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Abstract
In this paper, sufficient conditions are established for the forced oscillation of
fractional partial differential equations of the form

∂

∂ t
(Dα

+,tu(x, t)) = a(t)�u(x, t) –m(x, t,u(x, t)) + f (x, t), (x, t) ∈ � ×R+ ≡ G,

with one of the two following boundary conditions:

∂u(x, t)
∂N

=ψ (x, t), (x, t) ∈ ∂� ×R+, or u(x, t) = 0, (x, t) ∈ ∂� ×R+,

where � is a bounded domain in R
n with a piecewise smooth boundary ∂�,

R+ = [0,∞), α ∈ (0, 1) is a constant, Dα
+,tu(x, t) is the Riemann-Liouville fractional

derivative of order α of u with respect to t, � is the Laplacian in R
n, N is the unit

exterior normal vector to ∂� and ψ (x, t) is a continuous function on ∂� ×R+. The
main results are illustrated by two examples.
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1 Introduction
The fractional calculus may be considered an old and yet novel topic. On  September
, Leibniz wrote a letter to L’Hôspital to discuss the meaning of the derivative of or-
der 

 []. After that in pure mathematics field the foundation of the fractional differential
equations had been established. At the same time, many researchers found that the frac-
tional differential equations play increasingly important roles in the modeling of engineer-
ing and science problems. It has been established that, in many situations, these models
provide more suitable results than analogous models with integer derivatives. In the past
few years, the fractional calculus and the theory of fractional differential equations have
been investigated extensively. For example, see [–] and the references cited therein.

In recent years, the research on the oscillatory behavior of solutions of fractional differ-
ential equation has been a hot topic and some results have been established. For example,
see [–]. However, to the best of the author’s knowledge, very little is known regard-
ing the oscillatory behavior of fractional partial differential equations which involve the
Riemann-Liouville fractional partial derivative up to now [–].
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In [], Prakash et al. investigated the oscillation of the fractional partial differential
equation

∂

∂t
(
r(t)Dα

+,tu(x, t)
)

+ q(x, t)f
(∫ t


(t – ν)–αu(x,ν) dν

)

= a(t)�u(x, t), (x, t) ∈ � ×R+ ≡ G. (E)

In [], Harikrishnan et al. studied the oscillatory behavior of the fractional partial dif-
ferential equation of the form

Dα
+,t

(
r(t)Dα

+,tu(x, t)
)

+ q(x, t)f
(
u(x, t)

)
= a(t)�u(x, t) + g(x, t), (x, t) ∈ G. (E)

In [], Prakash et al. established the oscillation of a nonlinear fractional partial differ-
ential equation with damping and forced term of the form

Dα
+,t

(
r(t)Dα

+,tu(x, t)
)

+ p(t)Dα
+,tu(x, t) + q(x, t)f

(
u(x, t)

)

= a(t)�u(x, t) + g(x, t), (x, t) ∈ G. (E)

2 Formulation of the problems
Our aim in this paper is to study the forced oscillation of fractional partial differential
equations of the form

∂

∂t
(
Dα

+,tu(x, t)
)

= a(t)�u(x, t) – m
(
x, t, u(x, t)

)
+ f (x, t), (x, t) ∈ � ×R+ ≡ G, ()

where � is a bounded domain in R
n with a piecewise smooth boundary ∂�, R+ = [,∞),

α ∈ (, ) is a constant, Dα
+,tu(x, t) is the Riemann-Liouville fractional derivative of order α

of u with respect to t, and � is the Laplacian in R
n.

Throughout this paper, we assume that the following conditions hold:
(A) a ∈ C(R+; (,∞));
(A) m ∈ C(G ×R;R), and

m(x, t, ξ )

{
≥ , if ξ ∈ (,∞),
≤ , if ξ ∈ (–∞, );

(A) f ∈ C(G;R).
Consider one of the two following boundary conditions:

∂u(x, t)
∂N

= ψ(x, t), (x, t) ∈ ∂� ×R+, ()

or

u(x, t) = , (x, t) ∈ ∂� ×R+, ()

where N is the unit exterior normal vector to ∂� and ψ(x, t) is a continuous function on
∂� ×R+.
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By a solution of the problem ()-() (or ()-()) we mean a function u(x, t) which satisfies
() on G and the boundary condition () (or ()).

A solution u(x, t) of the problem ()-() (or ()-()) is said to be oscillatory in G if it is
neither eventually positive nor eventually negative, otherwise it is nonoscillatory.

Definition . The Riemann-Liouville fractional integral of order α >  of a function y :
R+ → R on the half-axis R+ is given by

Iα
+ y(t) :=


	(α)

∫ t


(t – ξ )α–y(ξ ) dξ for t >  ()

provided the right hand side is pointwise defined on R+, where 	 is the Gamma function.

Definition . The Riemann-Liouville fractional derivative of order α >  of a function
y : R+ → R on the half-axis R+ is given by

Dα
+y(t) :=

d�α	

dt�α	
(
I�α	–α

+ y
)
(t)

=


	(�α	 – α)
d�α	

dt�α	

∫ t


(t – ξ )�α	–α–y(ξ ) dξ for t >  ()

provided the right hand side is pointwise defined on R+, where �α	 is the ceiling function
of α.

Definition . The Riemann-Liouville fractional partial derivative of order  < α <  with
respect to t of a function u(x, t) is given by

Dα
+,tu(x, t) :=


	( – α)

∂

∂t

∫ t


(t – ξ )–αu(x, ξ ) dξ ()

provided the right hand side is pointwise defined on R+.

Lemma . [] Let

E(t) =:
∫ t


(t – v)–αy(v) dv for α ∈ (, ) and t > . ()

Then E′(t) = 	( – α)Dα
+y(t).

3 Main results
First, we introduce the following fact []:

The smallest eigenvalue β of the Dirichlet problem

{
�ω(x) + βω(x) = , in �,
ω(x) = , on ∂�,

is positive and the corresponding eigenfunction ϕ(x) is positive in �.
The following notations will be used for our convenience:

U(t) =
∫

�

u(x, t) dx, (t) =
∫

∂�

ψ(x, t) dS, F(t) =
∫

�

f (x, t) dx,
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H(t) = F(t) + a(t)(t), W (t) =
∫

�

u(x, t)ϕ(x) dx,

Y (t) =
∫

�

f (x, t)ϕ(x) dx, t ≥ ,

where dS is the surface element on ∂�.
Next, we establish some useful lemmas.

Lemma . If u(x, t) >  is a solution of the problem ()-() in G, then U(t) satisfies the
differential inequality

(
Dα

+U(t)
)′ ≤ H(t), t ≥ . ()

Proof Integrating () with respect to x over the domain �, we have

d
dt

(∫

�

Dα
+,tu(x, t) dx

)
= a(t)

∫

�

�u(x, t) dx

–
∫

�

m
(
x, t, u(x, t)

)
dx +

∫

�

f (x, t) dx, t ≥ . ()

Green’s formula and () yield

∫

�

�u(x, t) dx =
∫

∂�

∂u(x, t)
∂N

dS =
∫

∂�

ψ(x, t) dS = (t), t ≥ . ()

Noting that u(x, t) > , from (A), it is easy to see that m(x, t, u(x, t)) > . Combining ()
and (), we have

(
Dα

+U(t)
)′ ≤ F(t) + a(t)(t), t ≥ ,

which shows that U(t) >  is a positive solution of the inequality (). The proof of
Lemma . is complete. �

The proof of the following lemma is similar to that of Lemma . and we omit it.

Lemma . If u(x, t) <  is a solution of the problem ()-() in G, then U(t) satisfies the
differential inequality

(
Dα

+U(t)
)′ ≥ H(t), t ≥ . ()

Lemma . If u(x, t) >  is a solution of the problem ()-() in G, then W (t) satisfies the
differential inequality

(
Dα

+W (t)
)′ ≤ Y (t), t ≥ . ()

Proof Multiplying both sides of () by ϕ(x) and integrating with respect to x over the do-
main �, we have
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d
dt

(∫

�

Dα
+,tu(x, t)ϕ(x) dx

)
= a(t)

∫

�

�u(x, t)ϕ(x) dx

–
∫

�

m
(
x, t, u(x, t)

)
ϕ(x) dx

+
∫

�

f (x, t)ϕ(x) dx, t ≥ . ()

Green’s formula and () yield
∫

�

�u(x, t)ϕ(x) dx =
∫

�

u(x, t)�ϕ(x) dx = –β

∫

�

u(x, t)ϕ(x) dx ≤ , t ≥ . ()

From (A), it is easy to see that m(x, t, u(x, t))ϕ(x) > . Combining () and (), we obtain

(
Dα

+W (t)
)′ ≤ Y (t), t ≥ ,

which shows that W (t) >  is a positive solution of the inequality (). The proof is com-
plete. �

Similarly we can obtain the following lemma.

Lemma . If u(x, t) <  is a solution of the problem ()-() in G, then W (t) satisfies the
differential inequality

(
Dα

+W (t)
)′ ≥ Y (t), t ≥ . ()

Finally, we give our main results.

Theorem . If the inequality () has no eventually positive solutions and the inequal-
ity () has no eventually negative solutions, then every solution of the problem ()-() is
oscillatory in G.

Proof Suppose to the contrary that there is a nonoscillatory solution u(x, t) of the problem
()-(). It is obvious that there exist t ≥  such that | (x, t) |>  for t ≥ t. Therefore u(x, t) >
 or u(x, t) < , t ≥ t.

If u(x, t) > , t ≥ t, using Lemma . we see that U(t) >  is a solution of the inequality
(), which is a contradiction.

If u(x, t) < , t ≥ t, using Lemma ., it is easy to see that U(t) <  is a solution of the
inequality (), which is a contradiction. This completes the proof. �

Theorem . Assume that

lim inf
t→∞

∫ t

t

(
 –

s
t

)
H(s) ds = –∞, t ≥ t, ()

and

lim sup
t→∞

∫ t

t

(
 –

s
t

)
H(s) ds = ∞, t ≥ t, ()

hold. Then every solution of the problem ()-() is oscillatory in G.
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Proof We prove that the () has no eventually positive solutions and the inequality ()
has no eventually negative solutions.

Assume to a contrary that () has a positive solution V (t), then there exists t ≥ t such
that V (t) > , t ≥ t. Therefore, from () we have

(
Dα

+V (t)
)′ ≤ H(t), t ≥ t. ()

Integrating () from t to t, we obtain

Dα
+V (t) ≤ Dα

+V (t) +
∫ t

t

H(s) ds. ()

Using Lemma ., it follows from () that

E′(t)
	( – α)

= Dα
+V (t) ≤ Dα

+V (t) +
∫ t

t

H(s) ds, t ≥ t. ()

Integrating () from t to t, we have

E(t) ≤ E(t) + 	( – α)
∫ t

t

(
Dα

+V (t) +
∫ ξ

t

H(s) ds
)

dξ

= E(t) + 	( – α)Dα
+V (t)(t – t) + 	( – α)

∫ t

t

(t – s)H(s) ds. ()

Therefore,

E(t)
t

≤ E(t)
t

+ 	( – α)Dα
+V (t)

(
 –

t

t

)
+ 	( – α)

∫ t

t

(
 –

s
t

)
H(s) ds. ()

Taking t → ∞ in () and noting the assumption (), we have

lim inf
t→∞

E(t)
t

= –∞,

which contradicts the assumption that V (t) > .
Assume that () has a negative solution Ṽ (t). Noting that condition () holds and using

the above mentioned method, we easily obtain a contradiction. This completes the proof
of Theorem .. �

Using Lemma . and Lemma ., we easily establish the following theorems.

Theorem . If the inequality () has no eventually positive solutions and the inequal-
ity () has no eventually negative solutions, then every solution of the problem ()-() is
oscillatory in G.

Theorem . Assume that

lim inf
t→∞

∫ t

t

(
 –

s
t

)
Y (s) ds = –∞, t ≥ t, ()
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and

lim sup
t→∞

∫ t

t

(
 –

s
t

)
Y (s) ds = ∞, t ≥ t, ()

hold. Then every solution of the problem ()-() is oscillatory in G.

4 Examples
In this section, we give two illustrative examples.

Example . Consider the fractional partial differential equation

∂

∂t
(
Dα

+,tu(x, t)
)

= �u(x, t) –
etu(x, t)

 + u(x, t)
+ πet sin t sin x, (x, t) ∈ (,π ) ×R+, ()

with the boundary condition

–
∂u(, t)

∂x
=

∂u(π , t)
∂x

= –et sin t, t ≥ . ()

Here � = (,π ), n = , a(t) = , m(x, t, u(x, t)) = etu(x,t)
+u(x,t) , f (x, t) = πet sin t sin x. It is obvi-

ous that (t) = –πet sin t, and

F(t) =
∫

�

f (x, t) dx =
∫ π


πet sin t sin x dx = πet sin t,

H(t) = F(t) + a(t)(t) = πet sin t.

Hence
∫ t

t

(
 –

s
t

)
H(s) ds = –

πet cos t
t

+
C

t
+ C,

where C and C are constants.
We easily see that

lim inf
t→∞

∫ t

t

(
 –

s
t

)
H(s) ds = –∞ and lim sup

t→∞

∫ t

t

(
 –

s
t

)
H(s) ds = ∞,

which shows that all the conditions of Theorem . are fulfilled. Then every solution of
the problem ()-() is oscillatory in (,π ) ×R+.

Example . Consider the fractional partial differential equation

∂

∂t
(
Dα

+,tu(x, t)
)

= e–t�u(x, t) – texu(x, t) + et–π sin t sin x, (x, t) ∈ (,π ) ×R+, ()

with the boundary condition

u(, t) = u(π , t) = , t ≥ . ()

Here � = (,π ), n = , a(t) = e–t , m(x, t, u(x, t)) = texu(x, t), f (x, t) = et–π sin t sin x.
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It is obvious that β = , ϕ(x) = sin x. Therefore,

Y (t) =
∫

�

f (x, t)ϕ(x) dx =
∫ π


et–π sin t sin x dx =

πe–π


et sin t.

Hence

lim inf
t→∞

∫ t

t

(
 –

s
t

)
Y (s) ds = –∞ and lim sup

t→∞

∫ t

t

(
 –

s
t

)
Y (s) ds = ∞.

Using Theorem ., it is easy to see that every solution of the problem ()-() oscillates
in (,π ) ×R+.
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