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Abstract
In this paper, we continue the mathematical study started in (Jang et al. in J. Dyn.
Differ. Equ. 16:297-320, 2004; Ni and Tang in Trans. Am. Math. Soc. 357:3953-3969,
2005) on the analytic aspects of the Lengyel-Epstein reaction-diffusion system. First,
we further analyze the fundamental properties of nonconstant positive solutions. On
the other hand, we continue to consider the effect of the diffusion coefficient d. We
obtain another nonexistence result for the case of large d by the implicit function
theory, and investigate the direction of bifurcation solutions from (u∗, v∗). These
results promote the Turing patterns arising from the Lengyel-Epstein
reaction-diffusion system.
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1 Introduction
In this paper, we continue to consider the Lengyel-Epstein reaction-diffusion system [, ].
This system captures the crucial feature of the CIMA reaction in an open unstirred gel
reactor which gave the first experimental evidence of a Turing pattern in  []. The
Lengyel and Epstein model takes the following form:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut = �u + a – u – uv
+u , x ∈ �, t > ,

vt = σ [c�v + b(u – uv
+u )], x ∈ �, t > ,

∂u
∂n = ∂v

∂n = , x ∈ ∂�, t > ,
u(x, ) = u(x) > , v(x, ) = v(x) > , x ∈ �,

(.)

where � ⊂ Rn (n ≥ ) is a bounded domain with a smooth boundary ∂�; � =
∑n

i=∂
/∂x

i

is the Laplace operator carrying the spatial dependence of the reaction; u(x, t) and v(x, t),
respectively, denote the chemical concentrations of iodide (I–) and chlorite (ClO–

 ) at time
t >  and a point x ∈ �; a and b are the parameters, which are relative to the feed concen-
trations; c is the ratio of the diffusion coefficients; σ >  is a rescaling parameter, which
depends on the concentration of the starch and enlarges the effective diffusion ratio to σ c.
All parameters a, b, c, and σ are always assumed to be positive constants. The system (.)
is based on the chlorite-iodide-malonic acid chemical (CIMA) reaction (see [, , ]). The
more detailed development of the CIMA reaction model and experiments can be found
in [–] and references therein.
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In this paper, we are mostly concerned with the steady-state problem corresponding to
(.), which takes the form

⎧
⎪⎨

⎪⎩

�u + a – u – uv
+u = , x ∈ �,

d�v + u – uv
+u = , x ∈ �,

∂u
∂n = ∂v

∂n = , x ∈ ∂�,
(.)

where d = c/b. It is easy to see that (.) has a unique constant positive solution

(
u∗, v∗) =

(
α,  + α),

where α = a/.
In the past decade, the Lengyel-Epstein reaction-diffusion system (.) and (.) have

been extensively studied by several authors. For example, the authors gave various im-
portant experimental and numerical studies in [, ] and the references therein. In the
one-dimensional case, Yi et al. [], regarding b as the bifurcation parameter, studied the
Hopf bifurcation for both the ODE and the PDE models. In [], they further investigated
the global asymptotical behavior of constant positive solution for small a. Taking b as the
bifurcation parameter, Du and Wang [] gave the existence of multiple spatially non-
homogeneous periodic solutions though all the parameters of the system are spatially ho-
mogeneous. Furthermore, by choosing the different bifurcation parameter, Jin et al. []
considered the same model using similar methods to [].

On the other hand, Ni and Tang [, ] proposed more original and systematic works on
mathematical aspects. In [], for the better description of the structures, they considered
the global bifurcation of the nonconstant steady states emanating from the simple bifur-
cation (i.e., the case dj �= dk) by choosing d as bifurcation parameter. In [], they reported
some fundamental analytic properties, and investigated the nonexistence of Turing pat-
terns and the Turing instability. Moreover, they showed that if the parameter a lies in a
suitable range, then the system (.) possesses nonconstant steady states for large d. In
[], the authors still viewed the effective diffusion rate d as the bifurcation parameter,
and maintained the basic hypothesis on the system parameters. They studied the Turing
structures, especially bifurcating from the double eigenvalue (i.e., the case dj = dk) by using
the Lyapunov-Schmidt technique and singularity theory [], and they further discussed
the stability and multiplicity of the bifurcating solutions.

In the present paper, based on the results of Ni et al., we continue the analytic works of
[, ] with the goal of achieving a deeper understanding of the Turing patterns operating
in the system (.). This paper is organized as follows. In Section , by the implicit func-
tion theory, we consider the nonexistence result for the case of large d. In Section , we
continue to analyze the fundamental properties of nonconstant positive solutions. These
two sections complete the work of []. Finally, in Section , we investigate the direction of
bifurcation solutions from simple eigenvalue (i.e., the case dj �= dk), which promotes the
results in [].

2 The nonexistence of nonconstant steady states
In this section, we shall verify the nonexistence of nonconstant steady states for the case
of large d. To this end, we recall some results in []. First, we state a priori estimates of
upper and lower bounds for positive solutions to the problem (.).
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Lemma . [] Suppose that (u, v) = (u(x), v(x)) is a positive solution to the problem (.).
Then

a
 + a < u < a and  +

(
a

 + a

)

< v <  + a, x ∈ �.

The following theorem gives the nonexistence of nonconstant steady states to the prob-
lem (.) when d is not large.

Theorem . [] There is a positive constant d = d(a,λ) such that the problem (.) does
not admit a nonconstant solution for  < d < d, where

d = d(a,λ) =
C(a)λ

C
 (a)

.

Here λ >  is the first positive eigenvalue of –� on � subject to the Neumann boundary
condition.

We remark that it is very involved to derive a good estimate for the positive constant d

obtained above for a given a. However, Ni and Tang obtained a much simpler estimate in
a different way when a is not very large.

Theorem . [] Suppose that a ≤ . Then the problem (.) does not admit a noncon-
stant solution provided that


d

>
a


–

a

.

In particular, there is no nonconstant solution for all d >  if a ≤ /.

Theorem . and Theorem . give the nonexistence results for the case of not large d.
In the following, we continue to analyze the effect of the parameter d on the nonexistence
of nonconstant steady states to the problem (.). To obtain the nonexistence result for
the case of large d, we first give the asymptotic behavior of positive solutions to (.) when
d is sufficiently large.

Lemma . Suppose that (u, v) = (u(x), v(x)) is any positive solution of (.). Then (u, v) →
(u∗, v∗) in [C(�)] as d → ∞.

Proof Suppose that a and � are fixed. By Lemma . and the standard elliptic regularity
theory, we may assume that for any positive solution sequence (u, v) of (.) with respect to
d, there exists a subsequence {(ui, vi)}∞i= corresponding to d = di with di → ∞ as i → ∞,
such that (ui, vi) → (ũ, ṽ) in [C(�)] as i → ∞.

Obviously, according to Lemma ., we see that (ũ, ṽ) is a positive solution to

–�ũ = a – ũ –
ũṽ

 + ũ in �,
∂ũ
∂n

=  on ∂�, (.)

where ṽ is a positive constant. By Lemma . again, we easily find that

ũ < a and ṽ >  +
(

a
 + a

)
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in �. Integrating the first and second equations in (.) over � by parts, respectively, we
obtain

∫

�

u dx +
∫

�

uv
 + u dx = a|�|,

∫

�

uv
 + u dx =

∫

�

u dx. (.)

By (.), we have

∫

�

u dx =
a

|�|. (.)

Hence, by Lemma ., together with (.) and (.), we see that (ũ, ṽ) satisfies

ṽ
∫

�

ũ
 + ũ dx =

a

|�|,

∫

�

ũ dx =
a

|�|. (.)

Apparently, (u∗, v∗) is the unique positive constant solution of (.) and (.). To show the
claimed result, it remains to prove (ũ, ṽ) = (u∗, v∗).

Assume that (ũ, ṽ) is a nonconstant solution and we shall look for a contradiction in the
following. To this end, we let ω = ũ – u∗. Then ω �≡  in �. By some calculations, we find
that ω satisfies

–�ω + f (x)ω = g in �,
∂ω

∂n
=  on ∂�, (.)

where

f (x) =  +
ṽ( – αũ)

( + α)( + ũ)
and g =

α(v∗ – ṽ)
 + α .

By the second equality in (.), we derive

∫

�

ω dx =
∫

�

ũ dx – u∗|�| = , (.)

which suggests that ω must change sign in �.
On the other hand, by Lemma . again, it is easy to find that (ũ, ṽ) satisfies the following

estimates:

a
 + a < ũ < a,  +

(
a

 + a

)

< ṽ <  + a, x ∈ �.

As a result, we find that

f (x) >  +
[ + ( a

+a )]( – αa)
( + α)( + a)

≥ 

is equivalent to


(

a


– 

)(

 +
(

a
 + a

))

≤ (
 + a)

(

 +
a



)

.
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This inequality is true for all a > . Hence, f (x) >  holds for all x ∈ �. Note that g is a
constant. Thus, by the strong maximum principle for elliptic equations, we see that ω

must be positive or negative on �. This contradicts (.). Hence, the claim (ũ, ṽ) = (u∗, v∗)
follows. �

Now, by Lemma ., we can apply the implicit function theorem to obtain the nonexis-
tence result for the case of large d.

Theorem . If a < /, then there exists a large constant d∗ = d∗(a,�), such that the
problem (.) does not admit a nonconstant solution provided that d > d∗.

Proof First, for any positive solution (u, v) of the problem (.), we make the following
decomposition on v:

v = v + v with
∫

�

v dx =  and v ∈ R
+.

For later purposes, we state the following function spaces:

W ,
n (�) =

{

ϕ ∈ W ,(�)
∣
∣
∣
∂ϕ

∂n
=  on �

}

, L
(�) =

{

ϕ ∈ L(�)
∣
∣
∣

∫

�

ϕ dx = 
}

.

Then we consider the following system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�u + a – u – u(v+v)
+u =  in �, ∂u

∂n =  on ∂�,
�v + ρ(u – u(v+v)

+u ) =  in �, ∂v
∂n =  on ∂�,

∫

�
u dx – a

 |�| = ,
v ∈ R

+, u >  in �,

(.)

where ρ = /d. We can define the operator F by

F(ρ, u, v, v) = (f, f, f)(ρ, u, v, v)

with

f(ρ, u, v, v) = �u + a – u –
u(v + v)

 + u ,

f(ρ, u, v, v) = �v + ρP
(

u –
u(v + v)

 + u

)

, (.)

f(ρ, u, v, v) =
∫

�

u dx –
a

|�|,

where P is a projection operator from L(�) to L
(�), which satisfies

P(ϕ) = ϕ –


|�|
∫

�

ϕ dx, ∀ϕ ∈ L(�).

Then, for any fixed ρ > ,

F : W ,
n (�) × (

W ,
n (�) ∩ L

(�)
) × R

+ → L(�) × L
(�) × R
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is a well-defined mapping. For any given ρ > , (u, v, v) is a solution of (.) if and only if
F(ρ, u, v, v) = (, , ). Apparently, for all ρ ≥ , (u, v, v) = (u∗, , v∗) is a solution of (.).
In addition, by the standard elliptic regularity theory, we easily check that the positive
solutions (u, v) of (.) are equivalent to the roots of F(ρ, u, v, v) = (, , ).

It is obvious that F is a continuously differentiable mapping. By some calculations, we see
that the partial derivative of F at the point (, u∗, , v∗) with respect to (u, v, v) is provided
by

L := D(u,v,v)F
(
, u∗, , v∗),

where

L : W ,
n (�) × (

W ,
n (�) ∩ L

(�)
) × R

+ → L(�) × L
(�) × R

with

L(ω, z, τ ) =

⎡

⎢
⎣

�ω + α–
+α ω – α

+α (z + τ )
�z

∫

�
ω dx

⎤

⎥
⎦ .

In the following, we verify that L is an isomorphism. First of all, we claim that L is injec-
tive. Assume that L(ω, z, τ ) = (, , ). Since the operator –�, subject to the homogeneous
Neumann boundary condition over ∂�, is invertible from W ,

n (�) ∩ L
(�) to L

(�), we
have z = . Thus, we obtain

–�ω –
α – 
 + α ω = –

α

 + α τ in �,
∂ω

∂n
=  on ∂�. (.)

When a < /, we can observe that  – α > . Hence, for any given constant τ , for
equation (.) there exists a unique solution,

ω =
α

α – 
τ . (.)

On the other hand, in Lemma ., we have proved that ω satisfies

∫

�

ω dx = .

Combining this with (.), we can derive ω = τ = . So L is injective.
On the other hand, we need to prove that L is surjective. To see that L is surjective, we

just need an elementary fact from []: for any given function g ∈ L
(�) and constant τ,

the elliptic equation

–�ω = g in �,
∂ω

∂n
=  on ∂� with

∫

�

ω dx = τ,

has a unique solution ω ∈ W ,
n (�). As before, together with the previous fact, it is not

hard to show that L is surjective.
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By virtue of the implicit function theorem, we see that there exist two positive constants
ρ and r, which are sufficiently small, such that for any ρ ∈ (,ρ], (u∗, , v∗) is the unique
solution of F(ρ, u, v, v) =  in Br (u∗, , v∗), where Br (u∗, , v∗) denotes the open ball in
W ,

n (�) × (W ,
n (�) ∩ L

(�)) × R
+ centered at (u∗, , v∗) with radius r.

For any positive constant sequence {ρi}∞i= satisfying ρi →  as i → ∞, we let (ui, vi) be
a corresponding solution sequence of (.) for di = /ρi with the decomposition

vi = vi, + vi,, where
∫

�

vi, dx =  and vi, ∈ R
+ for each i ≥ .

Obviously, (ρi, ui, vi,, vi,) is a root of

F(ρi, ui, vi,, vi,) = (, , ).

By virtue of Lemma . and our decomposition, we have

(ui, vi,, vi,) → (
u∗, , v∗) as i → ∞. (.)

It follows from (.) that for all large i,

(ρi, ui, vi,, vi,) ∈ (,ρ) × Br

(
u∗, , v∗).

In view of the implicit function theorem, we obtain

(ui, vi,, vi,) =
(
u∗, , v∗),

that is, if d is sufficiently large, then (u∗, v∗) is the unique positive solution of (.). �

3 Properties of nonconstant positive solutions
In the section, based on the results of Ni and Tang [], we continue to investigate the ba-
sic properties of nonconstant positive solutions to the Lengyel-Epstein reaction-diffusion
system.

For any given positive solution (u, v) = (u(x), v(x)) to the problem (.), we denote their
averages over � by

ū =


|�|
∫

�

u dx and v̄ =


|�|
∫

�

v dx,

where |�| is the volume of �. Let φ = u – ū, ψ = v – v̄. Then
∫

�

φ dx =
∫

�

ψ dx = .

Lemma . guarantees that there exist two positive constants M and M, which depend,
respectively, only on a, such that

f (u, v) =
∣
∣
∣
∣a – u –

uv
 + u

∣
∣
∣
∣ ≤ M, g(u, v) =

∣
∣
∣
∣u –

uv
 + u

∣
∣
∣
∣ ≤ M.

This enables us to derive the following two lemmas.
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Lemma . There exists a constant M depending only on a, such that

∫

�

|∇ψ | dx ≤ M
|�|

dλ
and

∫

�

|ψ | dx ≤ M
|�|

dλ


. (.)

Proof By means of Lemma . and the Hölder inequality, we get

d
∫

�

|∇ψ | dx =
∫

�

(

u –
uv

 + u

)

ψ dx ≤ M

∫

�

|ψ |dx ≤ M|�| 


(∫

�

|ψ | dx
) 


.

By the Poincaré inequality
∫

�

ψ dx ≤ 
λ

∫

�

|∇ψ | dx,

where λ (> ) is the first positive eigenvalue of –� subject to the Neumann boundary
condition, we obtain

d
∫

�

|∇ψ | dx ≤ M|�| 


√
λ

(∫

�

|∇ψ | dx
) 


= M

√|�|/λ

(∫

�

|∇ψ | dx
) 


.

This implies

∫

�

|∇ψ | dx ≤ M
|�|

dλ
.

Applying the Poincaré inequality again, we derive

∫

�

|ψ | dx ≤ 
λ

∫

�

|∇ψ | dx ≤ M
|�|

dλ


.

We complete the proof of the lemma. �

Lemma . There exists a constant M depending only on a, such that

∫

�

|∇φ| dx ≤ M
 |�|
λ

and
∫

�

|φ| dx ≤ M
 |�|
λ


. (.)

Proof By means of Lemma . and the Hölder inequality, we obtain

∫

�

|∇φ| dx =
∫

�

(

a – u –
uv

 + u

)

φ dx ≤ M

∫

�

|φ|dx ≤ M|�| 


(∫

�

|φ| dx
) 


.

By the Poincaré inequality
∫

�

φ dx ≤ 
λ

∫

�

|∇φ| dx,

where λ (> ) is the first positive eigenvalue of –� subject to the Neumann boundary
condition, we derive

∫

�

|∇φ| dx ≤ M|�| 


(∫

�

|φ| dx
) 

 ≤ M
√|�|/λ

(∫

�

|∇φ| dx
) 


.
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This suggests

∫

�

|∇φ| dx ≤ M
 |�|
λ

.

Applying the Poincaré inequality again, we have

∫

�

|φ| dx ≤ 
λ

∫

�

|∇φ| dx ≤ M
 |�|
λ


.

The proof is complete. �

By (.) and (.), we have the following theorem.

Theorem . Suppose that (u, v) is a nonconstant solution of the problem (.). Then the
following estimates hold:

‖φ‖W ,(�) ≤ M|�| 


(

λ

+
√
λ

)

and ‖ψ‖W ,(�) ≤ M|�| 


d

(

λ

+
√
λ

)

.

Next, we promote the relationship of the gradients of u and v based on the work of Ni
and Tang. It is to be found that our proof does not depend on the previous estimates. For
this purpose, we need to introduce some results.

Lemma . [] Suppose that (u, v) is a nonconstant solution of the problem (.). Then

λ


λ
 + λ + 

<
∫

�
|∇u| dx

d
∫

�
|∇v| dx

< . (.)

Lemma . [] Suppose that (u, v) is a nonconstant solution of the problem (.). Then

λ


(λ + )(λ
 + λ + )

<
∫

�
(|∇φ| + φ) dx

d
∫

�
(|∇ψ | + ψ) dx

< . (.)

Now, by Lemma . and Lemma ., our purpose is to obtain a new result on the rela-
tionship of the gradients of u and v.

Theorem . Suppose that (u, v) be a nonconstant solution of the problem (.). Then

λ


(λ + )(λ
 + λ + )

<
∫

�
(|∇φ| + cφ) dx

d
∫

�
(|∇ψ | + ψ) dx

< ,

where  ≤ c ≤ .

Proof Let

w(x) = dv(x) – u(x).

Then w(x) satisfies

�w – a + u = .
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Multiplying φ and integrating by parts in the above equation, we obtain


∫

�

φ dx =
∫

�

∇φ∇w dx = d
∫

�

∇φ∇ψ dx –
∫

�

|∇φ| dx,

which suggests that

∫

�

∇φ∇ψ dx =


d

(∫

�

|∇φ| dx + 
∫

�

φ dx
)

. (.)

By (.), we get

∫

�

|∇w| dx = d
∫

�

|∇v| dx – d
∫

�

|∇v| · |∇u|dx +
∫

�

|∇u| dx

= d
∫

�

|∇ψ | dx – d
∫

�

|∇ψ | · |∇φ|dx +
∫

�

|∇φ| dx

= d
∫

�

|∇ψ | dx –
∫

�

|∇φ| dx – 
∫

�

φ dx.

Hence
∫

�

|∇φ| dx + 
∫

�

φ dx ≤ d
∫

�

|∇ψ | dx. (.)

By the Poincaré inequality, we have

∫

�

(|∇ψ | + ψ)dx ≤ λ + 
λ

∫

�

|∇ψ | dx.

By the first inequality of (.), we have

∫

�
(|∇φ| + cφ) dx

d
∫

�
(|∇ψ | + ψ) dx

≥ λ
∫

�
|∇φ| dx

d(λ + )
∫

�
|∇ψ | dx

>
λ


(λ + )(λ

 + λ + )
.

On the other hand, by (.), we have

∫

�
(|∇φ| + cφ) dx

d
∫

�
(|∇ψ | + ψ) dx

<
∫

�
(|∇φ| + φ) dx
d

∫

�
|∇ψ | dx

<
d ∫

�
|∇ψ | dx

d
∫

�
|∇ψ | dx

= .

Therefore, we finish the proof of this theorem. �

4 Direction of the bifurcation solutions
In [], Ni et al. derived the local and global bifurcation from (u∗, v∗) in one-dimensional
spatial domain � = (, l). That is, they obtained the local and global bifurcation from
(u∗, v∗) to the following problem:

⎧
⎪⎨

⎪⎩

uxx + a – u – uv
+u = , x ∈ (, l),

dvxx + u – uv
+u = , x ∈ (, l),

ux(, t) = vx(, t) = ux(l, t) = vx(l, t) = .
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In this section, we follow the idea of Shi [] to determine the bifurcation direction of
the steady-state bifurcation from simple eigenvalue. To this end, we translate (.) into the
following system by the transition û = u – u∗ and v̂ = v – v∗. For the sake of convenience,
we still denote (û, v̂) by (u, v), then we have

⎧
⎪⎪⎨

⎪⎪⎩

uxx + α – u – (u+α)(v++α)
+(u+α) = , x ∈ (,π ),

dvxx + u + α – (u+α)(v++α)
+(u+α) = , x ∈ (,π ),

ux(, t) = vx(, t) = ux(π , t) = vx(π , t) = ,

(.)

where we denote l = π . Let

f̃ (u, v) = α – u –
(u + α)(v +  + α)

 + (u + α) ,

g̃(u, v) = u + α –
(u + α)(v +  + α)

 + (u + α) .

A direct calculation yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f̃u(, ) = α–
+α , f̃v(, ) = –α

+α ,

g̃u(, ) = α

+α , g̃v(, ) = –α

+α ,

f̃uu(, ) = g̃uu(, ) = α(–α)
(+α) ,

f̃uv(, ) = g̃uv(, ) = – (–α)
(+α) ,

f̃vv(, ) = g̃vv(, ) = ,
f̃uuu(, ) = g̃uuu(, ) = (α–α+)

(+α) ,

f̃uuv(, ) = g̃uuv(, ) = α(–α)
(+α) ,

f̃uvv(, ) = g̃uvv(, ) = f̃vvv(, ) = g̃vvv(, ) = .

(.)

Denote U = (u, v). We define the map F̃ : R+ × X → Y by

F̃(d, U) =

[
u′′ + f̃ (u, v)
dv′′ + g̃(u, v)

]

,

where X is a Banach space with usual C norm and Y = L(,π ) × L(,π ). By virtue
of Theorem  in [], we see that dim ker F̃U (dj, (, )) = codim R(̃FU (dj, (, ))) =  and
ker F̃U (dj, (, )) = span{�j}, where

�j =

[

ej

]

φj

with

ej =
α –  – ( + α)j

α
>  and φj = cos jx.

Hence, we can decompose X and Y as

X = ker F̃U
(
dj, (, )

) ⊕ Z and Y = R
(
F̃U

(
dj, (, )

)) ⊕ Z′,
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where Z is the complement of ker F̃U (d, (, )) in X and Z′ is the complement of R(̃FU(d, (,
))) in Y . Due to codim R(̃FU (dj, (, ))) = , there exists l ∈ Y ∗ such that

R
(
F̃U

(
dj, (, )

))
=

{
(ξ , ζ ) ∈ Y :

〈
l, (ξ , ζ )

〉
= 

}
.

Moreover, �∗
j satisfies F̃∗

U (dj, (, ))�∗
j =  by Theorem  in [] again, where

�∗
j =

[

e∗

j

]

φj and e∗
j = –

α –  – ( + α)j

α < .

Thus, we can define

〈
l, (ξ , ζ )

〉
=

〈
�∗

j , (ξ , ζ )
〉
=

∫

�

ξφj dx +
∫

�

e∗
j ζφj dx.

Since F̃dU (dj, (, ))�j /∈ R(̃FU(dj, (, ))), we find that

〈
F̃dU

(
dj, (, )

)
�j,�∗

j
〉 �= .

According to (.) in [], we see that

d′() = –
〈̃FUU (dj, (, ))�

j ,�∗
j 〉

〈̃FdU (dj, (, ))�j,�∗
j 〉

.

By some calculations, we obtain

〈
F̃UU

(
dj, (, )

)
�

j ,�∗
j
〉

=
(
gj + hje∗

j
)
∫

�

φ
j dx = ,

〈
F̃dU

(
dj, (, )

)
�j,�∗

j
〉

=
∫ π


e∗

j cos jx�(ej cos jx) dx = –
π j


eje∗

j ,

where
{

gj = f̃uu(, ) + f̃uv(, )ej + f̃vv(, )e
j ,

hj = g̃uu(, ) + g̃uv(, )ej + g̃vv(, )e
j .

By (.), we obtain

gj = hj = f̃uu(, ) + f̃uv(, )ej.

Hence, d′() = .
Also from [], we see that the bifurcation is supercritical (resp. subcritical) provided

that

d′′() = –
〈̃FUUU (dj, (, ))�

j ,�∗
j 〉 + 〈̃FUU (dj, (, ))�jθ ,�∗

j 〉
〈̃FUU (dj, (, ))�j,�∗

j 〉
>  (< ),

where θ is the solution of the following problem:

F̃UU
(
dj, (, )

)
�

j + F̃U
(
dj, (, )

)
θ = .
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Let θ = (θ, θ). Then θ satisfies

⎧
⎪⎨

⎪⎩

�θ + f̃u(, )θ + f̃v(, )θ = –gj cos jx,
d�θ + g̃u(, )θ + g̃v(, )θ = –hj cos jx,
θi(, t) = θi(π , t) = , i = , .

(.)

By direct calculation, we obtain

〈
F̃UUU

(
dj, (, )

)
�

j ,�∗
j
〉

=
(
mj + nje∗

j
)
∫ π


cos jx dx =

π


(
mj + nje∗

j
)
,

where
{

mj = f̃uuu(, ) + ejf̃uuv(, ) + e
j f̃uvv(, ) + f̃vvv(, ),

nj = g̃uuu(, ) + ejg̃uuv(, ) + e
j g̃uvv(, ) + g̃vvv(, ).

By (.) again, we have

mj = nj = f̃uuu(, ) + ejf̃uuv(, ).

Hence

〈
F̃UUU

(
dj, (, )

)
�

j ,�∗
j
〉

=
π



(

 +



e∗
j

)
(
f̃uuu(, ) + ejf̃uuv(, )

)
.

On the other hand, we have

〈
F̃UU

(
dj, (, )

)
�jθ ,�∗

j
〉

= C

∫ π


θ cos jx dx + C

∫ π


θ cos jx dx,

where

C = f̃uu(, ) + ejf̃uv(, ) + e∗
j g̃uu(, ) + eje∗

j g̃uv(, )

= f̃uu(, )
(

 +



e∗
j

)

+ f̃uv(, )ej

(

 +



e∗
j

)

,

C = f̃uv(, ) + ejf̃vv(, ) + e∗
j g̃uv(, ) + eje∗

j g̃vv(, )

= f̃uv(, )
(

 +



e∗
j

)

.

In the following, we shall compute

∫ π


θ cos jx dx and

∫ π


θ cos jx dx.

Multiplying (.) by cos jx and integrating by parts, we derive

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫ π

 cos jx�θ dx + f̃u(, )
∫ π

 cos jxθ dx
+ f̃v(, )

∫ π

 cos jxθ dx = –gj
∫ π

 cos jx dx,
d

∫ π

 cos jx�θ dx + g̃u(, )
∫ π

 cos jxθ dx
+ g̃v(, )

∫ π

 cos jxθ dx = –hj
∫ π

 cos jx dx,

(.)
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where
∫ π


cos jx�θi dx = j

∫ π


θi

(
 –  cos jx

)
dx, i = , .

Furthermore, integrating (.) by parts, we have

γ �
∫ π


θ dx =

π (hjf̃v(, ) – gjg̃v(, ))
(f̃u(, )g̃v(, ) – f̃v(, )g̃u(, ))

= ,

γ �
∫ π


θ dx =

π (gjg̃u(, ) – hjf̃u(, ))
(f̃u(, )g̃v(, ) – f̃v(, )g̃u(, ))

= –
πgj

f̃v(, )
.

By (.), it is not hard to check that

{
(f̃u(, ) – j)

∫ π

 cos jxθ dx + f̃v(, )
∫ π

 cos jxθ dx = – gjπ
 – γj,

(g̃v(, ) – dj)
∫ π

 cos jxθ dx + g̃u(, )
∫ π

 cos jxθ dx = – hjπ
 – dγj.

Therefore, it follows that

L �
∫ π


θ cos jx dx =

– dπ j
 gj – djγ f̃v(, )

f̃v(, ) + dj f̃u(, ) + j f̃v(, ) – dj
,

L �
∫ π


θ cos jx dx =

– π
 gj – jπ

 hj + djγ f̃u(, ) – dγj

f̃v(, ) + dj f̃u(, ) + j f̃v(, ) – dj
.

Hence

d′′() = –
π ( + e∗

j )(f̃uuu(, ) + ejf̃uuv(, )) + (CL + CL)
jπeje∗

j
. (.)

From the above analysis, we obtain the following results.

Theorem . Under the same hypothesis as Theorem  in [], there exists a smooth bifur-
cation branch from (dj, (, )). Furthermore, the bifurcation is supercritical (resp. subcriti-
cal) provided that d′′() >  (< ), where d′′() is given by (.).

5 Conclusion
In this paper, we have studied the Lengyel-Epstein reaction-diffusion system which is pro-
posed by Lengyel and Epstein in [, ]. Based on the results of Ni et al. [, ], we further
study the steady-state problem (.). By the implicit function theory, we have shown that if
the feed concentration is not large (a < /), then the chemical concentrations of iodide
(I–) and chlorite (ClO–

 ) remain unchanged (i.e., (u∗, v∗)) when d is sufficiently large (see
Theorem .). For the chemical concentrations of iodide (I–) and chlorite (ClO–

 ), we have
obtained better estimates (see Theorem . and Theorem .). Furthermore, by using the
work of Shi [], we have determined the change of the chemical concentrations of iodide
(I–) and chlorite (ClO–

 ) close to (u∗, v∗) (see Theorem .).
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