ β(t),

f (t,α(t)), u < α(t).

Since f satisfies the L-Caratheódory conditions, we have f satisfies L-Caratheódory
conditions, too.

We consider the boundary value problem

Dδ
+ u(t) + f

(
t, u(t)

)
= , for a.e. t ∈ (, ), (.)

lim
t→+

t–δu(t) = a, u() = b. (.)

We define T : P → P by

Tu(t) =
∫ 


G(t, s)f

(
s, u(s)

)
ds + (b – a)tδ– + atδ–.
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By (H), for any u ∈ P and t ∈ J , we have

 ≤ f
(
t, u(t)

)
= f

(
t, tδ–t–δu(t)

) ≤ f
(
t, tδ–t–δβ(t)

)

≤ f
(
t, tδ–‖β‖) ≤ ϕ‖β‖(t).

Define

A =
{

u ∈ P : ‖u‖ ≤ 
	(δ)

∫ 


ϕ‖β‖(s) ds + |b – a| + a

}

.

It is easy to see that A is a closed and convex set.
By (H), we can get

∣
∣t–δTu(t)

∣
∣ =

∣
∣
∣
∣

∫ 


t–δG(t, s)f

(
s, u(s)

)
ds + (b – a)t + a

∣
∣
∣
∣

≤
∫ 


G(t, s)f

(
s, u(s)

)
ds + |b – a| + a

≤
∫ 


G(t, s)f

(
s, sδ–‖β‖)ds + |b – a| + a

≤ 
	(δ)

∫ 


ϕ‖β‖(s) ds + |b – a| + a.

So

‖Tu‖ ≤ 
	(δ)

∫ 


ϕ‖β‖(s) ds + |b – a| + a,

that is, T : A → A.
Similar to the proof of Lemma ., we can prove T is completely continuous.
By the Schauder fixed point theorem, we can see that T has at least one fixed point u,

that is, there exists a positive solution u of the boundary value problem (.) and (.).
Finally, we prove α(t) ≤ u(t) ≤ β(t), for t ∈ J .
Let v(t) = u(t) – α(t), by (H), we have

Dδ
+ v(t) = Dδ

+ u(t) – Dδ
+α(t)

= –f
(
t, u(t)

)
– Dδ

+α(t)

≤ –f
(
t, u(t)

)
+ f

(
t,α(t)

)

≤ ,

lim
t→+

t–δv(t) = lim
t→+

t–δu(t) – lim
t→+

t–δα(t) ≥ a – a = ,

and

v() = u() – α() ≥ b – b = .

It follows that v(t) ≥  for t ∈ J from Lemma ..
Hence, we can show u(t) ≥ α(t) for t ∈ J .
Similarly, we can get u(t) ≤ β(t) for t ∈ J .
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So each solution of the boundary value problem (.) and (.) satisfies α(t) ≤ u(t) ≤ β(t)
for t ∈ J . That is, f(t, u(t)) = f (t, u(t)) and u is a positive solution of the boundary value
problem (.) and (.). �

4 Impact of disturbance parameters a, b on the existence of solutions
Theorem . Let (H) hold.

() If there exist parameters a = ā ≥  and b = b̄ ≥  such that the boundary value
problem (.) and (.) has a positive solution ū, then for any  ≤ a ≤ ā and
 ≤ b ≤ b̄, the boundary value problem (.) and (.) has a positive solution u and
(b – a)tδ– + atδ– ≤ u ≤ ū for t ∈ J .

() If there exist parameters a = ā ≥  and b = b̄ ≥  such that the boundary value
problem (.) and (.) does not have positive solutions, then for any a ≥ ā and b ≥ b̄,
the boundary value problem (.) and (.) does not have positive solutions.

Proof () Since there exist parameters a = ā ≥  and b = b̄ ≥  such that the boundary
value problem (.) and (.) has a positive solution ū, by Lemma ., we have

ū(t) =
∫ 


G(t, s)f

(
s, ū(s)

)
ds + (b̄ – ā)tδ– + ātδ–.

Hence, for any  ≤ a ≤ ā and  ≤ b ≤ b̄,

ū(t) ≥ (b̄ – ā)tδ– + ātδ– ≥ (b – a)tδ– + atδ–, t ∈ J .

We take α = (b – a)tδ– + atδ– and β = ū, then

–Dδ
+α(t) = –Dδ

+
(
(b – a)tδ– + atδ–) ≤ f

(
t,α(t)

)
, t ∈ (, ),

lim
t→+

t–δα(t) = lim
t→+

t–δ
(
(b – a)tδ– + atδ–) = a, α() = b.

We see that α and β satisfy (.), (.), (.), and (.).
Therefore, α and β are the lower solution and the upper solution of the boundary value

problem (.) and (.), respectively.
For the parameters  ≤ a ≤ ā and  ≤ b ≤ b̄, by Theorem ., we see that the boundary

value problem (.) and (.) has at least one positive solution u and α(t) ≤ u(t) ≤ β(t) for
t ∈ J .

() If there exist constants a ≥ ā and b ≥ b̄ such that the boundary value problem (.)
and (.) has a positive solution for the parameters a and b, by (), we can show that for
each  ≤ a ≤ a and  ≤ b ≤ b, the boundary value problem (.) and (.) has a positive
solution. Therefore, the boundary value problem (.) and (.) has a positive solution for
the parameters ā and b̄, which is a contradiction. �

For convenience, we denote

N =
	(δ + )

	(δ + ) + 
, M =

,	(δ – )
(δ – )

,

f  = lim sup
u→+

sup
t∈J

f (t, tδ–u)
u

, f∞ = lim inf
u→+∞ inf

t∈[ 
 , 

 ]

f (t, u)
u

.
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Let

P̂ =
{

u ∈ E : t–δu(t) ≥ (δ – )t( – t)‖u‖, t ∈ J
}

.

Then P̂ is a cone in E and P̂ ⊂ P.

Lemma . (See []) Let E be a Banach space and P̂ ⊆ E be a cone in E. Assume that �

is a bounded open subset of E and θ ∈ � and that T : P̂ ∩ � → P̂ is compact. If

u �= τTu for all u ∈ P̂ ∩ ∂� and τ ∈ [, ],

then the fixed point index i(T , P̂ ∩ �, P̂) = .

Lemma . (See []) Let E be a Banach space and P̂ ⊆ E be a cone in E. Assume that �

is a bounded open subset of E and that T : P̂ ∩� → P̂ is compact. If there exists u ∈ P̂ \ {θ}
such that

u – Tu �= τu for all u ∈ P̂ ∩ ∂� and τ ≥ ,

then the fixed point index i(T , P̂ ∩ �, P̂) = .

Lemma . If u is a positive solution of the boundary value problem (.) and (.) , then
for t ∈ J ,

t–δu(t) ≥ (δ – )t( – t)‖u‖.

Proof By Lemma ., we can show

u(t) =
∫ 


G(t, s)f

(
s, u(s)

)
ds + (b – a)tδ– + atδ–.

It follows from Lemma ., for t ∈ J , that

t–δu(t) =
∫ 


t–δG(t, s)f

(
s, u(s)

)
ds + (b – a)t + a

≥
∫ 




	(δ)

(δ – )t( – t)s( – s)δ–f
(
s, u(s)

)
ds + ( – t)a + bt

≥ (δ – )t( – t)
(


	(δ)

∫ 


s( – s)δ–f

(
s, u(s)

)
ds + b + a

)

.

On the other hand,

t–δu(t) ≤ 
	(δ)

∫ 


s( – s)δ–f

(
s, u(s)

)
ds + b + a,

we have

‖u‖ ≤ 
	(δ)

∫ 


s( – s)δ–f

(
s, u(s)

)
ds + b + a.
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Hence,

t–δu(t) ≥ (δ – )t( – t)‖u‖. �

Theorem . Let (H) hold, f  = , and f∞ = +∞.
() If a = , the boundary value problem (.) and (.) has at least one positive solution

for small enough b; the boundary value problem (.) and (.) has no positive
solution for large enough b.

() If b = , the boundary value problem (.) and (.) has at least one positive solution
for small enough a; the boundary value problem (.) and (.) has no positive
solution for large enough a.

() If b = ka (for any k > ), the boundary value problem (.) and (.) has at least one
positive solution for small enough a and b; the boundary value problem (.) and
(.) has no positive solution for large enough a and b.

Proof () By f  = , for given N > , there exists a constant r >  such that

f
(
t, tδ–u

) ≤ Nu ≤ Nr, for t ∈ J and u ∈ (, r].

Let

� =
{

u ∈ E : ‖u‖ < r
}

.

When b < Nr, for any u ∈ P̂ ∩ ∂�, we have |t–δu(t)| ≤ r, t ∈ J . By Lemma ., we can
get

t–δ(Tu)(t) =
∫ 


t–δG(t, s)f

(
s, u(s)

)
ds + (b – a)t + a

=
∫ 


t–δG(t, s)f

(
s, u(s)

)
ds + bt

≤ 
	(δ)

∫ 


s( – s)δ–f

(
s, sδ–s–δu(s)

)
ds + b

<
Nr

	(δ)
· 	(δ)
	(δ + )

+ Nr

= r

= ‖u‖,

that is,

‖Tu‖ < ‖u‖, u ∈ P̂ ∩ ∂�. (.)

We can show that

u �= τTu for all u ∈ P̂ ∩ ∂� and τ ∈ [, ].
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Otherwise, there exist u∗ ∈ P̂ ∩ ∂� and τ ∗ ∈ [, ] such that u∗ = τ ∗Tu∗, then

∥
∥u∗∥∥ = τ

∥
∥Tu∗∥∥ ≤ ∥

∥Tu∗∥∥,

which contradicts to (.).
In view of Lemma ., we can get

i(T , P̂ ∩ �, P̂) = . (.)

On the other hand, by f∞ = +∞, for given M > , there exists a constant R >  such that

f (t, u) > Mu, for t ∈
[




,



]

and u ∈ [R, +∞). (.)

Let R > 
(δ–) R and

� =
{

u ∈ E : ‖u‖ < R
}

.

For any u ∈ P̂ ∩ ∂�, we have u ∈ P̂ and ‖u‖ = R, so

min
t∈[ 

 , 
 ]

u(t) ≥ min
t∈[ 

 , 
 ]

t–δu(t) ≥ 


(δ – )‖u‖ =
(δ – )


R > R. (.)

By Lemma ., we can get

t–δ(Tu)(t) =
∫ 


t–δG(t, s)f

(
s, u(s)

)
ds + (b – a)t + a

=
∫ 


t–δG(t, s)f

(
s, u(s)

)
ds + bt

≥ 
	(δ)

∫ 


(δ – )t( – t)s( – s)δ–f

(
s, u(s)

)
ds + bt.

When t = 
 , by (.) and (.), we can show

(



)–δ

(Tu)
(




)

>


	(δ)

∫ 





(δ – )s( – s)δ–Mu(s) ds

≥
(

M(δ – )

	(δ)

∫ 





s( – s)δ– ds
)

‖u‖

≥
(

M(δ – )

	(δ)

∫ 





s( – s) ds
)

‖u‖

=
M(δ – )

,	(δ – )
‖u‖

= ‖u‖.

Hence,

‖Tu‖ > ‖u‖, u ∈ P̂ ∩ ∂�. (.)
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In the following, we show that there exists u ∈ P̂ \ {θ} such that

u – Tu �= τTu for all u ∈ P̂ ∩ ∂� and τ ≥ .

If this is not true, then there exist u∗ ∈ P̂ ∩ ∂� and τ ∗ ≥  such that u∗ – Tu∗ = τ ∗u, so

u∗ = Tu∗ + τ ∗u ≥ Tu∗,

and

∥
∥u∗∥∥ ≥ ∥

∥Tu∗∥∥,

which contradicts (.).
By Lemma ., we have

i(T , P̂ ∩ �, P̂) = . (.)

By (.), (.), and the additivity property of the fixed point index, we obtain

i
(
T , P̂ ∩ (� \ �), P̂

)
= i(T , P̂ ∩ �, P̂) – i(T , P̂ ∩ �, P̂) =  –  = – �= .

Then T has at least one fixed point u ∈ P̂ ∩ (� \ �), which implies the boundary value
problem (.) and (.) has at least one positive solution.

In the following, we prove that there exists large enough b such that the boundary value
problem (.) and (.) has no positive solution.

Otherwise, for any large enough bn, the boundary value problem (.) and (.) has solu-
tions, then there exists {bn} such that, for limn→+∞ bn = +∞, the boundary value problem

Dδ
+ u(t) + f

(
t, u(t)

)
= , for a.e. t ∈ (, ),

lim
t→+

t–δu(t) = , u() = bn

has a positive solution, which we denote un.
Due to this,

un() =
∫ 


G(, s)f

(
s, un(s)

)
ds + bn

≥ bn → +∞ (n → +∞),

so ‖un‖ → +∞.
In addition, by f∞ = +∞ and given M > , there exists a constant R̄ >  such that f (t, u) >

Mu, t ∈ [ 
 , 

 ], and u ∈ [R̄, +∞).
Let R̄ > 

(δ–) R̄. For any u ∈ ∂P̂R̄ = {u|u ∈ P̂,‖u‖ = R̄}, we have |t–δu| ≤ R̄, so

min
t∈[ 

 , 
 ]

u(t) ≥ min
t∈[ 

 , 
 ]

t–δu(t) ≥ 


(δ – )‖u‖ =
(δ – )


R̄ > R̄.
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Similar to the proof above, we can see that, for large integer n,

(



)–δ

un

(



)

>  · M(δ – )
,	(δ – )

‖un‖ = ‖un‖.

So ‖un‖ > ‖un‖, which is a contradiction.
() Similar to the proof of (), we can prove () holds.
() By f  =  and given N > , there exists r̃ >  such that

f
(
t, tδ–u

) ≤ Nu < Nr̃, for t ∈ J and u ∈ (, r̃].

Let

� =
{

u ∈ E : ‖u‖ < r̃
}

.

Since b = ka and k > , let max{a, b} = a max{, k} < Nr̃, we have  ≤ a((k – )t + ) ≤
a max{, k} < Nr̃.

Hence, for any u ∈ P̂ ∩ ∂�, by Lemma ., we can get

t–δ(Tu)t =
∫ 


t–δG(t, s)f

(
s, u(s)

)
ds + (b – a)t + a

=
∫ 


t–δG(t, s)f

(
s, u(s)

)
ds + (ka – a)t + a

≤ 
	(δ)

∫ 


s( – s)δ–f

(
s, sδ–s–δu(s)

)
ds + a

(
(k – )t + 

)

< N
(


	(δ + )

+ 
)

r̃

= r̃

= ‖u‖ (.)

and

lim
t→+

t–δ(Tu)t = a < Nr̃ < r̃.

This implies ‖Tu‖ < ‖u‖ for u ∈ P̂ ∩ ∂�.
It is similar to the proof of (), by Lemma ., we have

i(T , P̂ ∩ �, P̂) = . (.)

On the other hand, by f∞ = +∞ and given M > , similar to the proof of (), we can see
that there exists a constant R̃ such that

� =
{

u ∈ E : ‖u‖ < R̃
}

and

i(T , P̂ ∩ �, P̂) = . (.)
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By (.) and (.), and the additivity property of the fixed point index, we obtain

i
(
T , P̂ ∩ (� \ �), P̂

)
= i(T , P̂ ∩ �, P̂) – i(T , P̂ ∩ �, P̂) =  –  = – �= ,

then T has at least one fixed point u ∈ � \ �, that is, the boundary value problem (.)
and (.) has a positive solution.

Similar to the proof of (), we can prove that the boundary value problem (.) and (.)
has no positive solution for large enough a and b.

In summary, the boundary value problem (.) and (.) has at least one positive solution
for small enough a and b; the boundary value problem (.) and (.) has no solution for
large enough a and b. �

Theorem . Let f∞ = +∞ and � ⊂ R

+ be a bounded set. Then for each parameters

(a, b) ∈ �, there exists a constant η(�) such that the positive solution u of the boundary
value problem (.) and (.) satisfies ‖u‖ ≤ η(�).

Proof Because � is a bounded set, there are constants η, η, such that for each parameter
(a, b) ∈ �,  ≤ a ≤ η,  ≤ b ≤ η.

Since f∞ = +∞, for M > , there exists a constant R >  such that

f (t, u) > Mu, u ∈ [R, +∞), t ∈ J .

Let η = R
(δ–) , we can show ‖u‖ ≤ η.

Otherwise, ‖u‖ > η. Hence,

min
t∈[ 

 , 
 ]

u(t) ≥ min
t∈[ 

 , 
 ]

t–δu(t) ≥ (δ – )


‖u‖ >
(δ – )


η = R.

By Lemma ., we have

t–δu(t) =
∫ 


t–δG(t, s)f

(
s, u(s)

)
ds + (b – a)t + a

≥ 
	(δ)

∫ 





(δ – )t( – t)s( – s)δ–f
(
s, u(s)

)
ds + (b – a)t + a.

When t = 
 , we can show

(



)–δ

u
(




)

>


	(δ)

∫ 





(δ – )s( – s)δ–Mu(s) ds

≥ M(δ – )
	(δ)

∫ 





s( – s)δ–s–δu(s) ds

≥
(

M(δ – )

	(δ)

∫ 





s( – s)δ– ds
)

‖u‖

≥
(

M(δ – )

	(δ)

∫ 





s( – s) ds
)

‖u‖
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=
M(δ – )

,	(δ – )
‖u‖

= ‖u‖,

which is a contradiction. �

Theorem . Let (H) hold. If the f  =  and f∞ = +∞, then there exists a continuous curve
L ⊆R


+ = [, +∞) × [, +∞) such that the following conclusions hold:

() R

+ is divided into two separate sub-regions by L: �E , �N , and L ⊆ �E .

() The boundary value problem (.) and (.) has at least two positive solutions for
each parameters (a, b) ∈ �E \ L; the boundary value problem (.) and (.) has at
least one positive solution for (a, b) ∈ L; the boundary value problem (.) and (.)
does not have a positive solution for any (a, b) ∈ �N .

Proof Let

�E =
{

(a, b) ∈ R

+ :

the boundary value problem (.) and (.) has at least one positive solution
}

.

By Theorem ., �E �= ∅. For any (ã, b̃) ∈ �E , we define

S(ã, b̃) =
{

(a, b) ∈ R

+ :  ≤ a ≤ ã,  ≤ b ≤ b̃

}
.

By Theorem ., S ⊆ �E if and only if (ã, b̃) ∈ �E . So

�E =
⋃

(ã,b̃)∈�E

S.

Let �N = R

+ \ �E , by Theorem ., �N �= ∅, and �E ∪ �N = R


+.

(i) It follows from Theorem . that the �E is a bounded set.
(ii) Let L be the boundary of �E . We can prove that the boundary value problem (.)

and (.) has at least one positive solution for (a, b) ∈ L. That is L ⊆ �E .
Take (a, b) ∈ L, then there exists a sequence {(am, bm)}∞m= ⊆ �E , such that am → a, bm →

b, (m → ∞). Let um(t) be the solution of the boundary value problem (.) and (.) for
the parameters a = am and b = bm. By Theorem ., there exists a constant η = η(�E)
such that ‖um‖ ≤ η. Then {um(t)}∞m= is uniformly bounded and we can prove {um(t)}∞m=

is equicontinuous, similar to the proof of Lemma ..
It follows that {um(t)}∞m= has a subsequence which is uniformly convergent on J from

the Ascoli-Arzela theorem. Without loss of generality, we can assume that {um(t)}∞m= itself
converges uniformly to u on J , then u ∈ P. Since f satisfies the L-Caratheódory conditions
and

um(t) =
∫ 


G(t, s)f

(
s, um(s)

)
ds + (bm – am)tδ– + amtδ–,

letting m → ∞, by the Lebesgue dominated convergence theorem, we can get

u(t) =
∫ 


G(t, s)f

(
s, u(s)

)
ds + (b – a)tδ– + atδ–.
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So the boundary value problem (.) and (.) has at least one positive solution for the
parameters (a, b) ∈ L and L ⊆ �E . By Lemma ., we have u ∈ P̂.

(iii) By Theorem ., the boundary value problem (.) and (.) has at least one positive
solution for (a, b) ∈ �E , has no positive solution for any (a, b) ∈ �N , and L is the boundary
of �E .

(iv) We can prove that the boundary value problem (.) and (.) has at least two positive
solutions for (a, b) ∈ �E \ L.

Let (a, b) = (a, b) ∈ �E \ L be fixed, then there exist (ā, b̄) and (a, b) ∈ �E \ L such that
a < a < ā and b < b < b̄, the boundary value problem (.) and (.) has a solution ū for
(a, b) = (ā, b̄). In view of Theorem ., the boundary value problem (.) and (.) has at
least one positive solution u, and u ≤ ū for (a, b) = (a, b). Similarly, the boundary value
problem (.) and (.) has a solution u for (a, b) = (a, b) and u ≤ u.

Hence, u < u < ū.
Let α = u, β = ū, Obviously, α, β are the lower solution and the upper solution of the

boundary value problem (.) and (.) for (a, b) = (a, b), respectively.
Let (â, b̂) ∈ �N such that a < â and b < b̂.
Define K : [a, â] × [b, b̂] × P̂ → P̂,

K(k, k, u) =
∫ 


G(t, s)f

(
s, u(s)

)
ds + (k – k)tδ– + ktδ–.

Let

F(t, u) =

⎧
⎪⎪⎨

⎪⎪⎩

f (t,β(t)), u > β(t),

f (t, u), α(t) ≤ u ≤ β(t),

f (t,α(t)), u < α(t),

define K̂ : [a, â] × [b, b̂] × P̂ → P̂,

K̂(k, k, u) =
∫ 


G(t, s)F

(
s, u(s)

)
ds + (k – k)tδ– + ktδ–.

Similar to the proof of Lemma ., for each (k, k) ∈ [a, â] × [b, b̂], we can show K and
K̂ are completely continuous operators.

By Lemma ., u is a positive solution of the boundary value problem (.) and (.) if
and only if u = K(a, b, u).

Define a linear segmentation

S =
{

(k, k) ∈R

+ : k = ( – τ )a + τ â, k = ( – τ )b + τ b̂, τ ∈ [, ]

}
.

Let � ⊆R

+ be a bounded set such that S ∩ �E ⊆ �, (a, b) ∈ �, (ā, b̄) ∈ �, and η = η(�)

given by Theorem ..
Let

� =
{

u ∈ P̂ : ‖u‖ < η,α(t) < u(t) < β(t), t ∈ J
}

,

then � is a nonempty bounded open set of P̂ and u ∈ �.
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Since F is bounded, there exists a constant R > η >  such that for each (k, k, u) ∈
[a, â] × [b, b̂] × P̂, we have |t–δK̂(k, k, u)| < R.

Let

B(θ , R) =
{

u ∈ E : ‖u‖ < R
}

.

It is easy to show � ⊂ P̂ ∩ B(θ , R) and u �= μK̂u when u ∈ P̂ ∩ ∂B(θ , R) and μ ∈ [, ].
By Lemma ., for each a ≤ k ≤ â, b ≤ k ≤ b̂, we have

i
(
K̂(k, k, u), P̂ ∩ B(θ , R), P̂

)
= .

Due to K̂ having no fixed point on P̂ ∩ (B(θ , R) \ �), for each a ≤ k ≤ â, b ≤ k ≤ b̂,

i
(
K̂(k, k, u), P̂ ∩ (

B(θ , R) \ �
)
, P̂

)
= .

We notice K̂ |� = K , by the excision property of the fixed point index, for each a ≤ k ≤
â, b ≤ k ≤ b̂, we have

i
(
K(k, k, u), P̂ ∩ �, P̂

)

= i
(
K̂(k, k, u), P̂ ∩ �, P̂

)

= i
(
K̂(k, k, u), P̂ ∩ B(θ , R), P̂

)
– i

(
K̂ (k, k, u), P̂ ∩ (

B(θ , R) \ �
)
, P̂

)

= . (.)

Because (â, b̂) ∈ �N , for each u ∈ P̂, we have K(â, b̂, u) �= u and

i
(
K̂(â, b̂, u), P̂ ∩ B(θ , R), P̂

)
= . (.)

Define H : [, ] × (P̂ ∩ B(θ , R)) → C
–δ[, ],

H(τ , u) = K
(
( – τ )a + τ â, ( – τ )b + τ b̂, u

)
,

then H is completely continuous.
We can prove H(τ , u) �= u for (τ , u) ∈ [, ] × (P̂ ∩ ∂B(θ , R)).
Otherwise, there exists (τ, u) ∈ [, ] × (P̂ ∩ ∂B(θ , R)) such that H(τ, u) = u, that is

K
(
( – τ)a + τâ, ( – τ)b + τb̂, u

)
= u, u ∈ P̂,‖u‖ = R.

So for k̃ = ( – τ)a + τâ, k̃ = ( – τ)b + τb̂, and (k̃, k̃) ∈ �, u is a solution of the
boundary value problem (.) and (.), by Theorem ., ‖u‖ < η, which is a contradiction.

According to homotopy invariance of the fixed point index and (.), it follows that

i
(
K(a, b, u), P̂ ∩ B(θ , R), P̂

)
= i

(
H(, u), P̂ ∩ B(θ , R), P̂

)

= i
(
H(, u), P̂ ∩ B(θ , R), P̂

)

= i
(
K̂(â, b̂, u), P̂ ∩ B(θ , R), P̂

)

= . (.)
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By (.) and (.),

i
(
K(a, b, u), P̂ ∩ (

B(θ , R) \ �
)
, P̂

)
= –.

Hence, the boundary value problem (.) and (.) has a solution u ∈ P̂ ∩ (B(θ , R) \ �) for
(a, b) = (a, b).

Since u ∈ �, then u �= u, that is, the boundary value problem (.) and (.) has at least
two positive solutions for (a, b) = (a, b). �

5 Illustration
To illustrate our main results, we present the following examples.

Example . We consider the boundary value problem which is composed of the equation

D


+ u(t) + et

q
 uq –  = , for a.e. t ∈ (, ), (.)

and nonhomogeneous boundary conditions

lim
t→+

t

 u(t) = a, u() = b, (.)

where q > .
Let f (t, u) = et

q
 uq – . Clearly, δ = 

 , it is easy to see that (H) holds,

f  = lim sup
u→+

sup
t∈J

f (t, t– 
 u)

u
= lim sup

u→+

euq – 
u

= ,

and

f∞ = lim inf
u→+∞ inf

t∈[ 
 , 

 ]

f (t, u)
u

= lim inf
u→+∞

e( u
 )q – 

u
= +∞.

By Theorem ., we see that there exists a bounded and continuous curve L in R

+

separating R

+ into two disjoint subsets �E and �N with L ⊆ �E such that boundary

value problem (.) and (.) has at least two positive solutions for each for each param-
eters (a, b) ∈ �E \ L, one positive solution for (a, b) ∈ L and no positive solution for any
(a, b) ∈ �N .

Example . We consider the boundary value problem which is composed of the equa-
tion

D


+ u(t) + (t sin t + t)u + t


 u


 arctan tu = , for a.e. t ∈ (, ), (.)

and nonhomogeneous boundary conditions

lim
t→+

t

 u(t) = a, u() = b. (.)
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Let f (t, u) = t(sin t + )u + t 
 u 

 arctan tu. Clearly, δ = 
 , it is easy to see that (H) holds,

f  = lim sup
u→+

sup
t∈J

f (t, t– 
 u)

u
= lim sup

u→+

(
(sin  + )u + u


 arctan u

)
= ,

and

f∞ = lim inf
u→+∞ inf

t∈[ 
 , 

 ]

f (t, u)
u

= lim inf
u→+∞

((

sin



+ 
)




u +
(




) 


u

 arctan




u
)

= +∞.

By Theorem ., we see that there exists a bounded and continuous curve L in R

+ sep-

arating R

+ into two disjoint subsets �E and �N with L ⊆ �E such that the boundary

value problem (.) and (.) has at least two positive solutions for each for each param-
eters (a, b) ∈ �E \ L, one positive solution for (a, b) ∈ L and no positive solution for any
(a, b) ∈ �N .

Example . We consider the boundary value problem which is composed of the equa-
tion

D


+ u(t) +

(
 + a(t)

)
t

p
 up = , for a.e. t ∈ (, ), (.)

and nonhomogeneous boundary conditions

lim
t→+

t

 u(t) = a, u() = b, (.)

where p > , a(t) is a continuous function for t ∈ [, ] and a(t) > , t ∈ [ 
 , 

 ].
Let f (t, u) = ( + a(t))t

p
 up. Clearly, δ = 

 , it is easy to see that (H) holds,

f  = lim sup
u→+

sup
t∈J

f (t, t– 
 u)

u
= sup

t∈J

(
 + a(t)

)
lim sup

u→+
up– = ,

and

f∞ = lim inf
u→+∞ inf

t∈[ 
 , 

 ]

f (t, u)
u

= inf
t∈[ 

 , 
 ]

(
 + a(t)

)
t

p
 lim inf

u→+∞ up– = +∞.

By Theorem ., we see that there exists a bounded and continuous curve L in R

+ sep-

arating R

+ into two disjoint subsets �E and �N with L ⊆ �E such that the boundary

value problem (.) and (.) has at least two positive solutions for each for each param-
eters (a, b) ∈ �E \ L, one positive solution for (a, b) ∈ L, and no positive solution for any
(a, b) ∈ �N .

6 Conclusions
The existence and nonexistence of positive solutions for fractional differential equations
with nonhomogeneous boundary conditions is an important topic in the area of fractional
calculus. When solving the actual problems with the boundary value problems of differen-
tial equations, the disturbance parameter under boundary conditions is a very important
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factor. Moreover, it is always inevitable that the impact of such a disturbance parameter
to the existence of solutions always exists.

In this paper, by using the upper and lower solution method and fixed point theorem,
we obtain the sufficient conditions for the boundary value problem to have at least one
positive solution, two positive solutions, and no positive solution, respectively. Moreover,
under certain conditions, we prove that there exists a bounded and continuous curve L
dividing [, +∞) × [, +∞) into two separate subsets �E and �N with L ⊆ �E such that
the boundary value problem has at least two positive solutions for each (a, b) ∈ �E \L, one
positive solution for each (a, b) ∈ L, and no positive solution for any (a, b) ∈ �N .
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