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Abstract
A shifted Jacobi collocation method in two stages is constructed and used to
numerically solve nonlinear Schrödinger equations (NLSEs) with a Kerr law
nonlinearity, subject to initial-boundary conditions. An expansion in a series of spatial
shifted Jacobi polynomials with temporal coefficients for the approximate solution is
considered. The first stage, collocation at the shifted Jacobi Gauss-Lobatto (SJ-GL)
nodes, is applied for a spatial discretization; its spatial derivatives occur in the NLSE
with a treatment of the boundary conditions. This in all will produce a system of
ordinary differential equations (SODEs) for the coefficients. The second stage is to
collocate at the shifted Jacobi Gauss-Radau (SJ-GR-C) nodes in the temporal
discretization to reduce the SODEs to a system of algebraic equations which is solved
by an iterative method. Both stages can be extended to solve the two-dimensional
NLSEs. Numerical examples are carried out to confirm the spectral accuracy and the
efficiency of the proposed algorithms.

Keywords: one-dimensional Schrödinger equations; Kerr law nonlinearity;
two-dimensional space Schrödinger equations; collocation method; Gauss-type
quadratures

1 Introduction
Spectral methods (see [–]) are accurate and efficient demanding less computations when
solving an ordinary differential equation (ODE) or a partial differential equation (PDE) on
a simple domain with smooth functions defined. The basic idea of the spectral methods
is to express the approximate solution of the problem as a finite sum of certain basis func-
tions (orthogonal polynomials or a combination of them) and then choose the coefficients
in order to minimize the residual. The spectral collocation method is one type of spectral
methods, which is more applicable and widely used to solve almost all linear and nonlinear
differential equations [–].

The NLSEs occur in various areas of physics, including nonlinear optics, plasma physics,
superconductivity, quantum mechanics, mathematical biology; and it can be written as

i
∂ψ(x, t)

∂t
+ ∇ψ(x, t) + γ (x)F

(∣∣ψ(x, t)
∣∣)

ψ(x, t) = δ(x)ψ(x, t) + R(x, t), ()
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where ψ(x, t) and R(x, t) are complex functions of space x and time t, and F is a real valued
function. The nonlinearities of F can be classified as [–]:

. Kerr law F(s) = s:
In particular, equation () with F(s) = s, (Kerr law case) appears in nonlinear optics in

the context of soliton propagation through optical fibers. The first term represents the
temporal evolution, the second term accounts for the dispersive effect of the solitons, the
coefficient of γ represents a Kerr law nonlinearity and, finally, δ represents the coefficient
of the driven term.

. Power law F(s) = sn:
Power law nonlinearity (a generalization of Kerr law nonlinearity) is exhibited in various

fields, including semiconductors, photon processes, nonlinear plasmas, and weak turbu-
lence [].

. Parabolic law F(s) = s – ks, where k is a constant:
Parabolic law (cubic-quintic nonlinearity) arises in the nonlinear p-toluene sulfonate

crystals, interaction between Langmuir waves and electrons, the nonlinear interaction be-
tween the high-frequency Langmuir waves and the ion-acoustic waves.

. Dual-power law F(s) = sn – ksn, where k is a constant:
This law is used to model the saturation of the nonlinear refractive index, spatial solitons

in photovoltaic-photorefractive materials, and organic and polymer materials [].
. Saturable law F(s) = λs

+λs :
The variation of the dielectric constant of gas vapors while a laser beam propagates

[] can be accurately described by this law with λ > . Also, optical nonlinearity satu-
rates at a finite value of optical intensity in most materials and the soliton propagation
in semiconductor-doped fibers can be modeled using the above form. The above form is
observed in semiconductor-doped glass and other composite materials.

. Log law F(s) = ln(s):
The Log-law NLSEs has been employed to model nonlinear behavior in several dis-

tinct scenarios in physics and in other areas of nonlinear science for instance, in nuclear
physics [], dissipative systems [], capillary fluids [], optics [, ], and magma
transport [].

Recently, the analytical and numerical solutions of different types of the previous clas-
sical Schrödinger equations were discussed in [, ], and for recent schemes for solving
PDEs see [–]. Here, we focus on the application of shifted Jacobi Gauss-Lobatto collo-
cation (SJ-GL-C) and Jacobi Gauss-Radau collocation (SJ-GR-C) methods in two consec-
utive stages for providing a high accurate numerical solution of the NLSEs with kerr-law
nonlinearity. The proposed collocation scheme is applied for both temporal and spatial
discretizations. First of all, the SJ-GL-C is used with a treatment of the boundary condi-
tions for spatial discretization. Therefore, the NLSE with its boundary conditions is re-
duced to SODEs subject to a vector of initial values. Second, the SJ-GR-C is then applied
for temporal discretization, which is more reasonable for solving initial value problems.
Thereby, the problem is reduced to a system of algebraic equations which is easier to solve.
In addition, this algorithm is developed to numerically solve the two-dimensional NLSEs.
Finally, several numerical examples with comparisons showing the high accuracy and ef-
fectiveness of the proposed algorithm are presented.

This paper is organized as follows. We present a few preliminaries and some facts about
shifted Jacobi polynomials in Section . Section  presents the collocation method for the
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one-dimensional NLSE subject to initial-boundary conditions. In Section  we address an
extension to solve the two-dimensional version of NLSE. In Section , we propose the SJ-
GR-C scheme to solve SODEs. Section  is devoted to solving four test problems. Finally,
some concluding remarks are given in the last section.

2 Properties of shifted Jacobi polynomials
The well-known Jacobi polynomials P(α,β)

i (x) are defined on the interval [–, ]. First, some
properties of the standard Jacobi polynomials are recalled in this section. The Jacobi poly-
nomials P(α,β)

k (x) (k = , , . . .) satisfy the Rodrigue formula:

P(α,β)
k (x) =

(–)k

kk!
( – x)–α( + x)–β dk

dxk

[
( – x)α+k( + x)β+k], ()

we recall also that P(α,β)
k (x) is a polynomial of degree k and therefore dq

dxq P(α,β)
k (x), the qth

derivative of P(α,β)
k (x), is given by

dq

dxq P(α,β)
k (x) =

	(α + β + k + )
q	(α + β + k + )

P(α+q,β+q)
k–q (x). ()

The Jacobi polynomials [, ] satisfy the following relations:

P(α,β)
 (x) = , P(α,β)

 (x) =


[
(α + ) + (α + β + )(x – )

]
,

P(α,β)
k+ (x) =

a

a
P(α,β)

k (x) –
a

a
Pk(x – )(α,β)(x), k ≥ ,

where

a = (k + )(k + α + β + )(k + α + β),

a = (k + α + β)
(
α – β) +

x	(k + α + β + )
	(k + α + β)

,

a = (k + α)(k + β)(k + α + β + ),

and the orthogonality relation

(
P(α,β)

k (x), P(α,β)
l (x)

)
w =

∫ 

–
P(α,β)

k (x)P(α,β)
l (x)w(α,β)(x) dx = hkδlk , ()

where w(α,β) = (–x)α(+x)β , hk = α+β+	(k+α+)	(k+β+)
(k+α+β+)k!	(k+α+β+) . The Jacobi Gauss-Lobatto integrals

are accurate for any φ ∈ SN–[–, ], we have (SJ-GL) quadrature is commonly used to
evaluate the previous expression:

∫ 

–
φ(x) dx =

N∑

j=

�N ,jφ(xN ,j), ()

where SN [–, ] is the set of polynomials of degree less than or equal to N . While the
discrete inner product is given as

(u, v)w =
N∑

j=

u(xN ,j)v(xN ,j)�N ,j, ()
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where xN ,j ( ≤ j ≤ N ) and �N ,j ( ≤ j ≤ N ) are used as usual and we have the nodes and
the corresponding Christoffel numbers in the interval [–, ], respectively.

For the Jacobi Gauss-Lobatto case, it is well known that []

xN , = –, xN ,N = , xN ,j (j = , . . . , N – ) are the zeros of ∂xPN (x),

�N , =
(α+β+)(β + )	(β + )	(N)	(N + α + )

	(N + α + β + )	(n + β + )
,

�N ,N =
(α+β+)(α + )	(α + )	(N)	(N + β + )

	(N + α + β + )	(n + α + )
,

�N ,j =
C̃(α+,β+)

N–

( – x
j )(∂xP(α+,β+)

N– (xj))
,

()

where

C̃(α+,β+)
N– =

α+β+	(N + α + )	(N + β + )
N !(N + α + β + )

,

while the nodes and the corresponding Christoffel numbers in Jacobi Gauss-Radau
quadrature are given by []

xN ,j (j = , . . . , N) are the zeros of P(α,β+)
N (x),

�N , =
(α+β+)	(β + )N !	(N + α + )
	(N + α + β + )	(N + β + )

,

�N ,j =
C̃(α,β+)

N–

( – xj)( + xj)(∂xP(α,β+)
N– (xj))

,

()

where

C̃(α,β+)
N– =

α+β+	(N + α + )	(N + β + )
N !	(N + α + β + )

.

In order to use these polynomials on the interval [, L], we define the so-called shifted
Jacobi polynomials by introducing the change of variable x → x

L – . Let the shifted Jacobi
polynomials P(α,β)

i ( x
L – ) be denoted by P(α,β)

L,i (x). Then P(α,β)
L,i (x) can be obtained with the

aid of the following recurrence formula:

P(α,β)
L,i+ (x) =

(
a(α,β)

i

(
x
L

– 
)

– b(α,β)
i

)
P(α,β)

L,i (x) – c(α,β)
i P(α,β)

L,i–(x), i = , , . . . , ()

where

a(α,β)
i =

(i + α + β + )(i + α + β + )
(i + )(i + α + β + )

,

b(α,β)
i =

(β – α)(i + α + β + )
(i + )(i + α + β + )(i + α + β)

,

c(α,β)
i =

(i + α)(i + β)(i + α + β + )
(i + )(i + α + β + )(i + α + β)

.
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The analytic form of the shifted Jacobi polynomials P(α,β)
L,i (x) of degree i is given by

PL,i(x) =
i∑

k=

(–)i+k 	(i + β + )	(i + k + α + β + )
	(k + β + )	(i + α + β + )(i – k)!k!Lk xk , ()

and the orthogonality condition is

∫ L


P(α,β)

L,j (x)P(α,β)
L,k (x)w(α,β)(x) dx = �

(α,β)
L,k δjk , ()

where w(α,β)
L (x) = xβ (L – x)α and �

(α,β)
L,k = Lα+β+	(k+α+)	(k+β+)

(k+α+β+)k!	(k+α+β+) .
A function u(x), square integrable in [, L], may be expressed in terms of shifted Jacobi

polynomials as

u(x) =
∞∑

j=

cjP(α,β)
L,j (x),

where the coefficients cj are given by

cj =


�
(α,β)
L,k

∫ L


u(x)P(α,β)

L,j (x)w(α,β)
L (x) dx, j = , , , . . . . ()

In practice, only the first (N + )-terms shifted Jacobi polynomials are considered. Hence
u(x) can be expressed in the form

uN (x) �
N∑

j=

cjP(α,β)
L,j (x). ()

3 One-dimensional NLSE
In this section, the numerical algorithm is based on SJ-GL-C method to numerically solve
NLSEs with initial-boundary conditions. The collocation points are selected at the SJ-GL
interpolation nodes. The method is to discretize the NLSE in the spatial direction along
with a new treatment for the conditions the system is subjected to, to create a SODEs of
the unknown coefficients of the spectral expansion in the time direction.

In particular, we consider the general NLSE with the Kerr law nonlinearity

i
∂ψ(x, t)

∂t
+

∂ψ(x, t)
∂x + γ (x)

(∣∣ψ(x, t)
∣
∣)

ψ(x, t) = δ(x)ψ(x, t),

(x, t) ∈ [, L] × [, T], ()

with the initial-boundary conditions

ψ(, t) = ζ(t), ψ(L, t) = ζ(t), t ∈ [, T],

ψ(x, ) = ξ(x), x ∈ [, L].
()
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In order to begin the numerical solution, we put the complex functions (ψ(x, t), ζ(t), ζ(t),
and ξ(x)), as proposed in [, ], in their real and imaginary parts:

ψ(x, t) = u(x, t) + iv(x, t), R(x, t) = f (x, t) + ig(x, t), ζ(t) = g(t) + ig(t),

ζ(t) = g(t) + ig(t), ξ(t) = χ(x) + iχ(x),
()

where u(x, t), v(x, t), f (x, t), g(x, t), g(t), g(t), g(t), g(t), χ(x) and χ(x), are real functions.
In virtue of equation (), one may write equation () as

i
(

∂u(x, t)
∂t

+
∂v(x, t)

∂x + γ (x)
(
u(x, t) + v(x, t)

)
v(x, t) – δ(x)v(x, t)

)

–
(

∂v(x, t)
∂t

–
∂u(x, t)

∂x – γ F
(
u(x, t) + v(x, t)

)
u(x, t) + δ(x)u(x, t)

)
= . ()

The above equation can be separated into coupled nonlinear partial differential equa-
tions

∂u(x, t)
∂t

+
∂v(x, t)

∂x + γ (x)
(
u(x, t) + v(x, t)

)
v(x, t) – δ(x)v(x, t) = ,

∂v(x, t)
∂t

–
∂u(x, t)

∂x – γ F
(
u(x, t) + v(x, t)

)
u(x, t) + δ(x)u(x, t) = ,

()

with the initial-boundary conditions, namely

u(, t) = g(t), u(L, t) = g(t), t ∈ [, T],

v(, t) = g(t), v(L, t) = g(t), t ∈ [, T],

u(x, ) = f(x), v(x, ) = f(x), x ∈ [, L].

()

The main advantage of using the node points of the SJ-GL quadrature is that the distribu-
tion of these points in [, L]. In the proposed collocation scheme, unlike the most existing
collocation schemes, the boundary conditions are satisfied automatically in the colloca-
tion scheme. More specifically, there is no need for additional equations to enforce these
conditions. Thereby, the above treatment is more reasonable. In addition, it improves the
accuracy of numerical solution; see the numerical results in Section . Now, we outline
the main step of implementing SJ-GL-C scheme for reducing nonlinear coupled system
()-() to SODEs. The approximate solutions of u(x, t) and v(x, t) can be expanded, using
the shifted Jacobi polynomial, P(α,β)

L,j (x), in the forms

u(x, t) =
N∑

j=

aj(t)P(α,β)
L,j (x),

v(x, t) =
N∑

j=

bj(t)P(α,β)
L,j (x),

()
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and in virtue of ()-(), we deduce that

aj(t) =

�

L
j

∫ L


u(x, t)w(α,β)

L (x)P(α,β)
L,j (x) dx,

bj(t) =

�

L
j

∫ L


v(x, t)w(α,β)

L (x)P(α,β)
L,j (x) dx.

()

We can circumvent the need for evaluating the previous integrals, by using the SJ-GL
quadrature formula to approximate the integrals. For any φ ∈ SN–[, L],

∫ L


w(x)φ(x) dx =

N∑

j=

�
(α,β)
L,N ,j φ

(
x(α,β)

L,N ,j
)
, ()

where x(α,β)
L,N ,j ( ≤ j ≤ N ) and �

(α,β)
L,N ,j ( ≤ j ≤ N ) are the nodes and the corresponding

Christoffel numbers of the SJ-GL quadrature formula on the interval [, L], respectively.
Due to the property of the SJ-GL quadrature (), the expansion coefficients aj(t) and

bj(t) can be approximated by means of the solution at the SJ-GL grid points, as

aj(t) =


�
(α,β)
L,N ,j

N∑

i=

P(α,β)
L,j

(
x(α,β)

L,N ,i
)
�

(α,β)
L,N ,i u

(
x(α,β)

L,N ,i, t
)
,

bj(t) =


�
(α,β)
L,N ,j

N∑

i=

P(α,β)
L,j

(
x(α,β)

L,N ,i
)
�

(α,β)
L,N ,i v

(
x(α,β)

L,N ,i, t
)
.

()

In virtue of equations ()-(), we can write the approximate solutions as

u(x, t) =
N∑

i=

( N∑

j=


�

(α,β)
L,j

P(α,β)
L,j

(
x(α,β)

L,N ,i
)
P(α,β)

L,j (x)� (α,β)
L,N ,i

)

u
(
x(α,β)

L,N ,i, t
)
,

v(x, t) =
N∑

i=

( N∑

j=


�

(α,β)
L,j

P(α,β)
L,j

(
x(α,β)

L,N ,i
)
P(α,β)

L,j (x)� (α,β)
L,N ,i

)

v
(
x(α,β)

L,N ,i, t
)
.

()

Furthermore, if we differentiate () once, the approximation of the first spatial partial
derivatives of the approximate solutions, by means of the approximate solutions at the
SJ-GL interpolation nodes, can be expanded as

∂u(x(α,β)
L,N ,n, t)
∂x

=
N∑

i=

κ
(α,β)
n,i u

(
x(α,β)

L,N ,i, t
)
,

∂v(x(α,β)
L,N ,n, t)
∂x

=
N∑

i=

κ
(α,β)
n,i v

(
x(α,β)

L,N ,i, t
)
, n = , , . . . , N ,

()

where

κ
(α,β)
n,i =

N∑

j=

�
(α,β)
L,N ,i

�
(α,β)
L,j

P(α,β)
L,j

(
x(α,β)

L,N ,i
)(∂P(α,β)

L,j (x)
∂x

)∣∣
∣∣
x=x(α,β)

L,N ,n

. ()
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Similarly, the second spatial partial derivatives for the approximate solution may also be
written in the forms

∂u(x(α,β)
L,N ,n, t)
∂x

=
N∑

i=

λ
(α,β)
n,i u

(
x(α,β)

L,N ,i, t
)
,

∂v(x(α,β)
L,N ,n, t)
∂x

=
N∑

i=

λ
(α,β)
n,i v

(
x(α,β)

L,N ,i, t
)
, n = , , . . . , N ,

()

where

λ
(α,β)
n,i =

N∑

j=

�
(α,β)
L,N ,i

�
(α,β)
L,j

P(α,β)
L,j

(
x(α,β)

L,N ,i
)
(

∂P(α,β)
L,j (x)
∂x

)∣
∣∣
∣
x=x(α,β)

L,N ,n

. ()

Let us denote

uk(t) = u
(
x(α,β)

L,N ,k , t
)
, vk(t) = v

(
x(α,β)

L,N ,k , t
)
,

gk(t) = g
(
x(α,β)

L,N ,k , t
)
, fk(t) = f

(
x(α,β)

L,N ,k , t
)
.

In the proposed spectral SJ-GL-C scheme, the residual of () is set zero at the (N – )
SJ-GL interpolation nodes. Therefore, adopting ()-(), we may write ()-() in the
form

Dtun(t) = –
N∑

i=

λ
(α,β)
n,i vi(t) – γ

(
x(α,β)

L,N ,n
)(

u
n(t) + v

n(t)
)
vn(t) + δ

(
x(α,β)

L,N ,n
)
vn(t),

Dtvn(t) =
N∑

i=

λ
(α,β)
n,i ui(t) + γ

(
x(α,β)

L,N ,n
)(

u
n(t) + v

n(t)
)
un(t) – δ

(
x(α,β)

L,N ,n
)
un(t),

n = , , . . . , N – .

()

In addition, there is no need for additional equations for treating the boundary con-
ditions, because the boundary conditions () are imposed at the two collocation points
x(α,β)

L,N , and x(α,β)
L,N ,N in the expansion of the functions. This provides the SODEs with (N – )

unknown functions in the time variable,

Dtun(t) = –
N–∑

i=

λ
(α,β)
n,i vi(t) + λ

(α,β)
n, g(t)

+ λ
(α,β)
n,N g(t) – γ

(
x(α,β)

L,N ,n
)(

u
n(t) + v

n(t)
)
vn(t) + δ

(
x(α,β)

L,N ,n
)
vn(t),

Dtvn(t) =
N–∑

i=

λ
(α,β)
n,i ui(t) + λ

(α,β)
n, g(t)

+ λ
(α,β)
n,N g(t) + γ

(
x(α,β)

L,N ,n
)(

u
n(t) + v

n(t)
)
un(t) – δ

(
x(α,β)

L,N ,n
)
un(t),

n = , , . . . , N – ,

()
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subject to the initial values

un() = f
(
x(α,β)

L,N ,n
)
, vn() = f

(
x(α,β)

L,N ,n
)
, n = , . . . , N – . ()

In Section , we discuss the numerical approximation of such a SODEs.

4 Two-dimensional NLSE
In the present section, we provide an efficient algorithm for the numerical treatment of
the following two-dimensional NLSE:

i
∂ψ(x, y, t)

∂t
= a

∂ψ(x, y, t)
∂x + a

∂ψ(x, y, t)
∂y + γ (x, y)

(∣∣ψ(x, y, t)
∣
∣)

ψ(x, y, t)

+ R(x, y)ψ(x, y), (x, y, t) ∈ � × � × �, ()

subject to the initial condition

ψ(x, y, ) = ζ(x, y), (x, y) ∈ � × �, ()

and the four boundary conditions

ψ(, y, t) = ζ(y, t), ψ(L, y, t) = ζ(y, t), (y, t) ∈ � × �,

ψ(x, , t) = ζ(x, t), ψ(x, L, t) = ζ(x, t), (x, t) ∈ � × �,
()

where � = [, L], � = [, L], and � = [, T], while ζ(x, y), ζ(y, t), ζ(y, t), ζ(x, t),
ζ(x, t), γ (x, y), and R(x, y) are given functions. First, the mapping of the complex to the
real and imaginary parts is required for the possibility of using the numerical method. To
this end, suppose we have the transformations

ψ(x, y, t) = u(x, y, t) + iv(x, y, t), ζ(x, y) = g(x, y) + ig(x, y),

ζ(y, t) = g(y, t) + ig(y, t), ζ(y, t) = g(y, t) + ig(y, t),

ζ(x, t) = g(x, t) + ig(x, t), ζ(x, t) = g(x, t) + ig(x, t),

()

where u(x, y, t), v(x, y, t), g(x, y), g(x, y), g(y, t), g(y, t), g(y, t), g(y, t), g(x, t), g(x, t),
g(x, t), and g(x, t), are real functions. Using (), with the help of (), we obtain a cou-
pled system of two-dimensional PDEs:

∂u(x, y, t)
∂t

= a
∂v(x, y, t)

∂x + a
∂v(x, y, t)

∂y + γ (x, y)
(
u(x, y, t)

)

+
(
v(x, y, t)

))v(x, y, t) + R(x, y)v(x, y, t),

–
∂v(x, y, t)

∂t
= a

∂u(x, y, t)
∂x + a

∂u(x, y, t)
∂y + γ (x, y)

(
u(x, y, t)

)

+
(
v(x, y, t)

))u(x, y, t) + R(x, y)u(x, y, t), (x, y, t) ∈ � × � × �,

()

subject to the initial conditions

u(x, y, ) = g(x, y), v(x, y, ) = g(x, y), (x, y) ∈ � × �, ()
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and the boundary conditions

u(, y, t) = g(y, t), u(L, y, t) = g(y, t),

v(, y, t) = g(y, t), v(L, y, t) = g(y, t), (y, t) ∈ � × �,

u(x, , t) = g(x, t), u(x, L, t) = g(x, t),

v(x, , t) = g(x, t), v(x, L, t) = g(x, t), (x, t) ∈ � × �.

()

Second, we are interested in using the SJ-GL-C method to reduce the above coupled sys-
tem of two-dimensional PDEs with their boundary conditions into a SODEs which greatly
simplifies the problem. In order to do this, we outline the main steps of our algorithm
based on approximating the problem using the SJ-GL-C method for spatial discretization.
Let us expand the approximate solution in a doubly shifted Jacobi series

u(x, y, t) =
N∑

i=

M∑

j=

ai,j(t)P(α,β)
L,i (x)P(α,β)

L,j (y),

v(x, y, t) =
N∑

i=

M∑

j=

bi,j(t)P(α,β)
L,i (x)P(α,β)

L,j (y).

()

Let {x(α,β)
L,N ,i;  ≤ i ≤ N} and {y(α,β)

L,M,j;  ≤ j ≤ M} be the SJ-GL interpolation nodes for the
shifted Jacobi polynomials P(α,β)

L,N (x) and P(α,β)
L,M(y), respectively. Making use of the SJ-GL

quadrature and due to the orthogonality relation, one obtains

ai,j(t) =


�
(α,β)
L,i �

(α,β)
L,j

N∑

l=

M∑

k=

(
P(α,β)

L,j
(
y(α,β)

L,M,k
)
�

(α,β)
L,M,kP(α,β)

L,i
(
x(α,β)

L,N ,l
)
�

(α,β)
L,N ,l

)

× u
(
x(α,β)

L,N ,l, y(α,β)
L,M,k , t

)
,

bi,j(t) =


�
(α,β)
L,i �

(α,β)
L,j

N∑

l=

M∑

k=

(
P(α,β)

L,j
(
y(α,β)

L,M,k
)
�

(α,β)
L,M,kP(α,β)

L,i
(
x(α,β)

L,N ,l
)
�

(α,β)
L,N ,l

)

× v
(
x(α,β)

L,N ,l, y(α,β)
L,M,k , t

)
.

()

Let us denote

u
(
x(α,β)

L,N ,n, y(α,β)
L,M,m, t

)
= un,m(t), v

(
x(α,β)

L,N ,n, y(α,β)
L,M,m, t

)
= vn,m(t),

then the approximate solutions () may be expressed in the form

u(x, y, t) =
N∑

i=

M∑

j=

N∑

l=

M∑

k=

(P(α,β)
L,j (y(α,β)

L,M,k)� (α,β)
L,M,kP(α,β)

L,i (x(α,β)
L,N ,l)�

(α,β)
L,N ,l)

�
(α,β)
L,i �

(α,β)
L,j

× P(α,β)
L,i (x)P(α,β)

L,j (y)ul,k(t),

v(x, y, t) =
N∑

i=

M∑

j=

N∑

l=

M∑

k=

(P(α,β)
L,j (y(α,β)

L,M,k)� (α,β)
L,M,kP(α,β)

L,i (x(α,β)
L,N ,l)�

(α,β)
L,N ,l)

�
(α,β)
L,i �

(α,β)
Lj

× P(α,β)
L,i (x)P(α,β)

L,j (y)vl,k(t).

()
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In the following, the first-order spatial partial derivative with respect to x for the solu-
tions (), at a specific collocation node x(α,β)

L,N ,n and y(α,β)
L,M,m can be written as

∂un,m(t)
∂x

=
N∑

l=

M∑

k=

N∑

i=

M∑

j=

(P(α,β)
L,j (y(α,β)

L,M,k)� (α,β)
L,M,kP(α,β)

L,i (x(α,β)
L,N ,l)�

(α,β)
L,N ,l)

�
(α,β)
L,i �

(α,β)
L,j

× ∂(P(α,β)
L,i (x(α,β)

L,N ,n))
∂x

P(α,β)
L,j

(
y(α,β)

L,M,m
)
ul,k(t),

n = , , . . . , N , m = , , . . . , M, ()

for simplifying the notation, let

∂un,m(t)
∂x

=
N∑

l=

M∑

k=

ρ
(α,β)
n,m,i,jul,k(t), ()

where ρ
(α,β)
n,m,i,j are the expansion coefficients of the derivative, and they are obtained from

ρ
(α,β)
n,m,i,j =

N∑

i=

M∑

j=

(P(α,β)
L,j (y(α,β)

L,M,k)� (α,β)
L,M,kP(α,β)

L,i (x(α,β)
L,N ,l)�

(α,β)
L,N ,l)

�
(α,β)
L,i �

(α,β)
L,j

∂(P(α,β)
L,i (x(α,β)

L,N ,n))
∂x

× P(α,β)
L,j

(
y(α,β)

L,M,m
)
. ()

Accordingly, the first-order derivative with respect to y for u(x, y, t), at the nodes xL
N ,n and

yL
M,m, is

∂un,m(t)
∂x

=
N∑

l=

M∑

k=

N∑

i=

M∑

j=

(P(α,β)
L,j (y(α,β)

L,M,k)� (α,β)
L,M,kP(α,β)

L,i (x(α,β)
L,N ,l)�

(α,β)
L,N ,l)

�
(α,β)
L,i �

(α,β)
L,j

P(α,β)
L,i

(
y(α,β)

L,N ,n
)

× ∂(P(α,β)
L,j (y(α,β)

L,M,m))
∂y

ul,k(t),

n = , , . . . , N , m = , , . . . , M. ()

A similar argument leads to

∂un,m(t)
∂y

=
N∑

l=

M∑

k=

�
(α,β)
n,m,i,jul,k(t), ()

where

�
(α,β)
n,m,i,j =

N∑

i=

M∑

j=

(P(α,β)
L,j (y(α,β)

L,M,k)� (α,β)
L,M,kP(α,β)

L,i (x(α,β)
L,N ,l)�

(α,β)
L,N ,l)

�
(α,β)
L,i �

(α,β)
L,j

× P(α,β)
L,i

(
x(α,β)

L,N ,n
)∂(P(α,β)

L,j (y(α,β)
L,M,m))

∂y
. ()
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Also, the second-order spatial partial derivatives with respect to x and y are, respectively,
given by

∂un,m(t)
∂x =

N∑

l=

M∑

k=

ξ
(α,β)
n,m,i,jul,k(t),

∂un,m(t)
∂y =

N∑

l=

M∑

k=

η
(α,β)
n,m,i,jul,k(t),

()

where

ξ
(α,β)
n,m,i,j =

N∑

i=

M∑

j=

(P(α,β)
L,j (y(α,β)

L,M,k)� (α,β)
L,M,kP(α,β)

L,i (x(α,β)
L,N ,l)�

(α,β)
L,N ,l)

�
(α,β)
L,i �

(α,β)
L,j

× ∂P(α,β)
L,i (x(α,β)

L,N ,n)
∂x P(α,β)

L,j
(
y(α,β)

L,M,m
)

()

and

η
(α,β)
n,m,i,j =

N∑

i=

M∑

j=

(P(α,β)
L,j (y(α,β)

L,M,k)� (α,β)
L,M,kP(α,β)

L,i (x(α,β)
L,N ,l)�

(α,β)
L,N ,l)

�
(α,β)
L,i �

(α,β)
L,j

× P(α,β)
L,i

(
x(α,β)

L,N ,n
)∂P(α,β)

L,j (y(α,β)
L,M,m)

∂y . ()

In a similar way, the second approximate solution for the coupled system can be obtained
from

∂vn,m(t)
∂x

=
N∑

l=

M∑

k=

ρ
(α,β)
n,m,i,jvl,k(t),

∂vn,m(t)
∂y

=
N∑

l=

M∑

k=

�
(α,β)
n,m,i,jvl,k(t),

∂vn,m(t)
∂x =

N∑

l=

M∑

k=

ξ
(α,β)
n,m,i,jvl,k(t),

∂vn,m(t)
∂y =

N∑

l=

M∑

k=

η
(α,β)
n,m,i,jvl,k(t).

()

In the shifted Jacobi pseudo-spectral approximation for the two-dimensional version of
NLSEs, the residual of () is set zero at (N – ) × (M – ) of the nodes of SJ-GL interpo-
lation. Therefore, adopting ()-() enables one to write ()-() as

Dun,m(t) = a

N∑

l=

M∑

k=

ξ
(α,β)
n,m,i,jvl,k(t) + a

N∑

l=

M∑

k=

η
(α,β)
n,m,i,jvl,k(t)

+ R
(
x(α,β)

L,N ,n, y(α,β)
L,M,m

)
vn,m(t) + γ

(
x(α,β)

L,N ,n, y(α,β)
L,M,m

)(
un,m(t)

)

+
(
vn,m(t)

)vn,m(t),

Dvn,m(t) = –a

N∑

l=

M∑

k=

ξ
(α,β)
n,m,i,jul,k(t) – a

N∑

l=

M∑

k=

η
(α,β)
n,m,i,jul,k(t)

– R
(
x(α,β)

L,N ,n, y(α,β)
L,M,m

)
un,m(t) – γ

(
x(α,β)

L,N ,n, y(α,β)
L,M,m

)(
un,m(t)

)

+
(
vn,m(t)

)un,m(t), n = , . . . , N – , m = , . . . , M – ,

()
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subject to the initial conditions

un,m() = g
(
x(α,β)

L,N ,n, y(α,β)
L,M,m

)
, vn,m() = g

(
x(α,β)

L,N ,n, y(α,β)
L,M,m

)
,

n = , . . . , N – , m = , . . . , M – . ()

Moreover, the values of u,k(t), uN ,k(t), ul,(t), ul,N (t), v,k(t), vN ,k(t), vl,(t), and vl,N (t) are
obtained from the relations

u,k(t) = g
(
y(α,β)

L,M,k , t
)
, uN ,k(t) = g

(
y(α,β)

L,M,k , t
)
, k = , . . . , M,

ul,(t) = g
(
x(α,β)

L,N ,l, t
)
, ul,N (t) = g

(
x(α,β)

L,N ,l, t
)
, l = , . . . , N

v,k(t) = g
(
y(α,β)

L,M,k , t
)
, vN ,k(t) = g

(
y(α,β)

L,M,k , t
)
, k = , . . . , M,

vl,(t) = g
(
x(α,β)

L,N ,l, t
)
, vl,N (t) = g

(
x(α,β)

L,N ,l, t
)
, l = , . . . , N .

()

This provides a SODEs in time variable with (N – ) × (M – ) unknowns. The spectral
solution of this system will be discussed in detail in the next section.

5 System of differential equations
In this section, we propose an efficient numerical integration process for the SODEs with
a vector of initial values, based on the SJ-GR interpolation, which is easy to implement,
and it possesses the spectral accuracy. This scheme has three fascinating advantages. It is
easier to implement for nonlinear problems, it is also specially appropriate for long-time
calculations, and it is more stable for large N . This is also confirmed by the numerical
results. Now, we consider the following nonlinear system of initial value problems which
is a generalization of the systems given in () and (). Namely in the last algorithm, we
solve the following SODEs:

Dur(t) = Gr
(
t, u(t), . . . , uR(t)

)
, r = , . . . , R, t ∈ [, T], ()

subject to the initial conditions

ur() = τr , r = , . . . , R, ()

where Gr(t, u(t), . . . , uR(t)), r = , . . . , R, are given functions.
We are interested in using the SJ-GR-C method to transform the previous system of

ODEs into a system of algebraic equations. In order to do this, we approximate the time
variable using the SJ-GR-C method at t(α,β)

T ,K ,i (Jacobi Gauss-Radau points). We choose the
approximate solution of the form

ur(t) =
K∑

j=

ar,jP(α,β)
T ,j (t), r = , . . . , R. ()

Furthermore, the approximation of the time derivative can be computed as

Dur(t) =
K∑

j=

ar,jD
(
P(α,β)

T ,j (t)
)
, r = , . . . , R, ()
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where the time derivative, D(P(α,β)
T ,j (t)), can be explicitly obtained by using () for q = ,

with a direct calculation at the points t(α,β)
T ,K ,i .

Therefore, adopting ()-() enables one to write ()-() in the form

K∑

j=

ar,jD
(
P(α,β)

T ,j (t)
)

= Gr

(

t,
K∑

j=

a,jP(α,β)
T ,j (t), . . . ,

K∑

j=

aK ,jP(α,β)
T ,j (t)

)

,

K∑

j=

ar,jP(α,β)
T ,j () = τr , r = , . . . , R, t ∈ [, T].

()

In the proposed method the residual of () is set zero at (RK) collocation points. More-
over, the initial conditions in () will be collocated at R collocation points. First, we have
RK algebraic equations for the R(K + ) unknowns of ai,j

K∑

j=

ar,jD
(
P(α,β)

T ,j (t)
)

= Gr

(

t,
K∑

j=

a,jP(α,β)
T ,j (t), . . . ,

K∑

j=

aK ,jP(α,β)
T ,j (t)

)

,

r = , . . . , R, t ∈ [, T], ()

and due to the initial conditions, we have R algebraic equations

K∑

j=

ar,jP(α,β)
T ,j () = τr , r = , . . . , R. ()

Finally, we have R(K + ) algebraic equations

K∑

j=

ar,jD(P(α,β)
T ,j

(
t(α,β)
T ,K ,s

)

= Gr

(

t(α,β)
T ,K ,s ,

K∑

j=

a,jP(α,β)
T ,j

(
t(α,β)
T ,K ,s

)
, . . . ,

K∑

j=

aR,jP(α,β)
T ,j

(
t(α,β)
T ,K ,s

)
)

,

K∑

j=

ar,jP(α,β)
T ,j () = τr , r = , . . . , R, s = , . . . , K .

()

The previous system of algebraic equations can be solved using Newton’s iterative method.
Finally, equation () guarantees that the system () is satisfied exactly at the SJ-GR in-
terpolation nodes t(α,β)

T ,K ,s; s = , . . . , R. This provides RK nonlinear algebraic equations for
ar,j; r = , . . . , R, j = , . . . , K + . In addition, the collocation treatment of the initial values
in () provides R linear algebraic equations in the unknown shifted Jacobi expansion co-
efficients ar,j; r = , . . . , R, j = , . . . , K + . The combination of these two algebraic systems
constitutes a system of R(K + ) algebraic equations which we solved by Newton’s iteration
method. Consequently, the approximate solutions () can be evaluated.

6 Numerical simulation and comparisons
This section reports several numerical examples to demonstrate the high accuracy and
applicability of the proposed methods for solving one- and two-dimensional Schrödinger
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equations with a Kerr law nonlinearity. We also compare the results given from our scheme
and those reported in the literature such as the Sinc-collocation and Sinc-Galerkin meth-
ods []. The comparisons reveal that our methods are very effective and convenient.

Example  First, we consider the following nonlinear Schrödinger equation with a Kerr
law:

i
∂ψ

∂t
+




∂ψ

∂x + tan(x)
(|ψ |)

ψ =


(
 sin(x) – sin(x) – 

)
ψ ,

(x, t) ∈ [, ] × [, ], ()

subject to the initial-boundary conditions which can be obtained from the exact solution:

ψ(x, t) = e–i t
 sin(x). ()

In Table , the numerical results based on maximum absolute errors obtained using the
proposed algorithm, for real (M) and imaginary (M) parts of the solution are listed at
various values of N , M. From this table, we observe the accuracy and efficiency of the
proposed method.

The real and imaginary parts of the absolute errors obtained by the present method at
N = M = , α = β = α = β =  are shown in Figures  and , respectively. Meanwhile,

Table 1 Maximum absolute errors of problem (63)

N = M α1 = β1 = α2 = β2 = 0 α1 = β1 = α2 = β2 = 1
2 α1 = β1 = 1

2 , α2 = β2 = – 1
2

M1 M2 M1 M2 M1 M2

4 1.54× 10–2 1.98× 10–2 2.33× 10–2 2.92× 10–2 2.29× 10–2 2.88× 10–2

8 8.04× 10–7 1.07× 10–6 1.50× 10–6 1.98× 10–6 1.50× 10–6 2.01× 10–6

12 5.15× 10–12 6.88× 10–12 1.12× 10–11 1.51× 10–11 1.13× 10–11 1.46× 10–11

16 8.55× 10–15 9.33× 10–15 4.61× 10–15 4.33× 10–15 5.44× 10–15 5.77× 10–15

20 6.66× 10–15 7.55× 10–15 3.11× 10–15 3.33× 10–15 3.11× 10–15 3.00× 10–15

Figure 1 Space-graph of the real part of the absolute error related to the problem (63), where
N = M = 20, α1 = β1 = α2 = β2 = 0.
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Figure 2 Space-graph of the imaginary part of the absolute error related to the problem (63), where
N = M = 20, α1 = β1 = α2 = β2 = 0.

Figure 3 t-direction curve of real part of the absolute error related to the problem (63), where
N = M = 20, α1 = β1 = α2 = β2 = 1

2 .

absolute error curves for the real and imaginary solutions, in the case of x = ., α = β =
α = β = 

 and N = M = , are plotted in Figures  and , respectively.

Example  We consider the nonlinear Schrödinger equation in the following form:

i
∂ψ

∂t
+




∂ψ

∂x + ln(x)
(|ψ |)

ψ =
 ln(x) +  cosh(x) + 

(cosh(x) + )
ψ ,

(x, t) ∈ [, ] × [, ]. ()

The exact solution of this problem is

ψ(x, t) = e–it sech

(
x


)
. ()
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Figure 4 t-direction curve of imaginary part of the absolute error related to the problem (63), where
N = M = 20, α1 = β1 = α2 = β2 = 1

2 .

Table 2 Maximum absolute errors of problem (65)

N = M α1 = β1 = α2 = β2 = – 1
2 α1 = β1 = α2 = β2 = 1

2 α1 = β1 = 1
2 , α2 = β2 = – 1

2

M1 M2 M1 M2 M1 M2

4 2.20× 10–3 2.64× 10–3 2.14× 10–3 2.43× 10–3 2.13× 10–2 2.46× 10–3

8 7.64× 10–8 7.48× 10–8 1.29× 10–7 1.24× 10–7 4.33× 10–8 3.87× 10–8

12 3.81× 10–13 3.77× 10–13 9.46× 10–13 9.46× 10–13 4.32× 10–13 4.40× 10–13

16 5.50× 10–15 4.101× 10–15 3.69× 10–15 3.44× 10–15 2.33× 10–15 2.33× 10–15

20 3.66× 10–15 3.66× 10–15 9.83× 10–15 7.22× 10–15 2.33× 10–15 2.33× 10–15

The initial-boundary conditions of this problem can be extracted from the exact solu-
tion. Numerical results based on the maximum absolute errors of equation () are sum-
marized in Table  with several choices of N and M. From this table, we see that we can
achieve an excellent approximation for the exact solution by using the proposed method
for a limited number of the collocation nodes.

Example  In order to confirm the high accuracy of our technique for the two-
dimensional problem, we consider the following  +  nonlinear Schrödinger equation:

i
∂αψ

∂tα
+




(
∂ψ

∂x +
∂ψ

∂y

)
+ sin(x) sin(y)|ψ |ψ =

ψ


(
 sin(x) sin(y) cos(x + y) + 

)
,

(x, y, t) ∈ [, ] × [, ] × [, ], ()

with the initial-boundary conditions

ψ(, y, t) = e– 
 it cos(y), ψ(, y, t) = e– 

 it cos(y + ), (y, t) ∈ [, ] × [, ],

ψ(x, , t) = e– 
 it cos(x), ψ(x, , t) = e– 

 it cos(x + ), (x, t) ∈ [, ] × [, ],

ψ(x, y, ) = cos(x + y), (x, y) ∈ [, ] × [, ].

()

The exact solution of this problem is

ψ(x, y, t) = e– 
 it cos(x + y). ()
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Table 3 Maximum absolute errors of problem (67)

N = M = K α1 = β1 = α2 = β2 = α3 = β3 = 0 α1 = β1 = α2 = β2 = 1
2 , α3 = β3 = – 1

2

M1 M2 M1 M2

4 1.29× 10–3 1.30× 10–3 2.12× 10–3 2.21× 10–3

6 3.05× 10–6 3.04× 10–6 5.52× 10–6 5.61× 10–6

8 3.78× 10–9 3.73× 10–9 7.43× 10–9 7.48× 10–9

10 6.43× 10–11 6.68× 10–11 3.30× 10–10 4.84× 10–10

Figure 5 Space-graph of the real part of the absolute error related to the problem (67), at t = 1 where
N = M = 10, α1 = β1 = α2 = β2 = 0.

Figure 6 t-direction curves of real parts of the numerical and exact solutions of problem (65), where
N = M = 10, α1 = β1 = α2 = β2 = 0.

Table  lists the maximum absolute errors of u(x, y, t) and v(x, y, t) of problem () with
various choices of N , M, and K . The numerical results presented in this table show that
the results are very accurate for small values of N , M, and K . Figure  demonstrates that
the absolute errors E(x, y, t) are very small even for the small number of grid points taken.
Moreover, we see the agreement of the curves of the real and the imaginary parts of the
approximate and exact solutions in Figures  and .
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Figure 7 t-direction curves of imaginary parts of the numerical and exact solutions of problem (65),
where N = M = 10, α1 = β1 = α2 = β2 = 0.

Table 4 Maximum absolute errors with various choices of N, M, and K for problem (70)

N = M = K α1 = α2 = α3 = β1 = β2 = β3 = 0 α1 = α2 = α3 = β1 = β2 = β3 = – 1
2

Mu
E Mv

E Mψ
E Mu

E Mv
E Mψ

E

4 2.73× 10–5 2.42× 10–5 3.65× 10–5 1.13× 10–5 1.13× 10–5 2.15× 10–5

6 6.18× 10–8 4.00× 10–8 7.36× 10–8 3.25× 10–8 2.17× 10–8 3.36× 10–8

8 6.21× 10–11 3.11× 10–11 6.85× 10–11 2.61× 10–11 2.95× 10–11 3.05× 10–11

Example  Finally, we consider a two-dimensional linear Schrödinger equation [] in
the form

i∂tψ + ∂xxψ + ∂yyψ +
(

 –

x –


y

)
ψ = , (x, y, t) ∈ [, ] × [, ] × [, ], ()

with the boundary-initial conditions

ψ(, y, t) = u(, y, t) + iv(, y, t) = , ψ(, y, t) = u(, y, t) + iv(, y, t) = eit ,

ψ(x, , t) = u(x, , t) + iv(x, , t) = , ψ(x, , t) = u(x, , t) + iv(x, , t) = eit ,

ψ(x, y, ) = u(x, y, ) + iv(x, y, ) = xy, (x, y, t) ∈ [, ] × [, ] × [, ].

()

The maximum absolute errors of u(x, t), v(x, t), and ψ(x, t) related to problem ()-()
are presented in Table  using the two-steps SJ-GL-C method with various choices of N ,
M, K , α, α, α, β, β, and β. The errors are calculated through a comparison with the
exact solution

ψ(x, t) = xyeit , (x, y, t) ∈ [, ] × [, ] × [, ]. ()



Bhrawy et al. Advances in Difference Equations  (2016) 2016:18 Page 20 of 22

Table 5 Comparison based on relative errors for problem (70)

N = M = K α1 = α2 = α3 = β1 = β2 = β3 = 0 N = M = K α1 = α2 = α3 = β1 = β2 = β3 = 1
2

Ru
M Rv

M Rψ
M Ru

M Rv
M Rψ

M

4 5.06× 10–5 2.88× 10–5 3.65× 10–5 4 6.32× 10–5 4.07× 10–5 4.84× 10–5

6 1.14× 10–7 4.76× 10–8 7.36× 10–8 6 1.70× 10–7 8.88× 10–8 1.19× 10–7

8 1.15× 10–10 3.70× 10–11 6.85× 10–11 8 2.00× 10–10 9.04× 10–11 1.32× 10–10

N = M = K α1 = α2 = α3 = β1 = β2 = β3 = – 1
2 (N, M, K) Symmetric Sinc-Galerkin method [39]

Ru
M Rv

M Rψ
M Ru

M Rv
M Rψ

M

4 3.38× 10–5 1.34× 10–5 2.15× 10–5 (8, 8, 1,000) 1.56× 10–5 1.40× 10–5 2.30× 10–5

6 6.03× 10–8 2.41× 10–8 3.36× 10–8 (16, 16, 1,000) 4.51× 10–7 5.04× 10–7 6.77× 10–7

8 4.84× 10–11 3.51× 10–11 3.05× 10–11 (32, 32, 1,000) 2.98× 10–9 4.90× 10–9 5.62× 10–9

Figure 8 The absolute errors (a) E1(x, t) and (b) E2(x, t) of problem (70) where α1 = β1 = α2 = β2 = α3 =
β3 = – 1

2 and N = M = K = 8.

The relative maximum error may be defined by

Ru
M =

Max{E(x, y, T) : ∀(x, y) ∈ [, L] × [, L]}
Max{u(x, y, T) : ∀(x, y) ∈ [, L] × [, L]} ,

Rv
M =

Max{E(x, y, T) : ∀(x, y) ∈ [, L] × [, L]}
Max{v(x, y, T) : ∀(x, y) ∈ [, L] × [, L]} ,

Rψ

M =
Max{√(E(x, y, T)) + (E(x, y, T)) : ∀(x, y) ∈ [, L] × [, L]}
Max{√(u(x, y, T)) + (v(x, y, T)) : ∀(x, y) ∈ [, L] × [, L]} .

()

For comparison purposes, the relative errors () of problem () which were obtained
using the two-step SJ-GL-C method and by the symmetric Sinc-Galerkin method [] are
presented in Table . We see from this table that the results are very accurate, even for
choices of a small number of nodes, N , M, and K . In Figures  and , we see that the
absolute errors E(x, y, t) and E(x, y, t) are very small, despite the relatively small number
of grid points used.

7 Conclusions
In this paper, we have proposed a collocation algorithm to introduce an accurate numer-
ical solution for the one-dimensional nonlinear NLSEs with initial-boundary conditions.
The core of the proposed method was to discretize the NLSE in the spatial direction by
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Figure 9 The absolute errors (a) E1(x, t) and (b) E2(x, t) of problem (70) where α1 = β1 = α2 = β2 = α3 =
β3 = – 1

2 and N = M = K = 8.

the SJ-GL-C method, along with a new treatment for the subjected conditions, to create
a system of SODEs of the unknown coefficients of the spectral expansion in the time di-
rection. An efficient numerical integration process for SODEs was investigated based on
the SJ-GR-C method. The proposed method was extended to solve the two-dimensional
NLSEs. The main advantage of the proposed algorithm is that, on adding few terms of
the SJ-GL-C and SJ-GR-C nodes, a good approximation of the exact solution of the prob-
lem was achieved. Comparisons between our approximate solutions of the problems with
their exact solutions and with the approximate solutions achieved by other methods were
introduced to confirm the validity and accuracy of our scheme.
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