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Abstract
In this paper, the issue of a global asymptotic stability analysis is developed for
piecewise homogeneous Markovian jump BAM neural networks with mixed time
delays. By establishing the Lyapunov functional, using mode-dependent discrete
delay and applying the linear matrix inequality (LMI) method, a novel sufficient
condition is obtained to guarantee the stability of the considered system. A numerical
example is provided to demonstrate the feasibility and effectiveness of the proposed
results.
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1 Introduction
As is well known, the bidirectional associative memory (BAM) neural networks were orig-
inally introduced by Kosko [–], and they are a class of two-layer heteroassociative net-
works, which are composed of neurons arranged in two layers, the U-layer and the V-layer.
Generally speaking, the neurons in one layer are fully interconnected to the neurons in the
other layer. Moreover, there may be no interconnection among neurons in the same layer.
In addition, the addressable memories or patterns of BAM neural networks can be stored
with a two-way associative search. Owing to these reasons, the BAM neural network has
been widely studied both in theory and applications; see [–]. Therefore, it is meaning-
ful and important to study the BAM neural network.

Recently, a great deal of studies have been done to the stability analysis of the dynamical
systems [–]. It is worth noting that Markovian jump systems have received increasing
attention in the area of the mathematics and control research community. Therefore, the
study of Markovian jumps is of great significance and value both theoretically and practi-
cally. Much work has been done for Markovian processes or Markovian chains in the liter-
ature, and the issues of stability and control have been well investigated; see, for example,
[–] and references therein. The stability analysis problem has been investigated in []
for stochastic high-order Markovian jumping neural networks with mixed time delays. In
[], the authors have made the first attempt to deal with the H∞ estimation for discrete-
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time piecewise homogeneous Markov jump linear systems, and the time-varying char-
acter of TPs has been considered to be finite piecewise homogeneous and the variations
have been considered to be of two types: arbitrary variations and stochastic variations.
The H∞ filtering analysis of piecewise homogeneous Markovian jump nonlinear systems
has been studied in [], where the mode-dependent filter is obtained. Very recently, the
stochastic stability analysis has been investigated for piecewise homogeneous Markovian
jump neural networks with mixed time delays in []. But the time-varying delays in []
are independent of the Markovian jump mode. To the best of our knowledge, no results
have been given for piecewise homogeneous Markovian jump BAM neural networks with
discrete and distributed time delays.

This constitutes the motivation for the present research. In this paper, we deal with
the stability problem for piecewise homogeneous Markovian jump BAM neural networks
with discrete and distributed time delays. By employing the Lyapunov method, using
mode-dependent discrete delay and some inequality techniques, sufficient conditions are
derived for the global asymptotic stability in the mean square of the piecewise homoge-
neous Markovian jump BAM neural networks with discrete and distributed time delays.
One illustrative example is also provided to show the effectiveness of the obtained results.

2 Model description and preliminaries
In this paper, we consider BAM neural networks with discrete and distributed time-
varying delays described by

{
dx(t)

dt = –Cx(t) + Af (y(t)) + Af (y(t – τ(t))) + A
∫ t

t–d(t) f (y(s)) ds,
dy(t)

dt = –Dy(t) + Bg(x(t)) + Bg(x(t – τ(t))) + B
∫ t

t–d(t) g(x(s)) ds,
()

with initial values{
xi(s) = φ(s), s ∈ [–μ, ], i = , , . . . , n,
yj(s) = φ(s), s ∈ [–μ, ], j = , , . . . , n,

where x(t) = [x(t), x(t), . . . , xn(t)]ᵀ and y(t) = [y(t), y(t), . . . , yn(t)]ᵀ are the state vec-
tors, n is the number of units in the neural networks, C = diag(c, c, . . . , cn) and D =
diag(d, d, . . . , dn) are diagonal matrices with positive entries ci >  and di > ; A =
(a()

ij )n×n and B = (b()
ij )n×n are the synaptic connection matrices, A = (a()

ij )n×n and
B = (b()

ij )n×n are the discretely delayed connection weight matrices, A = (a()
ij )n×n

and B = (b()
ij )n×n are the distributively delayed connection weight matrices, f (y) =

(f(y), f(y), . . . , fn(yn))ᵀ and g(x) = (g(x), g(x), . . . , gn(xn))ᵀ are the activation functions,
τi(t) and di (i = , ) are discrete and distributed time-varying delays, respectively, and
they satisfy  ≤ di(t) ≤ di,  ≤ ḋi(t) ≤ diu,  ≤ τi(t) ≤ τi,  ≤ τ̇i(t) ≤ τiu (i = , ). The initial
value space generated function is φ = (φᵀ

 ,φᵀ
 )ᵀ ∈ C

� ([–u, ],�n+n), where C
� denotes

the family of all bounded �-measurable, C
� ([–u, ],�n+n)-valued random variables,

satisfying ‖φ‖ = sup–u≤s≤ E|φ(s)| < ∞, where E denotes the expectation of the stochastic
process, and μ� max(d, τ ), where d � max(d, τ), τ � max(d, τ).

The activation functions gi(xi(t)) and fi(xi(t)) (i = , , . . . , n) are assumed to be nonde-
creasing, bounded, and globally Lipschitz; we have

 ≤ gj(ξ) – gj(ξ)
ξ – ξ

≤ lj, gj() = , ()
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 ≤ fj(ξ) – fj(ξ)
ξ – ξ

≤ mj, fj() = , ()

ξ , ξ  ∈ R, ξ  �= ξ  (j = , , . . . , n) where lj >  and mj >  (j = , , . . . , n). Note L =
diag(l, l, . . . , ln), M = diag(m, m, . . . , mn).

Now, based on BAM neural networks () and fixing a probability space (�,�,P), we
introduce the following Markovian jump BAM neural networks with mixed time delays:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dx(t)
dt = –C(rt)x(t) + A(rt)f (y(t)) + A(rt)f (y(t – τ(t, rt)))

+ A(rt)
∫ t

t–d(t) f (y(s)) ds,
dy(t)

dt = –D(rt)y(t) + B(rt)g(x(t)) + B(rt)g(x(t – τ(t, rt)))
+ B(rt)

∫ t
t–d(t) g(x(s)) ds.

()

For convenience, each possible value of r(t) is denoted by i, i ∈ S, in the following. Then
we have

Ci = C(rt), Ai = A(rt), Ai = A(rt), Ai = A(rt),

Di = D(rt), Bi = B(rt), Bi = B(rt), Bi = B(rt),

 ≤ τ(t, rt) = τi(t) ≤ τi ≤ τ, τ̇i ≤ τu,

 ≤ τ(t, rt) = τi(t) ≤ τi ≤ τ, τ̇i ≤ τu.

The process {rt , t ≥ } is described by a Markov chain with finite state space S =
{, , . . . , s}, and its transition probability matrix �(δt+h) � [π (δt+h)

ij ]s×s is given by

Pr{rt+h = j | rt = i} =

{
π

(δt+h)
ij h + o(h), j �= i,

 + π
(δt+h)
ij h + o(h), j = i,

()

where h >  and limh→ o(h)/h = ; π (δt+h)
ij >  for j �= i is the transition rate from mode i at

time t to mode j at time t + h and π
(δt+h)
ii = –

∑s
j=,j �=i π

(δt+h)
ij . In this study, we assume that

δt varies in another finite S = {, , . . . , l} with transition probability matrix 	 � [qmn]l×l

given by

Pr{δt+h = n | δt = m} =

{
qmnh + o(h), n �= m,
 + qmnh + o(h), n = m,

()

where h >  and limh→ o(h)/h = ; qmn >  for m �= n, is the transition rate from mode m
at time t to mode n at time t + h and qmm = –

∑l
n=,n�=m qmn.

Now, we are ready to introduce the notion of homogeneousness.

Definition . A finite Markov process rtεS is said to be homogeneous (respectively,
nonhomogeneous) if for all t ≥ , the transition probability satisfies Pr{rt+h = j | rt = i} = πij

(respectively, Pr{rt+h = j | rt = i} = πij(t)), where πij (or πij(t)) denotes a probability func-
tion.

Remark  In this paper, according to the definition of homogeneousness and nonhomo-
geneousness, we can find that the Markovian chain δt is homogeneous, while the Marko-
vian chain rt is nonhomogeneous.
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Next, we will introduce several lemmas which will be essential in proving our conclusion
in Section .

Lemma . [] For any constant matrix M > , any scalars a and b with a < b, and
a vector function x(t) : [a, b] → Rn such that the integrals concerned are well defined, the
following holds:

[∫ b

a
x(s) ds

]ᵀ
M

[∫ b

a
x(s) ds

]
≤ (b – a)

∫ b

a
x(s)ᵀMx(s) ds.

Lemma . (Schur complement []) Let there be given constant matrices Z, Z, Z,
where Z = Zᵀ

 and Z = Zᵀ
 > . Then Z + Zᵀ

 Z–
 Z <  if and only if

[ Z Zᵀ


Z –Z

]
<  or[ –Z Z

Zᵀ
 Z

]
< .

3 Main results
In this section, a set of conditions are derived to guarantee the global asymptotic stability
in the mean square of the BAM neural networks ().

Theorem . For any given scalars d, d, τ, τ, and τu, τu the BAM neural networks
in () are globally asymptotic stable in the mean square, if there exist Pji,m > , Qji,m =[ Q

ji,m Q
ji,m

∗ Q
ji,m

]
> , Rji,m =

[ R
ji,m R

ji,m

∗ R
ji,m

]
> , Wj =

[ W 
j W 

j

∗ W 
j

]
> , Qj =

[ Q
j Q

j

∗ Q
j

]
>  (j = , ), Xji,m > ,

Yji,m > , Eji,m > , Fji,m > , Sji,m (j = , ), Xi > , Yi > , Ei > , Fi >  (i = , ), and any
matrices Ki (i = , , , , , ) with appropriate dimensions such that the following LMIs
hold:

⎡
⎢⎣

� ϒ ϒ

∗ – 
∗ ∗ –

⎤
⎥⎦ < , ()

[
Xi,m Si,m

∗ Xi,m

]
≥ ,

[
Yi,m Si,m

∗ Yi,m

]
≥ , ()

l∑
n=

qmnRi,n +
s∑

j=

π
(m)
ij Rj,m ≤ W,

l∑
n=

qmnRi,n +
s∑

j=

π
(m)
ij Rj,m ≤ W, ()

l∑
n=

qmnXi,n +
s∑

j=

π
(m)
ij Xj,m ≤ Xi,m + X,

τ

[ l∑
n=

qmnXi,n +
s∑

j=

π
(m)
ij Xj,m

]
≤ X,

()

l∑
n=

qmnYi,n +
s∑

j=

π
(m)
ij Yj,m ≤ Yi,m + Y,

τ

[ l∑
n=

qmnYi,n +
s∑

j=

π
(m)
ij Yj,m

]
≤ Y,

()
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S∑
n=

qmnEi,n +
s∑

j=

π
(m)
ij Ej,m ≤ Ei,m + E,

d

[ l∑
n=

qmnEi,n +
s∑

j=

π
(m)
ij Ej,m

]
≤ E,

()

l∑
n=

qnmFi,n +
s∑

j=

π
(m)
ij Fj,m ≤ Fi,m + F,

d

[ l∑
n=

qmnFi,n +
s∑

j=

π
(m)
ij Fj,m

]
≤ F,

()

π
(m)
ii Qi,m +

l∑
n=

qmnQi,n ≤ , π
(m)
ii Qi,m +

l∑
n=

qmnQi,n ≤ , ()

s∑
j=,j �=i

π
(m)
ij Qj,m + Q ≤ ,

s∑
j=,j �=i

π
(m)
ij Qj,m + Q ≤ , ()

where

�, = –Pi,mCi – CiPi,m + R
i,m – Xi,m + τW 

 + τQ
 + Q

i,m

+
l∑

n=

qmnPi,n +
s∑

j=

π
(m)
ij Pj,m,

�, = Xi,m – Si,m, �, = Si,m,

�, = R
i,m + LK + Q

i,m + τW 
 + τQ

 , �, = Pi,mAi,

�, = Pi,mAi, �, = Pi,mAi, �, = –Xi,m + Si,m + Sᵀ
i,m – ( – τ)Q

i,m,

�, = –Si,m + Xi,m, �, = –( – τu)Q
i,m + LK,

�, = –Xi,m – R
i,m, �, = LK – R

i,m,

�, = R
i,m + τW 

 + Q
i,m – K + τQ

 + d
Fi,m +

d



Fi,m +

d



F +

d



F,

�, = Bᵀ
iPi,m, �, = –( – τu)Q

i,m – K, �, = Bᵀ
iPi,m,

�, = –K – R
i,m, �, = –Fi,m, �, = Bᵀ

iPi,m,

�, = –Pi,mDi – DiPi,m + R
i,m – Yi,m + τW 

 + τQ
 + Q

i,m

+
l∑

n=

qmnPi,n +
s∑

j=

πm
ij Pj,m,

�, = Yi,m – Si,m, �, = Si,m, �, = R
i,m + MK + Q

i,m + τW 
 + τQ

,

�, = –Yi,m + Si,m + Sᵀ
i,m – ( – τu)Q

i,m, �, = –Si,m + Yi,m,

�, = –( – τu)Q
i,m + MK, �, = –Yi,m – R

i,m, �, = MK – R
i,m,

�, = R
i,m + τW 

 + Q
i,m – K + τQ

 + d
 Ei,m +

d



Ei,m +

d



E +

d


!
E,
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�, = –( – τu)Q
i,m – K, �, = –K – R

i,m, �, = –Ei,m,

 = τ 
 Xi,m +

τ 



Xi,m +
τ 


!

X +
τ 




X,  = τ 
 Yi,m +

τ 



Yi,m +
τ 


!

Y +
τ 




Y,

ϒ =
[
–Ci          Aᵀ

i Aᵀ
i  Aᵀ

i
]ᵀ,

ϒ =
[
   Bᵀ

i Bᵀ
i  Bᵀ

i – Di      
]ᵀ.

Proof Consider the following Lyapunov-Krasovskii functional:

V (t, xt , yt , rt , δt) =
∑

i=

Vi(t, xt , yt , rt , δt), ()

where

V(t, xt , yt , rt , δt) = xᵀ(t)Prt ,δt x(t) + yᵀ(t)Prt ,δt y(t),

V(t, xt , yt , rt , δt) =
∫ t

t–τ

η(s)Rrt ,δt η(s) ds +
∫ t

t–τ

η(s)Rrt ,δt η(s) ds

+
∫ 

–τ

∫ t

t+β

η(s)Wη(s) ds +
∫ 

–τ

∫ t

t+β

η(s)Wη(s) ds,

V(t, xt , yt , rt , δt) =
∫ t

t–τ(t,rt )
η(s)Qrt ,δt η(s) ds +

∫ t

t–τ(t,rt )
η(s)Qrt ,δt η(s) ds

+
∫ 

–τ

∫ t

t+θ

η
ᵀ
 (s)Qη(s) ds dθ +

∫ 

–τ

∫ t

t+θ

η
ᵀ
 (s)Qη(s) ds dθ ,

V(t, xt , yt , rt , δt) = τ

∫ 

–τ

∫ t

t+θ

ẋᵀ(s)Xrt ,δt ẋ(s) ds dθ

+ τ

∫ 

–τ

∫ 

θ

∫ t

t+β

ẋᵀ(s)Xrt ,δt ẋ(s) ds dβ dθ

+
∫ 

–τ

∫ 

δ

∫ 

θ

∫ t

t+β

ẋᵀ(s)Xẋ(s) ds dβ dθ dδ

+ τ

∫ 

–τ

∫ 

θ

∫ t

t+β

ẋᵀ(s)Xẋ(s) ds dβ dθ

+ τ

∫ 

–τ

∫ t

t+θ

ẏᵀ(s)Yrt ,δt ẏ(s) ds dθ

+ τ

∫ 

–τ

∫ 

θ

∫ t

t+β

ẏᵀ(s)Yrt ,δt ẏ(s) ds dβ dθ

+
∫ 

–τ

∫ 

δ

∫ 

θ

∫ t

t+β

ẏᵀ(s)Yẏ(s) ds dβ dθ dδ

+ τ

∫ 

–τ

∫ 

θ

∫ t

t+β

ẏᵀ(s)Yẏ(s) ds dβ dθ ,

V(t, xt , yt , rt , δt) = d

∫ 

–d

∫ t

t+θ

gᵀ
(
x(s)

)
Frt ,δt g

(
x(s)

)
ds dθ

+ d

∫ 

–d

∫ 

θ

∫ t

t+β

gᵀ
(
x(s)

)
Frt ,δt g

(
x(s)

)
ds dβ dθ
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+
∫ 

–d

∫ 

δ

∫ 

θ

∫ t

t+β

gᵀ
(
x(s)

)
Fg

(
x(s)

)
ds dβ dθ dδ

+ d

∫ 

–d

∫ 

θ

∫ t

t+β

gᵀ
(
x(s)

)
Fg

(
x(s)

)
ds dβ dθ

+ d

∫ 

–d

∫ t

t+θ

f ᵀ
(
y(s)

)
Ert ,δt f

(
y(s)

)
ds dθ

+ d

∫ 

–d

∫ 

θ

∫ t

t+β

f ᵀ
(
y(s)

)
Ert ,δt f

(
y(s)

)
ds dβ dθ

+
∫ 

–d

∫ 

δ

∫ 

θ

∫ t

t+β

f ᵀ
(
y(s)

)
Ef

(
y(s)

)
ds dβ dθ dδ

+ d

∫ 

–d

∫ 

θ

∫ t

t+β

f ᵀ
(
y(s)

)
Ef

(
y(s)

)
ds dβ dθ .

Denote η(t) = [xᵀ(t), gᵀ(x(t))]ᵀ and η(t) = [yᵀ(t), f ᵀ(y(t))]ᵀ.
Define an infinitesimal generator (denoted by L) of the Markovian process acting on

V (t, xt , yt , rt , δt) (rt = i, δt = m) defined as follows:

LV (xt , yt , i, m) = lim
h→+


h
{
E

{
V (t + h, xt+h, yt+h, rt+h, δt+h) | xt , yt , rt = i, δt = m

}
– V (t, xt , yt , rt = i, δt = m)

}
. ()

Then, for each i ∈ S, m ∈ S, the stochastic differential of V along the trajectory of system
() is given by

LV(xt , yt , i, m)

= xᵀ(t)Pi,mẋ(t) + yᵀ(t)Pi,mẏ(t) + xᵀ(t)

[ l∑
n=

qmnPi,n +
s∑

j=

πm
ij Pj,m

]
x(t)

+ yᵀ(t)

[ l∑
n=

qmnPi,n +
s∑

j=

πm
ij Pj,m

]
y(t), ()

LV(xt , yt , i, m)

= η
ᵀ
 (t)Ri,mη(t) – η

ᵀ
 (t – τ)Ri,mη(t – τ) +

∫ t

t–τ

η
ᵀ
 (s)

[ l∑
n=

qmnRi,n

+
s∑

j=

π
(m)
ij Rj,m

]
η(s) ds + τη

ᵀ
 (t)Wη(t) –

∫ t

t–τ

η
ᵀ
 (s)Wη(s) ds

+ η
ᵀ
 (t)Ri,mη(t) – η

ᵀ
 (t – τ)Ri,mη(t – τ) +

∫ t

t–τ

η
ᵀ
 (s)

[ l∑
n=

qmnRi,n

+
s∑

j=

π
(m)
ij Rj,m

]
η(s) ds + τη

ᵀ
 (t)Wη(t) –

∫ t

t–τ

η
ᵀ
 (s)Wη(s) ds, ()

LV(xt , yt , i, m)

= lim
h→+


h
E

[∫ t+h

t+h–τ(t+h,rt+h)
η
ᵀ
 (s)Qrt+h ,δt+hη(s) ds –

∫ t

t–τi(t)
η
ᵀ
 (s)Qi,mη(s) ds

]
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+ lim
h→+


h
E

[∫ t+h

t+h–τ(t+h,rt+h)
η
ᵀ
 (s)Qrt+h ,δt+hη(s) ds –

∫ t

t–τi(t)
η
ᵀ
 (s)Qi,mη(s) ds

]

+ τη
ᵀ
 (t)Qη(t) –

∫ t

t–τ

η
ᵀ
 (s)Qη(s) ds + τη

ᵀ
 (t)Qη(t) –

∫ t

t–τ

η
ᵀ
 (s)Qη(s) ds

= lim
h→+


h
E

[∫ t+h

t+h–τi(t)
η
ᵀ
 (s)Qi,mη(s) ds –

∫ t

t–τi(t)
η
ᵀ
 (s)Qi,mη(s) ds

+
s∑

j=

(
π

(m)
ij h + o(h)

)∫ t+h

t+h–τj(t+h)
η
ᵀ
 (s)Qj,mη(s) ds

+
l∑

n=

(
qmnh + o(h)

)∫ t+h

t+h–τi(t+h)
η
ᵀ
 (s)Qj,nη(s) ds

]

+ lim
h→+


h
E

[∫ t+h

t+h–τi(t+h)
η
ᵀ
 (s)Qi,mη(s) ds –

∫ t

t–τi(t)
η
ᵀ
 (s)Qi,mη(s) ds

+
s∑

j=

(
π

(m)
ij h + o(h)

)∫ t+h

t+h–τj(t+h)
η
ᵀ
 (s)Qj,mη(s) ds

+
l∑

n=

(
qmnh + o(h)

)∫ t+h

t+h–τi(t+h)
η
ᵀ
 (s)Qj,nη(s) ds

]

+ τη
ᵀ
 (t)Qη(t) –

∫ t

t–τ

η
ᵀ
 (s)Qη(s) ds + τη

ᵀ
 (t)Qη(t) –

∫ t

t–τ

η
ᵀ
 (s)Qη(s) ds

≤ η
ᵀ
 (t)Qi,mη(t) – ( – τu)ηᵀ


(
t – τi(t)

)
Qi,mη

(
t – τi(t)

)
+ π

(m)
ii

∫ t

t–τi(t)
η
ᵀ
 (s)Qi,mη(s) ds

+
s∑

j=,j �=i

π
(m)
ij

∫ t

t–τ

η
ᵀ
 (s)Qj,mη(s) ds +

l∑
n=

qmn

∫ t

t–τi(t)
η
ᵀ
 (s)Qi,nη(s) ds

+ η
ᵀ
 (t)Qi,mη(t) – ( – τu)ηᵀ


(
t – τi(t)

)
Qi,mη

(
t – τi(t)

)
+ π

(m)
ii

∫ t

t–τi(t)
η
ᵀ
 (s)Qi,mη(s) ds +

s∑
j=,j �=i

π
(m)
ij

∫ t

t–τ

η
ᵀ
 (s)Qj,mη(s) ds

+
l∑

n=

qmn

∫ t

t–τi(t)
η
ᵀ
 (s)Qi,nη(s) ds + τη

ᵀ
 (t)Qη(t) –

∫ t

t–τ

η
ᵀ
 (s)Qη(s) ds

+ τη
ᵀ
 (t)Qη(t) –

∫ t

t–τ

η
ᵀ
 (s)Qη(s) ds, ()

LV(xt , yt , i, m)

= ẋᵀ(t)
(

τ 
 Xi,m +

τ 



Xi,m +
τ 


!

X +
τ 




X

)
ẋ(t) – τ

∫ t

t–τ

ẋᵀ(s)Xi,mẋ(s) ds

– τ

∫ 

–τ

∫ t

t+θ

ẋᵀ(s)Xi,mẋ(s) ds dθ – τ

∫ 

–τ

∫ t

t+θ

ẋᵀ(s)Xẋ(s) ds dθ

–
∫ 

–τ

∫ 

θ

∫ t

t+β

ẋᵀ(s)Xẋ(s) ds dβ dθ
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+ τ

∫ 

–τ

∫ t

t+θ

ẋᵀ(s)

[ l∑
n=

qmnXi,n +
s∑

j=

π
(m)
ij Xj,m

]
ẋ(s) ds dθ

+ τ

∫ 

–τ

∫ 

θ

∫ t

t+β

ẋᵀ(s)

[ l∑
n=

qmnXi,n +
s∑

j=

π
(m)
ij Xj,m

]
ẋ(s) ds dβ dθ

+ ẏᵀ(t)
(

τ 
 Yi,m +

τ 



Yi,m +
τ 


!

Y +
τ 




Y

)
ẏ(t) – τ

∫ t

t–τ

ẏᵀ(s)Yi,mẏ(s) ds

– τ

∫ 

–τ

∫ t

t+θ

ẏᵀ(s)Yi,mẏ(s) ds dθ – τ

∫ 

–τ

∫ t

t+θ

ẏᵀ(s)Yẏ(s) ds dθ

–
∫ 

–τ

∫ 

θ

∫ t

t+β

ẏᵀ(s)Yẏ(s) ds dβ dθ

+ τ

∫ 

–τ

∫ t

t+θ

ẏᵀ(s)

[ l∑
n=

qmnYi,n +
s∑

j=

π
(m)
ij Yj,m

]
ẏ(s) ds dθ

+ τ

∫ 

–τ

∫ 

θ

∫ t

t+β

ẏᵀ(s)

[ l∑
n=

qmnYi,n +
s∑

j=

π
(m)
ij Yj,m

]
ẏ(s) ds dβ dθ , ()

LV(xt , yt , i, m)

= f ᵀ
(
y(t)

)(
d

 Ei,m +
d




Ei,m +
d




E +
d


!

E

)
f
(
y(t)

)

– d

∫ t

t–d

f ᵀ
(
y(s)

)
Ei,mf

(
y(s)

)
ds

– d

∫ 

–d

∫ t

t+θ

f ᵀ
(
y(s)

)
Ei,mf

(
y(s)

)
ds dθ

– d

∫ 

–d

∫ t

t+θ

f ᵀ
(
y(s)

)
Ef

(
y(s)

)
ds dθ –

∫ 

–d

∫ 

θ

∫ t

t+β

f ᵀ
(
y(s)

)
Ef

(
y(s)

)
ds dβ dθ

+ d

∫ 

–d

∫ t

t+θ

f ᵀ
(
y(s)

)[ l∑
n=

qmnEi,n +
s∑

j=

π
(m)
ij Ej,m

]
f
(
y(s)

)
ds dθ

+ d

∫ 

–d

∫ 

θ

∫ t

t+β

f ᵀ
(
y(s)

)[ l∑
n=

qmnEi,n +
s∑

j=

π
(m)
ij Ej,m

]
f
(
y(s)

)
ds dβ dθ

+ gᵀ
(
x(t)

)(
d

Fi,m +
d




Fi,m +
d




F +
d


!

F

)
g
(
x(t)

)

– d

∫ t

t–d

gᵀ
(
x(s)

)
Fi,mg

(
x(s)

)
ds – d

∫ 

–d

∫ t

t+θ

gᵀ
(
x(s)

)
Fi,mg

(
x(s)

)
ds dθ

– d

∫ 

–d

∫ t

t+θ

gᵀ
(
x(s)

)
Fg

(
x(s)

)
ds dθ –

∫ 

–d

∫ 

θ

∫ t

t+β

gᵀ
(
x(s)

)
Fg

(
x(s)

)
ds dβ dθ

+ d

∫ 

–d

∫ t

t+θ

gᵀ
(
x(s)

)[ l∑
n=

qmnFi,n +
s∑

j=

π
(m)
ij Fj,m

]
g
(
x(s)

)
ds dθ

+ d

∫ 

–d

∫ 

θ

∫ t

t+β

gᵀ
(
x(s)

)[ l∑
n=

qmnFi,n +
s∑

j=

π
(m)
ij Fj,m

]
g
(
x(s)

)
ds dβ dθ . ()
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Denote

σ(t) =
∫ t

t–τi(t)
ẋ(s) ds, σ(t) =

∫ t–τi(t)

t–τ

ẋ(s) ds,

σ(t) =
∫ t

t–τi(t)
ẏ(s) ds, σ(t) =

∫ t–τi(t)

t–τ

ẏ(s) ds.

()

Next, by using a similar method to [] in (), when  < τi(t) < τ and  < τi(t) < τ,
according to Jensen’s inequality, we have

τ

∫ t

t–τ

ẋᵀ(s)Xi,mẋ(s) ds = τ

∫ t

t–τi(t)
ẋᵀ(s)Xi,mẋ(s) ds + τ

∫ t–τi(t)

t–τ

ẋᵀ(s)Xi,mẋ(s) ds

≥ τ

τi(t)
σ
ᵀ
 (t)Xi,mσ(t) +

τ

τ – τi(t)
σ
ᵀ
 (t)Xi,mσ(t)

= σ
ᵀ
 (t)Xi,mσ(t) +

τ – τi(t)
τi(t)

σ
ᵀ
 (t)Xi,mσ(t)

+ σ
ᵀ
 (t)Xi,mσ(t) +

τi(t)
τ – τi(t)

σ
ᵀ
 (t)Xi,mσ(t). ()

By a reciprocally convex approach, if the inequality () holds, then the following inequality
holds:

⎡
⎣

√
τ–τi(t)

τi(t) σ(t)

–
√

τi(t)
τ–τi(t)σ(t)

⎤
⎦

ᵀ [
Xi,m Si,m

∗ Xi,m

]⎡
⎣

√
τ–τi(t)

τi(t) σ(t)

–
√

τi(t)
τ–τi(t)σ(t)

⎤
⎦ ≥ , ()

which implies

τ – τi(t)
τi(t)

σ
ᵀ
 (t)Xi,mσ(t) +

τi(t)
τ – τi(t)

σ
ᵀ
 (t)Xi,mσ(t)

≥ σ
ᵀ
 (t)Si,mσ(t) + σ

ᵀ
 (t)Sᵀ

i,mσ(t). ()

Then we can get from equations () and ()

τ

∫ t

t–τ

ẋᵀ(s)Xi,mẋ(s) ds

≥ σ
ᵀ
 (t)Xi,mσ(t) + σ

ᵀ
 (t)Xi,mσ(t) + σ

ᵀ
 (t)Si,mσ(t) + σ

ᵀ
 (t)Sᵀ

i,mσ(t)

=

[
σ(t)
σ(t)

]ᵀ [
Xi,m Si,m

∗ Xi,m

][
σ(t)
σ(t)

]
. ()

It should be noted that when τi(t) =  or τi(t) = τ, we have σ(t) =  or σ(t) = , respec-
tively. Thus equation () still holds. It is clear that equation () implies

–τ

∫ t

t–τ

ẋᵀ(s)Xi,mẋ(s) ds ≤X (t)�X (t), ()
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where X (t) = [xᵀ(t) xᵀ(t – τi(t)) xᵀ(t – τ)]ᵀ,

� =

⎡
⎢⎣

–Xi,m Xi,m – Si,m Si,m

∗ –Xi,m + Si,m + Sᵀ
i,m –Si,m + Xi,m

∗ ∗ –Xi,m

⎤
⎥⎦ .

Similarly, we also have

–τ

∫ t

t–τ

ẏᵀ(s)Yi,mẏ(s) ds ≤ Y(t)�Y(t), ()

where Y(t) = [yᵀ(t) yᵀ(t – τi(t)) yᵀ(t – τ)]ᵀ,

� =

⎡
⎢⎣

–Yi,m Yi,m – Si,m Si,m

∗ –Yi,m + Si,m + Sᵀ
i,m –Si,m + Yi,m

∗ ∗ –Yi,m

⎤
⎥⎦ .

Using () and (), for any positive diagonal matrices Kj (j = , , , , , ), we have

xᵀ(t)LKg
(
x(t)

)
– gᵀ

(
x(t)

)
Kg

(
x(t)

) ≥ , ()

xᵀ
(
t – τi(t)

)
LKg

(
x
(
t – τi(t)

))
– gᵀ

(
x
(
t – τi(t)

))
Kg

(
x
(
t – τi(t)

)) ≥ , ()

xᵀ(t – τ)LKg
(
x(t – τ)

)
– gᵀ

(
x(t – τ)

)
Kg

(
x(t – τ)

) ≥ , ()

yᵀ(t)MKf
(
y(t)

)
– f ᵀ

(
y(t)

)
Kf

(
y(t)

) ≥ , ()

yᵀ
(
t – τi(t)

)
MKf

(
y
(
t – τi(t)

))
– f ᵀ

(
y
(
t – τi(t)

))
Kf

(
y
(
t – τi(t)

)) ≥ , ()

yᵀ(t – τ)MKf
(
y(t – τ)

)
– f ᵀ

(
y(t – τ)

)
Kf

(
y(t – τu)

) ≥ . ()

Here, by the use of Lemma ., the integral term –d
∫ t

t–d
f ᵀ(y(s))Ei,mf (y(s)) ds and

–d
∫ t

t–d
gᵀ(x(s))Fi,mg(x(s)) ds can be estimated as, respectively,

–d

∫ t

t–d

f ᵀ
(
y(s)

)
Ei,mf

(
y(s)

)
ds ≤ –

[∫ t

t–d(t)
f
(
y(s)

)
ds

]ᵀ
Ei,m

[∫ t

t–d(t)
f
(
y(s)

)
ds

]
, ()

–d

∫ t

t–d

gᵀ
(
x(s)

)
Fi,mg

(
x(s)

)
ds ≤ –

[∫ t

t–d(t)
g
(
x(s)

)
ds

]ᵀ
Fi,m

[∫ t

t–d(t)
g
(
x(s)

)
ds

]
. ()

Then it follows from ()-() that

LV (xt , yt , i, m) ≤
[
ζ(t)
ζ(t)

]ᵀ [
� + ϒ

ᵀ
 ϒ + ϒ

ᵀ
 ϒ

][
ζ(t)
ζ(t)

]
. ()

Here

ζ(t) =
[

xᵀ(t)xᵀ
(
t – τi(t)

)
xᵀ(t – τ)gᵀ

(
x(t)

)
gᵀ

(
x
(
t – τi(t)

))
gᵀ

(
x(t – τ)

)

×
∫ t

t–d(t)
gᵀ

(
x(s)

)
ds

]ᵀ
,
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ζ(t) =
[

yᵀ(t)yᵀ
(
t – τi(t)

)
yᵀ(t – τ)f ᵀ

(
y(t)

)
f ᵀ

(
y
(
t – τi(t)

))
f ᵀ

(
y(t – τ)

)

×
∫ t

t–d(t)
f ᵀ

(
y(s)

)
ds

]ᵀ
,

[
� + ϒ

ᵀ
 ϒ + ϒ

ᵀ
 ϒ

]
< . ()

Applying the Schur complement shows that () is equivalent to (). We have

⎡
⎢⎣

� ϒ ϒ

∗ – 
∗ ∗ –

⎤
⎥⎦ < ,

which implies V̇ (xt , yt , i, m) < . Thus, the system () is asymptotically stable. This com-
pletes the proof. �

Remark  In [], the authors have achieved some excellent work of piecewise homoge-
neous Markovian jump neural networks. The main contribution is devoted to the study
of the stochastic stability analysis problem for a type of continuous-time neural networks
with time-varying transition probabilities and mixed time delay. However, there are no
results on piecewise homogeneous Markovian jump BAM neural network systems. In the
application, the study of the piecewise homogeneous Markovian jump BAM neural net-
works is essential.

Specifically, when there is no distributed delay, the system () reduces to

{
dx(t)

dt = –C(rt)x(t) + A(rt)f (y(t)) + A(rt)f (y(t – τ(t, rt))),
dy(t)

dt = –D(rt)y(t) + B(rt)g(x(t)) + B(rt)g(x(t – τ(t, rt))).
()

Consider the following Lyapunov functional for the above BAM neural networks:

V (t, xt , yt , rt , δt) = V(t, xt , yt , rt , δt) + V(t, xt , yt , rt , δt) + V(t, xt , yt , rt , δt)

+ V(t, xt , yt , rt , δt), ()

where V(t, xt , yt , rt , δt), V(t, xt , yt , rt , δt), V(t, xt , yt , rt , δt), and V(t, xt , yt , rt , δt) have the
same definitions as those in equation (), and we can get the following corollary along
similar lines to the proof of Theorem ..

Corollary . For any given scalars τ, τ and τu, τu the BAM neural network () is glob-

ally asymptotic stable in the mean square, if there exist Pji,m > , Qji,m =
[ Q

ji,m Q
ji,m

∗ Q
ji,m

]
> ,

Rji,m =
[ R

ji,m R
ji,m

∗ R
ji,m

]
> , Wj =

[ W 
j W 

j

∗ W 
j

]
> , Qj =

[ Q
j Q

j

∗ Q
j

]
>  (j = , ), Xji,m > , Yji,m > , Sji,m

(j = , ), Xi > , Yi >  (i = , ), and any matrices Ki (i = , , , , , ) with appropriate
dimensions such that the following LMIs hold:

⎡
⎢⎣

� ϒ ϒ

∗ – 
∗ ∗ –

⎤
⎥⎦ < , ()
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[
Xi,m Si,m

∗ Xi,m

]
≥ ,

[
Yi,m Si,m

∗ Yi,m

]
≥ , ()

l∑
n=

qmnRi,n +
s∑

j=

π
(m)
ij Rj,m ≤ W,

l∑
n=

qmnRi,n +
s∑

j=

π
(m)
ij Rj,m ≤ W, ()

l∑
n=

qmnXi,n +
s∑

j=

π
(m)
ij Xj,m ≤ Xi,m + X,

τ

[ l∑
n=

qmnXi,n +
s∑

j=

π
(m)
ij Xj,m

]
≤ X,

()

l∑
n=

qmnYi,n +
s∑

j=

π
(m)
ij Yj,m ≤ Yi,m + Y,

τ

[ l∑
n=

qmnYi,n +
s∑

j=

π
(m)
ij Yj,m

]
≤ Y,

()

π
(m)
ii Qi,m +

l∑
n=

qmnQi,n ≤ , π
(m)
ii Qi,m +

l∑
n=

qmnQi,n ≤ , ()

s∑
j=,j �=i

π
(m)
ij Qj,m + Q ≤ ,

s∑
j=,j �=i

π
(m)
ij Qj,m + Q ≤ , ()

where

�, = –Pi,mCi – CiPi,m + R
i,m – Xi,m + τW 

 + τQ
 + Q

i,m

+
l∑

n=

qmnPi,n +
s∑

j=

π
(m)
ij Pj,m,

�, = Xi,m – Si,m, �, = Si,m, �, = R
i,m + LK + Q

i,m + τW 
 + τQ

 ,

�, = Pi,mAi,

�, = Pi,mAi, �, = –Xi,m + Si,m + Sᵀ
i,m – ( – τ)Q

i,m,

�, = –Si,m + Xi,m, �, = –( – τu)Q
i,m + LK, �, = –Xi,m – R

i,m,

�, = LK – R
i,m, �, = R

i,m + τW 
 + Q

i,m – K + τQ
 , �, = Bᵀ

iPi,m,

�, = –( – τu)Q
i,m – K, �, = Bᵀ

iPi,m, �, = –K – R
i,m,

�, = –Pi,mDi – DiPi,m + R
i,m – Yi,m + τW 

 + τQ
 + Q

i,m

+
l∑

n=

qmnPi,n +
s∑

j=

πm
ij Pj,m,

�, = Yi,m – Si,m, �, = Si,m, �, = R
i,m + MK + Q

i,m + τW 
 + τQ

,

�, = –Yi,m + Si,m + Sᵀ
i,m – ( – τu)Q

i,m, �, = –Si,m + Yi,m,

�, = –( – τu)Q
i,m + MK, �, = –Yi,m – R

i,m, �, = MK – R
i,m,

�, = R
i,m + τW 

 + Q
i,m – K + τQ

, �, = –( – τu)Q
i,m – K,
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�, = –K – R
i,m,

 = τ 
 Xi,m +

τ 



Xi,m +
τ 


!

X +
τ 




X,  = τ 
 Yi,m +

τ 



Yi,m +
τ 


!

Y +
τ 




Y,

ϒ =
[
–Ci          Aᵀ

i Aᵀ
i 

]ᵀ,

ϒ =
[
   Bᵀ

i Bᵀ
i  – Di      

]ᵀ.

4 Examples
In this section, we will give a numerical example showing the effectiveness of the condi-
tions given here. Consider BAM neural networks () with the following parameters:

C =

[
. 
 .

]
, D =

[
. 
 .

]
, A =

[
–. .
. –.

]
,

A =

[
. .

–. .

]
, A =

[
. .

–. .

]
, B =

[
–. .
. –.

]
,

B =

[
. –.

–. –.

]
, B =

[
. .
. –.

]
, C =

[
. 
 .

]
,

D =

[
. 
 .

]
, A =

[
–. .
–. –.

]
, A =

[
–. .
–. –.

]
,

A =

[
. .
. .

]
, B =

[
. .

–. .

]
, B =

[
. –.
. .

]
,

B =

[
. .
. –.

]
, L = M =

[
 
 

]
,

and the activation functions are taken as follows:

f
(
y(t)

)
= tanh

(
–y(t)

)
, g

(
x(t)

)
= . × (∣∣x(t) + 

∣∣ +
∣∣x(t) – 

∣∣).

In this example, we assume τ = ., τ = ., τu = ., τu = ., and d =
d = .. The discrete delay τ(t) = .+. cos(t), τ(t) = .+. sin(t) and the distributed
delay d(t) = d(t) = . cos(t).

The transition probability matrices are

� =

[
–. .
. –.

]
, � =

[
–. .
. –.

]
, � =

[
–. .
. –.

]
,

and the transition probability matrix is

	 =

⎡
⎢⎣

–. . .
. –. .
. . –.

⎤
⎥⎦ .

Figure  is the state response of model () (r(t) = , δ(t) = ) with the initial condi-
tion [x(t), x(t), y(t), y(t)]ᵀ = [–., ., –., .]ᵀ, and Figure  is the state response
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Figure 1 The state response of the model (1) in
the example.

Figure 2 The state response of the model (2) in
the example.

of model () (r(t) = , δ(t) = ) with the initial condition [x(t), x(t), y(t), y(t)]ᵀ =
[., ., –., –.]ᵀ. Through this example, we find that our results demonstrate the ef-
fectiveness of the proposed result.

5 Conclusions
In this paper, based on Lyapunov-Krasovskii functionals and some inequality techniques,
we have investigated the problem of global asymptotic stability for piecewise homoge-
neous Markovian jump BAM neural networks with discrete and distributed time-varying
delays. A linear matrix inequalities method has been developed to solve this problem. The
sufficient condition has been established in terms of LMIs. A numerical example is given
to demonstrate the usefulness of the derived LMI-based stability conditions.
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