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Abstract
The conventional subtraction arithmetic on interval numbers makes studies on
interval systems difficult because of irreversibility on addition, whereas the
gH-difference as a popular concept can ensure interval analysis to be a valuable
research branch like real analysis. However, many properties of interval numbers still
remain open. This work focuses on developing a complete normed quasi-linear space
composed of continuous interval-valued functions, in which some fundamental
properties of continuity, differentiability, and integrability are discussed based on the
gH-difference, the gH-derivative, and the Hausdorff-Pompeiu metric. Such properties
are adopted to investigate semi-linear interval differential equations. While the
existence and uniqueness of the (i)- or (ii)-solution are studied, a necessary condition
that the (i)- and the (ii)-solutions to be strong solutions is obtained. For such a kind of
equation it is demonstrated that there exists at least a strong solution under certain
assumptions.

MSC: 65G40; 46C99; 34A12

Keywords: interval-valued function space; Hausdorff-Pompeiu metric;
gH-derivative; semi-linear interval differential equation; strong solution

1 Introduction
In real-world engineering fields, many dynamic problems can be formulated by dynamic
models, such as motor servo systems, navigation control, and so forth. However, this kind
of system involves usually multiple uncertain parameters or interval coefficients [], and
thus interval analysis, developed by Moore [] plays an important role in studying the ex-
istence and uniqueness of the solutions for interval differential equations (IDEs). Despite
being initially introduced as an attempt to handle interval uncertainty, which appears in
mathematical programming problems with bounded uncertain parameters (e.g. [–]),
one such theory has been gradually applied to IDEs [–], due to the development of
differential dynamics. To our knowledge, a great deal of work on interval theory was done
by researchers many years ago, and on studies of fundamental arithmetic properties of
the interval number [, –]. Especially, after Moore established the interval arithmetic
rules [], Oppenheimer and Michel [] claimed subsequently that interval systems with
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the usual addition were a commutative semi-group but failed as a group. Unfortunately,
since such systems are not an Abelian group for addition, interval arithmetic cannot yield
the structure of a linear space. Generally, the arithmetic of addition is irreversible, namely
for any two interval numbers a and b, if a + b = , b is not equivalent to –a usually, where
 = [, ]. This way, whereas the difference of a and b can be defined by such a version
of addition, many properties present in real analysis are not true in the context of inter-
val number arithmetic, e.g. a – a �= . In order to develop a useful theoretical framework
on interval number like real number theory, Hukuhara [] introduced another concept
of interval difference for a and b in , namely the Hukuhara difference (H-difference,
a � b), where a � b = c if and only if a = b + c. However, although such a concept can
satisfy a � a = , a � b is meaningful only when w(a) ≥ w(b), where w(a) and w(b) de-
note the widths of a and b, respectively. In order to overcome one such fault, after Markov
[] pointed out that the width of a – b was equal to the sum of the widths of a and b, he
gave the concept of a nonstandard subtraction expressed also by the symbol of ‘–’. Such
a concept can guarantee that a – a = , and the width of the interval a – b equals the ab-
solute value of the difference of the widths of a and b. Thereafter, Stefanini [, –]
extended the version of the H-difference to the concept of a generalized Hukuhara differ-
ence (gH-difference, a �g b) which coincided with the nonstandard subtraction operator
introduced in Markov [], Definition , p.. Such a gH-difference has been comprehen-
sively adopted to investigate interval dynamic systems, because apart from still satisfying
a �g a = , the gH-difference always exists for any two intervals. Thus, it is an invaluable
mathematical concept in probing interval number theory. In our last work [], some fun-
damental arithmetic rules on interval numbers, based on the conventional addition and
gH-difference were extended to the case of interval-valued vectors, while some properties,
in particular associative and distributive laws, were obtained.

After the conventional subtraction arithmetic was generalized, multiple kinds of con-
cepts of derivatives for interval-valued functions were reported [, , , , –].
Hukuhara [] introduced the concept of H-differentiability for set-valued functions by
using the concept of the H-difference. This is a starting point to study set, fuzzy and later
interval differential equations. However, the H-derivative has some shortcomings which
make it difficult to study the properties of interval-valued differential or integral equa-
tions, as the H-difference does not always exist for any two interval numbers. This limits
its wide application to interval dynamic systems. Fortunately, based on the H-difference
and the gH-difference, two recent generalized concepts of the GH-derivative [] and
gH-derivative [] were introduced by Stefanini et al. Two such kinds of derivatives can
be more comprehensively adopted to study IDEs by comparison with the H-derivative.
Many valuable fundamental properties have been discovered by researchers [, , ].
We also note that there exist some intrinsic relationships between these two concepts,
for example a GH-differential interval-valued function is usually a gH-differential under
a few weak assumptions []. From the viewpoint of theoretical analysis, the gH-derivative
of an interval-valued function at some point can be computed by only one formula,
but the GH-derivative is opposite. Therefore, in comparison with the concept of the
GH-derivative, the version of the gH-derivative will become more and more focused
upon in the coming theoretical research on IDEs, demonstrated by some recent results
[, –, ].



Tao and Zhang Advances in Difference Equations  (2016) 2016:45 Page 3 of 28

Recently, several researchers have paid great attention to studies on the properties
of interval-valued functions, in particular continuity, differentiability, and integrability.
Some reported representative achievements promote the importance of interval dynam-
ics. Chalco-Cano et al. [, , ] made hard efforts to study systematically some rela-
tionships among GH-, gH-, Markov, and π-differentiability [, , , ]. They claimed
that (i) if an interval-valued function f was GH-differentiable, then it was π-differentiable,
and (ii) if f was π-differentiable, then it was gH-differentiable. They also derived several
Ostrowski inequalities capable of being used for studying IDEs’ solution estimates, rely-
ing upon the concept of the gH-derivative []. The concepts of the GH-derivative and the
gH-derivative are usually utilized to define the types of the solutions for IDEs [–, ,
, ]. However, since many arithmetic properties of real number theory are not true in
the branch of interval analysis, it is extremely difficult to probe IDEs’ theoretical founda-
tions. Even so, some pioneering works on the existence and uniqueness of the solutions are
gaining great interest among researchers. Theoretically, studies on IDEs depend greatly on
the type of interval-valued derivative, as different concepts of derivatives require that IDEs
satisfy different conditions so as to ensure IDEs’ solution existence and uniqueness.

More recently, several special IDEs were defined based on GH-differentiability, and then
transformed into integral equations with the H-difference [–, –, ]. Their so-
lution properties, including the existence, uniqueness, and continuous dependence, have
been well investigated by some researchers. Malinowski [, ] made great contributions
to analyzing a kind of IDE, depending on the second type of Hukuhara derivative included
in the concept of GH-derivative. Subsequently, some important properties of the solu-
tions were found such as the existence of local solutions, convergence, and continuous
dependence of the solution on initial value and right-hand side of the equation. Skripnic
[] proved the existence of the solutions of IDEs by virtue of the Caratheodory theo-
rem and the concept of generalized differentiability [], in which the version of deriva-
tive was equivalent to that of GH-derivative. Additionally, based on the GH-derivative,
Ngo et al. [, , –] carried out a series of studies for multiple kinds of IDEs such
as interval-valued integro-differential equations, interval-valued functional differential
equations, and so on. They obtained some significant conclusions as regards the existence
of the solutions, by developing comparison theorems.

On the other hand, IDEs have also been well studied based on the concept of the
gH-difference in the recent years [, –, , , , ]. Stefanini and Bede [] gave
the existence and uniqueness of two types of local solutions for an initial valued IDE
with a gH-derivative, and meanwhile the characteristics of the solutions were found. After
that, they also carried out an experimental analysis of such a kind of IDE []. Especially,
Chalco-Cano et al. [] investigated exhaustively the properties of an interval-valued func-
tion expressed by Cg(t) with interval number C and real single-valued function g . They
also derived out the representation of the solutions for a class of linear initial valued IDEs.
In addition, Lupulescu [] proposed the concepts of differentiability and integrability for
the interval-valued functions on time scales, while the properties of the delta generalized
Hukuhra derivative and integration of interval-valued functions on time scales were stud-
ied. An illustrative example of an IDE on time scale was also given. Lupulescu [] also
use the gH-difference to develop a theory of the fractional calculus for interval-valued
functions, and it is the foundation of interval-valued fractional differential equations.
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Summarizing, interval differential dynamic systems are a still open research topic in the
context of differential dynamic systems. Three fundamental issues are under considera-
tion: (i) how to define and analyze the space of the solutions, (ii) whether some classical
conclusions such as fixed point theorems in the branch of classical functional analysis
can be adapted to IDEs, and (iii) how to derive analytic solutions or numerical ones for
IDEs. Thus, in this paper we probe into the existence and uniqueness of the solutions
for a class of semi-linear interval dynamic systems, after developing a complete normed
quasi-linear space. Most precisely, we first give a quasi-linear space on interval number
and a related continuous interval-valued function space, and meanwhile their properties
are sufficiently discussed. Second, an important and classical fixed point theorem is gen-
eralized to the interval-valued case so as to discover IDEs’ properties. Finally, we conclude
that there exists at least a strong solution for a kind of semi-linear IDE as considered in
this work.

2 Preliminaries and basic properties of gH-difference
Let IR denote a set composed of all closed intervals in R. For a given interval a = [aL, aR],
a is said to be a degenerate interval if aL = aR. We say that a equals interval b only when
aL = bL and aR = bR, where b = [bL, bR]. Some interval arithmetic rules on IR are defined
below []:

(i) a + b = [aL + bL, aR + bR];
(ii) ka =

{ [kaL , kaR], k ≥ ,
[kaR , kaL], k < ;

(iii) a – b = a + (–)b = [aL – bR, aR – bL];
(iv) ab = [min{u ∈ A}, max{u ∈ A}], where A = {aLbL, aLbR, aRbL, aRbR};
(v) |a| = max{|aL|, |aR|}, w(a) = aR – aL;

(vi) a ≤ b ⇔ aL ≤ bL, aR ≤ bR.
In general, a–a does not equal  except that a is a degenerate interval. This indicates that

the subtraction is not the inverse of Minkowski addition above. However, the cancellation
law of addition on interval numbers holds, i.e., a + c = b + c if and only if a = b. Since a – a �=
, many properties of the real number theory cannot be extended to interval analysis.
So, Hukuhara [] introduced another concept of subtraction in order to overcome this
drawback. He defined the H-difference (i.e., a � b) of a and b as c if a = b + c, namely
a � b = c. Although such a subtraction can yield a � a = , a � b exists only when w(a) ≥
w(b). Subsequently, Stefanini [–] proposed a more general concept of subtraction as
below.

Definition . ([]) The gH-difference of a and b is defined by

a �g b = c, (.)

where c satisfies a = b + c if w(a) ≥ w(b), or b = a + (–)c if w(a) < w(b).

The above definition indicates that any two intervals a and b have their gH-difference.
In addition, we notice that the concepts of the gH-difference and H-difference have an
important relationship, namely a �g b = a � b if w(a) ≥ w(b). However, when w(a) < w(b),
a �g b is meaningful, but a � b is not. Thus, the gH-difference is an extension version
of the H-difference. Further, Stefanini [] obtained the following basic properties of the
gH-difference:
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(i) a �g b = [min{aL – bL, aR – bR}, max{aL – bL, aR – bR}];
(ii) a �g a = , a �g  = a,  �g a = (–)a;

(iii) (–a) �g b = (–b) �g a;
(iv) a �g b = (–b) �g (–a) = –(b �g a);
(v) (a + b) �g b = a, a �g (a + b) = –b;

(vi) (a �g b) + b = a, if w(a) ≥ w(b); a + (–)(a �g b) = b, if w(a) < w(b);
(vii) k(a �g b) = ka �g kb, k ∈ R.
In our last work [], we also obtained some properties of the gH-difference, for exam-

ple:
(i) (a + b) �g c = a + b �g c if and only if w(c) ≤ w(b) with c ∈ IR;

(ii) a(b �g c) = ab �g ac, if b and c are symmetric, or one of the following conditions
holds:
(a) w(b) ≥ w(c), and  ≤ c ≤ b, b ≤ c ≤ ;
(b) w(b) ≤ w(c), and  ≤ b ≤ c, c ≤ b ≤ .

In the present work, in terms of the concept of the gH-difference, we obtain some prop-
erties summed up below.

Lemma . The following properties are true:
(i) a �g b =  if and only if b = a;

(ii) (a + b) �g (a + c) = b �g c;
(iii) (a �g b) �g (a �g c) = c �g b, if w(a) ≤ min(w(b), w(c)) or w(a) ≥ max(w(b), w(c)).

Proof Case (i) is true by the definition of the gH-difference.
Case (ii): write (a + b) �g (a + c) = d. Based on the gH-difference, we have a + b = a + c + d

or a + c = a + b + (–)d. Hence, it follows from the cancellation law of addition on interval
number that b = c + d or c = b + (–)d. This illustrates that b �g c = d.

Case (iii): write a �g b = e, a �g c = f , and e �g f = g . When w(a) ≤ min(w(b), w(c)), we
note that b = a + (–)e and c = a + (–)f . Thus, if w(e) ≥ w(f ), then e = f + g , and hence
a + (–)e = a + (–)f + (–)g . This yields b = c + (–)g . On the other hand, if w(e) < w(f ), we
have f = e + (–)g , and hence a + (–)f = a + (–)e + g . Thus one derives that c = b + g . In
total, we obtain g = c �g b. Similarly, when w(a) ≥ max(w(b), w(c)), it follows that a = b + e
and a = c + f . If w(e) ≥ w(f ), one can derive that c + f = b + e = b + f + g , that is, c = b + g . On
the other hand, if w(e) < w(f ), we have b + e = c + f = c + e + (–)g , and then b = c + (–)g .
Thus we also get g = c �g b. �

For the convenience of notation, write rab = w(a) – w(b) and rbc = w(b) – w(c). We obtain
the following properties.

Lemma . The following properties hold:

(i) (a �g b) �g c =

{
a �g (b + c), if rab ≥ ,
(a + (–)c) �g b, else;

(ii) a �g (b �g c) =

{
(a + c) �g b, if rbc ≥ ,
c �g (b + (–)a), else;

(iii) a �g (b + c) =

{
(a �g b) �g c, if rab ≥ ,
a �g b + (–)c, else;
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(iv) a �g b + c =

{
(a + c) �g b, if rab ≥ ,
a �g (b + (–)c), else.

Proof Write a�g b = d and b�g c = d. If rab ≥ , then a = b+d; if rab < , then b = a+(–)d.
Similarly, if rbc ≥ , then b = c + d; if rbc <  then c = b + (–)d.

Case (i): write d�g c = e. By definition, it implies that d = c+e if w(d) ≥ w(c), and c = d +
(–)e if w(d) < w(c). In the case of rab ≥ , if w(d) ≥ w(c), one gets that a = b + d = b + c + e;
and if w(d) < w(c), then b+c = b+d +(–)e = a+(–)e. Therefore, we have e = a�g (b+c).
Conversely, in the case of rab < , if w(d) ≥ w(c), then b = a + (–)d = a + (–)c + (–)e, and
if w(d) < w(c), then a+(–)c = a+(–)d +e = b+e. This indicates that e = (a+(–)c)�g b.

Case (ii): write a�g d = e. We can obtain a = d +e if w(a) ≥ w(d), and d = a+(–)e if
w(a) < w(d). In the case of rbc ≥ , if w(a) ≥ w(d), one can derive that a + c = c + d + e =
b + e; if w(a) < w(d), then b = c + d = a + c + (–)e. These two equalities follow from
e = (a + c) �g b. On the other hand, in the case of rbc < , if w(a) ≥ w(d), then b + (–)a =
b + (–)d + (–)e = c + (–)e; if w(a) < w(d), then c = b + (–)d = b + (–)a + e. Thus,
we get e = c �g (b + (–)a).

Case (iii): write a �g (b + c) = e. The first equality is the same as the first one of case (i).
We only need to demonstrate the second one. To this end, if rab < , it is obvious that
w(a) ≤ w(b + c). This means that b + c = a + (–)e. Therefore, (a + (–)d) + c = a + (–)e.
Hence, we get e = d + (–)c.

Case (iv): in the case of rab ≥ , we know that a = b+d, which yields a+c = b+c+d; again
since w(a + c) ≥ w(b), we get d + c = (a + c) �g b. Conversely, in the case of rab < , we note
that w(a) < w(b + (–)c) and b = a + (–)d, which illustrates that b + (–)c = a + (–)(d + c).
Thus, d + c = a �g (b + (–)c). This completes the proof. �

3 Normed quasi-linear space
3.1 Interval number space
In this section, we first develop a quasi-linear space on IR, and then we analyze its prop-
erties under the gH-difference, by introducing the Hausdorff-Pompeiu metric on inter-
val numbers. For a, b, c ∈ IR, and k, l ∈ R, the addition and scalar multiplication have
some well-known properties: (i) a + b = b + a, (ii) a + (b + c) = (a + b) + c, (iii) a +  = a,
(iv) k(a + b) = ka + kb, (v) k(la) = (kl)a, (vi) a = a. Unfortunately, there usually does not
exist d ∈ IR s.t. a + d = , and the equality (k + l)a = ka + la is true only when kl ≥  [].
For example, take a = [, ], b = [–, –], k = , and l = –. Obviously, one can find that
(k + l)a =  and ka + la = [, ]. Thus, (k + l)a �= ka + lb; on the other hand, if a + b = , then
 + bL =  and  + bR = , and hence b = [–, –], which yields a contradiction.

In brief, IR is not a linear space under the above arithmetic rules of addition and scalar
multiplication, but it can almost keep the features of linear space, provided that we replace
subtraction by the gH-difference. Thus, we call IR a quasi-linear space with gH-difference.
In one such quasi-linear space, we can easily obtain an additional property, namely for
a given a ∈ IR, there exists a unique d ∈ IR such that a �g d = . Additionally, in order
to investigate the relation between elements in IR, we introduce the Hausdorff-Pompeiu
metric [] on IR, i.e.,

H(a, b) = max
{∣∣aL – bL∣∣,

∣∣aR – bR∣∣}. (.)
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Through simple induction, the triangle inequality of the Hausdorff-Pompeiu metric on IR
always holds, namely

H(a, b) ≤ H(a, c) + H(c, b). (.)

Aubin and Cellina [] asserted that (IR, H) was a complete metric space. Further, such a
metric can imply the following properties with the H-difference [, ]:

(i) H(a + b, a + c) = H(b, c);
(ii) H(ka, kb) = |k|H(a, b), where k ∈ R;

(iii)

H(a + b, c + d) ≤ H(a, c) + H(b, d); (.)

(iv) if a � b, a � c exist, then H(a � b, a � c) = H(b, c);
(v) if a � b, c � d exist, then H(a � b, c � d) = H(a + d, b + c).

Notice that equations (iv) and (v) are true only when a � b, a � c, and c � d exist. We
next identify whether the two equations of (iv) and (v) above hold after replacing � by �g .
For convenience of the representation, write rab = w(a) – w(b), rac = w(a) – w(c), and rcd =
w(c) – w(d) with a, b, c, d ∈ IR.

Lemma . There always exists the following inequality:

H(a �g b, a �g c) ≤ H(b, c). (.)

Especially, the equality holds if rabrac ≥ .

Proof Write d = a �g b and e = a �g c. In the case of rabrac ≥ , if rab ≥  and rac ≥ , we
can obtain d = a�b and e = a�c by the definition as in equation (.), and hence it follows
from property (iv) of Hausdorff-Pompeiu metric above that the equality is true; if rab ≤ 
and rac ≤ , then b = a+(–)d and c = a+(–)e. This, together with properties (i) and (ii) of
Hausdorff-Pompeiu metric above, easily shows H(d, e) = H(a + (–)d, a + (–)e) = H(b, c).
Therefore, when rab and rac have the same sign, the equality in equation (.) holds. In the
case of rabrac < , if rab >  and rac < , then a = b + d and c = a + (–)e, and accordingly,
we have

H(b, c) = H
(
b, b + d + (–)e

)

= H
(
, d + (–)e

)

= max
{∣∣dL – eR∣∣,

∣∣dR – eL∣∣}

≥ max
{∣∣dL – eL∣∣,

∣∣dR – eR∣∣} = H(d, e).

Similarly, when rab <  and rac > , we can also prove that equation (.) holds. �

The above lemma can be illustrated by taking a = [, ], b = [–, –], and c = [, ].
Through simple inference, we obtain that H(a �g b, a �g c) = H([, ], [–, –]) = , and
H(b, c) = H([–, –], [, ]) = . So, equation (.) is true.
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Lemma . The following inequality is always true,

H(a �g b, c �g d) ≤ H(a + d, b + c). (.)

Especially, the equality holds if rabrcd ≥ .

Proof Write e = a �g b and h = c �g d. In the case of rabrcd ≥ , if rab ≥  and rcd ≥ ,
we can obtain both e = a � b and h = c � d; if rab ≤  and rcd ≤ , then b = a + (–)e and
d = c+(–)h. This easily shows that equation (.) is valid. In the case of rabrcd < , if rab > 
and rcd < , then a = b + e and d = c + (–)h. Therefore,

H(a + d, b + c) = H
(
b + c + e + (–)h, b + c

)

= H
(
e + (–)h, 

)

= max
{∣∣eL – hR∣∣,

∣∣eR – hL∣∣}

≥ max
{∣∣eL – hL∣∣,

∣∣eR – hR∣∣} = H(e, h).

In the same way, if rab <  and rcd > , then

H(a + d, b + c) = H
(
a + d, a + d + (–)e + h

)

= H
(
, (–)e + h

) ≥ H(e, h).

In brief, the above conclusion holds. �

For example, take a = [, ], b = [, ], c = [, ], and d = [–, –]. We can see that
H(a�g b, c�g d) = H([–, –], [, ]) = , and H(a+d, b+c) = H([–, ], [, ]) = . Hence,
equation (.) is valid.

Lemma . ([]) Let a, b, c ∈ IR, then

H(ac, bc) ≤ H(, c)H(a, b). (.)

Based on the above Hausdorff-Pompeiu metric, define ‖a‖I = H(a, ) with a ∈ IR. Fur-
ther, by simple inference we notice that ‖ · ‖I satisfies the basic properties of the classical
concept of norm. Therefore, IR can be naturally said to be a normed quasi-linear space.

Theorem . For a, b ∈ IR, the following basic properties are true:
(i) ‖a �g b‖I = H(a, b);

(ii) ‖a‖I – ‖b‖I ≤ ‖a �g b‖I ≤ ‖a‖I + ‖b‖I ;
(iii) ‖ab‖I = ‖a‖I‖b‖I .

Proof Cases (i) and (ii) hold obviously. Case (iii): since

‖ab‖I = H(ab, )

= max
{∣∣aLbL∣∣,

∣∣aLbR∣∣,
∣∣aRbL∣∣,

∣∣aRbR∣∣}
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= max
{∣∣aL∣∣,

∣∣aR∣∣} · max
{∣∣bL∣∣,

∣∣bR∣∣}

= H(a, )H(b, ) = ‖a‖I‖b‖I ,

the conclusion is true. �

Take a = [–, –] and b = [, ]. Then ‖a�g b‖I = ‖[–, –]‖I =  and H(a, b) = . Further,
‖a‖I – ‖b‖I = –, ‖a‖I + ‖b‖I = , ‖ab‖I = ‖[–, –]‖I = , and ‖a‖I‖b‖I = . Thus, the
above conclusions in Theorem . hold.

We next discuss the completeness of the normed quasi-linear space IR, where a version
of interval convergence is given.

Definition . For an, a ∈ IR, n = , , . . . , if ‖an �g a‖I →  as n → ∞, {an}n≥ is said to
be convergent to a (simply written as limn→∞ an = a).

Similarly, we introduce the version of Cauchy convergence in IR. That is, {an}n≥ is con-
vergent if and only if ‖an �g am‖I →  as m, n → ∞. It is easy to prove that (IR,‖ · ‖I) is
complete by means of the completeness of (IR, H).

Theorem . (IR,‖ · ‖I) is a complete normed quasi-linear space.

Proof Let {an}n≥ be an arbitrary Cauchy sequence in (IR,‖ · ‖I). Since H(an, am) = ‖an �g

am‖I , we obtain H(an, am) →  as m, n → ∞. Therefore, {an}n≥ is a Cauchy sequence in
(IR, H) and, accordingly, there exists a ∈ IR such that H(an, a) →  as n → ∞, due to the
completeness of (IR, H). This implies that ‖an �g a‖I →  as n → ∞. �

3.2 Interval-valued function space
Let I = [t, t] and t ∈ I . f : I → IR is an interval-valued function. We say that a ∈ IR is
the limit of f at the point t if ‖f (t) �g a‖I →  as t → t. f is said to be continuous on
I , if for any given t ∈ I , ‖f (t) �g f (t)‖I →  as t → t. Define the following continuous
interval-valued function space,

C(I, IR) = {f |f : I → IR, f is continuous on I}.

Introduce the following well-known arithmetic rules for f , g ∈ C(I, IR):
(i) (f + g)(t) = f (t) + g(t);

(ii) (kf )(t) = kf (t), k ∈ R;
(iii) (f �g g)(t) = f (t) �g g(t);
(iv) (fg)(t) = f (t)g(t).
Under these arithmetic rules, we discuss some basic properties in C(I, IR).

Theorem . If f , g ∈ C(I, IR), then kf , f + g , f �g g , and fg are continuous on I .

Proof For any t ∈ I , since

H
(
kf (t), kf (t)

)
= |k|H(

f (t), f (t)
)
, k ∈ R,

kf is continuous at the point t. Again, through equation (.), we obtain

H
(
f (t) + g(t), f (t) + g(t)

) ≤ H
(
f (t), f (t)

)
+ H

(
g(t), g(t)

)
.
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Thus, following the definition of continuity, we derive that f + g ∈ C(I, IR). Further, equa-
tions (.) and (.) yield

H
(
f (t) �g g(t), f (t) �g g(t)

)

≤ H
(
f (t) + g(t), g(t) + f (t)

)

≤ H
(
f (t), f (t)

)
+ H

(
g(t), g(t)

)
.

Thus, f �g g ∈ C(I, IR). On the other hand, equations (.) and (.) imply that

H
(
f (t)g(t), f (t)g(t)

)

≤ H
(
f (t)g(t), f (t)g(t)

)
+ H

(
f (t)g(t), f (t)g(t)

)

≤ H
(
, f (t)

)
H

(
g(t), g(t)

)
+ H

(
, g(t)

)
H

(
f (t), f (t)

)

and, consequently, fg ∈ C(I, IR). �

Through the process of the proof above, we notice that f ∈ C(I, IR) if and only if f L, f R ∈
C(I, R), where f (t) = [f L(t), f R(t)]. Further, according to the above arithmetic rules, C(I, IR)
is also a quasi-linear space. Define

ρ(f , g) = sup
t∈I

{
H

(
f (t), g(t)

)}
. (.)

One can prove that the metric of ρ satisfies the three basic properties of a metric space,
namely if f , g, h ∈ C(I, IR), then

(i) ρ(f , g) ≥ ; ρ(f , g) =  if and only if f = g ;
(ii) ρ(f , g) = ρ(g, f );

(iii) ρ(f , g) ≤ ρ(f , h) + ρ(h, g).
Thus, (C(I, IR),ρ) is a metric space. In addition, in terms of the properties of the

Hausdorff-Pompeiu metric, it is easy to see that ρ has the following properties, namely
if f , g,ϕ,ψ ∈ C(I, IR), then:

(i) ρ(f + ϕ, f + ψ) = ρ(ϕ,ψ);
(ii) ρ(kf , kg) = |k|ρ(f , g), where k ∈ R;

(iii) ρ(f ϕ, f ψ) = ρ(, f )ρ(ϕ,ψ);
(iv) ρ(f + g,ϕ + ψ) ≤ ρ(f ,ϕ) + ρ(g,ψ);
(v) ρ(f �g ϕ, f �g ψ) ≤ ρ(ϕ,ψ);

(vi) ρ(f �g g,ϕ �g ψ) ≤ ρ(f + ψ , g + ϕ).
We further discuss some properties of C(I, IR) useful for studying the properties of IDEs.

To this point, introduce the version of convergence of an interval-valued function se-
quence. For fn, f ∈ C(I, IR), n = , , . . . , if ρ(fn, f ) →  as n → ∞, {fn}n≥ is said to be conver-
gent to f . Similarly, we say that {fn}n≥ is a Cauchy sequence if ρ(fn, fm) →  as m, n → ∞.

Theorem . The quasi-linear space (C(I, IR),ρ) is complete.

Proof Let {fn}n≥ be an arbitrary Cauchy sequence in C(I, IR). It follows that for any ε > ,
there exists N(ε) >  such that if n, m > N(ε), then

∥∥fn(t) �g fm(t)
∥∥

I = H
(
fn(t), fm(t)

) ≤ ρ(fn, fm) <
ε


, t ∈ I.
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Therefore, for any fixed t, {fn(t)}n≥ is a Cauchy sequence in the complete normed quasi-
linear space IR and, accordingly, there exists an element f (t) ∈ IR such that when n > N(ε),
one can derive that

∥∥fn(t) �g f (t)
∥∥

I <
ε


.

This way, {fn}n≥ converges uniformly to f on I . On the other hand, for any t ∈ I there
exists δ(ε) >  such that if |t – t| < δ(ε), then ‖fn(t) �g fn(t)‖I < ε

 . According to equation
(.) and property (i) as in Theorem ., we see that

∥∥f (t) �g f (t)
∥∥

I ≤ ∥∥f (t) �g fn(t)
∥∥

I +
∥∥fn(t) �g fn(t)

∥∥
I +

∥∥fn(t) �g f (t)
∥∥

I < ε.

Consequently, f ∈ C(I, IR), and hence the proof is completed. �

Like the above normed quasi-linear space IR, we can introduce the version of a norm
on C(I, IR), namely ‖f ‖C = ρ(f , ). By means of the Hausdorff-Pompeiu metric on interval
numbers above, one can see that (C(I, IR),‖ · ‖C) is a normed quasi-linear space. We also
notice that |f (t)| = H(f (t), ). Therefore, we can rewrite ‖f ‖C as supt∈I |f (t)|. Additionally,
by means of Theorems . and ., the following basic properties are valid.

Theorem . If f , g ∈ C(I, IR), then
(i) ‖f �g g‖C = ρ(f , g);

(ii) ‖f ‖C – ‖g‖C ≤ ‖f �g g‖C ≤ ‖f ‖C + ‖g‖C ;
(iii) ‖fg‖C ≤ ‖f ‖C‖g‖C ;
(iv) (C(I, IR),‖ · ‖C) is a complete normed quasi-linear space.

We next develop a fixed point theorem under the gH-difference. x is said to be a fixed
point of a mapping T : C(I, IR) → C(I, IR) if Tx = x. We say that T is a contraction mapping
on C(I, IR), if there exists a real number α with  < α <  such that ‖Tx �g Ty‖C ≤ α‖x �g

y‖C for any x, y ∈ C(I, IR). Similar to the process of the proof as in the classical principle
of contraction mapping, we obtain a fixed point theorem as below.

Theorem . If T : C(I, IR) → C(I, IR) is a contraction mapping, there exists a fixed
point.

4 The properties of gH-differentiability
Since the addition arithmetic on interval number is irreversible, the concept of a derivative
of an interval-valued function has been gaining great concern among researchers. As to
this point, Hukuhara [] introduced the concept of the H-derivative related to the version
of the H-difference. However, as we mention in Section , this concept cannot be compre-
hensively adopted to investigate the properties of interval-valued functions, as it cannot
ensure that the H-difference exists for any two interval numbers. Thereafter, Bede and Gal
[] generalized such concept of a derivative to the version of a GH-derivative. However,
the latter concept is relatively more useful, it still needs the same basic assumptions as
the concept of H-derivative. Fortunately, Stefanini and Bede [] proposed a more general
concept of derivative (i.e., the gH-derivative) by comparison with the GH-derivative. The
main merit consists in the fact that their concept is similar to the version of the derivative
of a real-valued function.
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Definition . ([]) f : I → IR is said to be gH-differentiable on I if f is gH-differentiable
in t ∈ I , namely there exists an interval number f ′(t) ∈ IR such that

f ′(t) = lim
h→

f (t + h) �g f (t)
h

. (.)

f is said to be (i)-differentiable in t ∈ I if f ′(t) = [(f L)′(t), (f R)′(t)] and (ii)-differentiable if
f ′(t) = [(f R)′(t), (f L)′(t)], where f (t) = [f L(t), f R(t)].

The main advantage of such a definition is that the formulation of the gH-derivative is
simpler than that of the GH-derivative. Thus, it is easily utilized to study interval-valued
functions. According to the definition, we observe that, when f is (i)-differentiable, w(f (t))
is an increasing function, and conversely when f is (ii)-differentiable, w(f (t)) is decreas-
ing. Further, similar to the formulation of the conventional derivative in real analysis, the
formulas of left and right derivatives at the point t for f can be expressed by

f ′
+(t) = lim

h→+


h
[
f (t + h) �g f (t)

]
, (.)

f ′
–(t) = lim

h→–


h
[
f (t + h) �g f (t)

]
. (.)

Accordingly, we can give a sufficient and necessary condition on gH-differentiability be-
low.

Theorem . f is gH-differentiable in t ∈ I if and only if f ′
+(t) and f ′

–(t) exist and f ′
+(t) =

f ′
–(t).

Proof If f is gH-differentiable in t ∈ I , then for any ε > , there exists δ(ε) > , such that
when |h| < δ(ε), we have

∥∥∥∥

h
[
f (t + h) �g f (t)

] �g f ′(t)
∥∥∥∥

I
< ε. (.)

Consequently, if taking  < h < δ(ε) or –δ(ε) < h < , the conclusion is true. Conversely,
when f ′

+(t) = f ′
–(t), it is easy to prove that the conclusion is valid through equations (.)

and (.). �

Based on the concept of the gH-derivative, Stefanini et al. developed the relationship
between gH-derivative and conventional derivatives, in other words, the gH-derivative of
f can be expressed by the derivatives of its endpoint functions.

Theorem . ([]) f : I → IR is gH-differentiable in t if and only if f L and f R are both
differentiable, and

f ′ =
[
min

{(
f L)′,

(
f R)′}, max

{(
f L)′,

(
f R)′}]. (.)

It should be pointed out that usually one can only find that (f + g)′ ⊆ f ′ + g ′ when f and
g are differentiable []. However, in some weak assumptions, the symbol of inclusion can
be replaced by the symbol of equality. To this end, for convenience of notation below, we
write ω(t) = f (t) �g g(t), u(t, h) = f (t + h) �g f (t), and v(t, h) = g(t + h) �g g(t) with t + h ∈ I .
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Theorem . The following property is true:

(f + g)′ = f ′ + g ′, (.)

provided that f and g are simultaneously (i)-differentiable or (ii)-differentiable.

Proof Assume that f and g are (i)-differentiable. One can prove that both w(f (t)) and
w(g(t)) are increasing functions. Hence, in the case of h > , since w(f (t + h)) ≥ w(f (t))
and w(g(t + h)) ≥ w(g(t)), through the definition of the gH-difference we obtain f (t + h) =
f (t) + u(t, h) and g(t + h) = g(t) + v(t, h), and thus

f (t + h) + g(t + h) = f (t) + g(t) + u(t, h) + v(t, h). (.)

Further, in the case of h < , since w(f (t + h)) ≤ w(f (t)) and w(g(t + h)) ≤ w(g(t)), we get
f (t) = f (t + h) + (–)u(t, h) and g(t) = g(t + h) + (–)v(t, h), and accordingly

f (t) + g(t) = f (t + h) + g(t + h) + (–)
[
u(t, h) + v(t, h)

]
. (.)

Hence,

lim
h→+


h
[(

f (t + h) + g(t + h)
) �g

(
f (t) + g(t)

)]

= lim
h→+


h
[
u(t, h) + v(t, h)

]
= f ′(t) + g ′(t)

= lim
h→–


h
[(

f (t + h) + g(t + h)
) �g

(
f (t) + g(t)

)]
.

Thus, f + g is gH-differentiable and equation (.) is true. Similarly, when f and g are
(ii)-differentiable, one can prove that f + g is gH-differentiable and equation (.) is also
true. �

Theorem . The following property is true:

(f �g g)′ = f ′ + (–)g ′, (.)

if one of the following conditions is satisfied:
(i) f is (i)-differentiable and g is (ii)-differentiable;

(ii) f is (ii)-differentiable and g is (i)-differentiable.

Proof Case (i): by the definition of the gH-derivative, w(f (t)) is increasing and w(g(t)) is
decreasing. Consequently, in the case of h > , we obtain f (t + h) = f (t) + u(t, h) and g(t) =
g(t + h) + (–)v(t, h). Hence,

f (t + h) + g(t) = f (t) + g(t + h) + u(t, h) + (–)v(t, h). (.)

Again if f (t) = g(t) + ω(t), equation (.) yields

g(t + h) + ω(t + h) + g(t) = g(t) + ω(t) + g(t + h) + u(t, h) + (–)v(t, h), (.)
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from which, together with the cancellation of addition on interval numbers, it follows that

ω(t + h) = ω(t) + u(t, h) + (–)v(t, h). (.)

In the same way, if g(t) = f (t) + (–)ω(t), from equation (.) it follows that

ω(t) = ω(t + h) + (–)
[
u(t, h) + (–)v(t, h)

]
. (.)

Hence, equations (.) and (.) imply that

ω(t + h) �g ω(t) = u(t, h) + (–)v(t, h). (.)

In the case of h < , since w(f (t + h)) ≤ w(f (t)) and w(g(t + h)) ≥ w(g(t)), the definition of
the gH-difference yields f (t) = f (t + h) + (–)u(t, h) and g(t + h) = g(t) + v(t, h), and then we
also see that equation (.) is valid. This, together with the differentiability of f and g ,
yields

ω′
+(t) = lim

h→+


h
[
ω(t + h) �g ω(t)

]

= lim
h→+


h
[
u(t, h) + (–)v(t, h)

]

= f ′(t) + (–)g ′(t) = ω′
–(t).

Thus, equation (.) is true in case (i). Similar to the process of the proof above, one can
see that equation (.) is also valid in case (ii). �

Notice that when f and g are both (i)-differentiable or both (ii)-differentiable, equation
(.) is not true, which can be illustrated by a simple example as below.

Example . Take f (t) = [t, t + ] and g(t) = [t, t + ] with  ≤ t ≤ . Then f (t) �g g(t) =
[–t, ]. Again f and g are (i)-differentiable. One can know that (f (t) �g g(t))′ = [–t, ]′ =
[–, ]. However, f ′(t) + (–)g ′(t) = [, ] + (–)[, ] = [–, ]. Thus, (f (t) �g g(t))′ �= f ′(t) +
(–)g ′(t).

As we know, if two real scalar functions are differentiable, their product function is also
differentiable. However, for two given interval-valued functions, even if they are all differ-
entiable, their product function is not differentiable usually. This can be illustrated by an
example as below.

Example . Take f (t) = [et , et+] and g(t) = [– cos t, cos t] with  ≤ t ≤ π
 . It is easy to see

that f (t)g(t) = [–et+ cos t, et+ cos t]. Further, through a simple deduction, we know that

(
f (t)g(t)

)′ =
[
–et+(cos t – sin t), et+(cos t – sin t)

]
,

f ′(t)g(t) =
[
–et+ cos t, et+ cos t

]
, f (t)g ′(t) =

[
–et+ sin t, et+ sin t

]
.

This is a hint that

f ′(t)g(t) + f (t)g ′(t) �= (
f (t)g(t)

)′.
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In the following subsection, we degenerate the interval-valued function f into a scalar
function, and we study some properties of the product function of fg . In addition to the
notations presented in Theorems . and ., write W (t, h) = f (t + h)g(t + h) �g f (t)g(t),
U(t, h) = f (t + h) – f (t).

Theorem . Assume that f ∈ C(I, R) and g is (i)-differentiable. If f (t)f ′(t) > , then

(fg)′ = f ′g + fg ′. (.)

Proof In the case of h >  with t + h ∈ I , since g is (i)-differentiable, w(g(t)) is increasing
and, accordingly, g(t + h) = g(t) + v(t, h). Again, since f (t)f ′(t) > , f (t) and U(t, h) have the
same sign, which yields

f (t + h)g(t + h) = f (t)g(t) + f (t)v(t, h) + U(t, h)g(t) + U(t, h)v(t, h). (.)

Thus,

W (t, h) = f (t)v(t, h) + U(t, h)g(t) + U(t, h)v(t, h). (.)

On the other hand, in the case of h < , we have w(g(t + h)) ≤ w(g(t)), and hence g(t) =
g(t + h) + (–)v(t, h). Further, it follows from f (t)f ′(t) >  that f (t + h) and (–)U(t, h) have
the same sign. Consequently,

f (t)g(t) = f (t + h)g(t + h) + (–)
[
f (t + h)v(t, h)

+ U(t, h)g(t + h) + (–)U(t, h)v(t, h)
]
. (.)

Hence,

W (t, h) = f (t + h)v(t, h) + U(t, h)g(t + h) + (–)U(t, h)v(t, h). (.)

Further, depending on the continuity and differentiability of f and g , equations (.) and
(.) imply that

lim
h→+


h

W (t, h) = lim
h→+

(

h

U(t, h)
)

g(t) + f (t) lim
h→+


h

v(t, h)

+ lim
h→+

U(t, h)
(


h

v(t, h)
)

= f ′(t)g(t) + f (t)g ′(t) = lim
h→–


h

W (t, h). (.)

This shows that equation (.) is valid by Theorem .. �

Theorem . Let g be (i)-differentiable and f ∈ C(I, R). Under f (t)f ′(t) < , if w(f (t)g(t))
is increasing, then fg is gH-differentiable and

(fg)′ + (–)f ′g = fg ′; (.)
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if w(f (t)g(t)) is decreasing, then fg is gH-differentiable and

(fg)′ + (–)fg ′ = f ′g. (.)

Proof Let w(f (t)g(t)) be increasing. Since f (t)f ′(t) < , we can see that f (t + h) and
(–)U(t, h) have the same sign when h > , and meanwhile f (t) and U(t, h) are so if h < .
In the case of h > , we know that g(t + h) = g(t) + v(t, h) by the (i)-differentiability of g .
Thus,

[
f (t + h) + (–)U(t, h)

]
g(t + h) = f (t)

[
g(t) + v(t, h)

]
. (.)

Namely,

f (t + h)g(t + h) + (–)U(t, h)g(t + h) = f (t)g(t) + f (t)v(t, h). (.)

Again since w(f (t + h)g(t + h)) ≥ w(f (t)g(t)), we can obtain

f (t + h)g(t + h) = f (t)g(t) + W (t, h). (.)

This way, by substituting equation (.) into equation (.) and using the cancellation
law on interval numbers, we see that

W (t, h) + (–)U(t, h)g(t + h) = f (t)v(t, h). (.)

So,

lim
h→+


h

W (t, h) + (–)g(t) lim
h→+


h

U(t, h) = f (t) lim
h→+


h

v(t, h),

that is,

(
f (t)g(t)

)′
+ + (–)f ′(t)g(t) = f (t)g ′(t). (.)

In addition, in the case of h < , since g is (i)-differentiable, we can derive that g(t) = g(t +
h) + (–)v(t, h). Thus,

f (t + h)
[
g(t + h) + (–)v(t, h)

]
=

[
f (t) + U(t, h)

]
g(t). (.)

In other words,

f (t + h)g(t + h) + (–)f (t + h)v(t, h) = f (t)g(t) + U(t, h)g(t). (.)

Again since

f (t)g(t) = f (t + h)g(t + h) + (–)W (t, h), (.)

by virtue of the cancellation law on interval numbers from equations (.) and (.) we
infer that

W (t, h) + (–)U(t, h)g(t) = f (t + h)v(t, h). (.)
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Thus,

lim
h→–


h

W (t, h) + (–)g(t) lim
h→–


h

U(t, h) = f (t) lim
h→–


h

v(t, h),

namely

(
f (t)g(t)

)′
– + (–)f ′(t)g(t) = f (t)g ′(t). (.)

Equations (.) and (.) imply that fg is gH-differentiable, and meanwhile equation
(.) holds. Similar to the process of the proof above, one can prove that equation (.)
is also valid. �

Similarly, when g is (ii)-differentiable, we can obtain the following properties of fg ac-
cording to the sign of f (t)f ′(t), for which their proofs are omitted.

Theorem . Assume that f ∈ C(I, R) and g is (ii)-differentiable. If f (t)f ′(t) < , then

(fg)′ = f ′g + fg ′. (.)

Further, under f (t)f ′(t) > , no matter whether w(f (t)g(t)) is increasing or decreasing, fg is
gH-differentiable. More precisely, if w(f (t)g(t)) is increasing, then

(fg)′ + (–)fg ′ = f ′g; (.)

if w(f (t)g(t)) is decreasing, then

(fg)′ + (–)f ′g = fg ′. (.)

5 Integral of interval-valued function
In this section, we cite the concept of an integral of an interval-valued function originally
proposed by Stefanini and Bede [], and meanwhile some new properties are discussed.
Let J = [t, tf ] and f (t) = [f L(t), f R(t)] with t ∈ J . The integral of f is defined by the integrals
of the endpoints [], namely

∫ tf

t

f (t) dt =
[∫ tf

t

f L(t) dt,
∫ tf

t

f R(t) dt
]

. (.)

In such a case, f is said to be integrable on J . For an integrable interval-valued function
g , by the definition of the gH-difference we easily see that

∫ tf

t

f (t) dt �g

∫ tf

t

g(t) dt =
[

min

{∫ tf

t

(
f L(t) – gL(t)

)
dt,

∫ tf

t

(
f R(t) – gR(t)

)
dt

}
,

max

{∫ tf

t

(
f L(t) – gL(t)

)
dt,

∫ tf

t

(
f R(t) – gR(t)

)
dt

}]
. (.)

Correspondingly, some fundamental properties have been studied.
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Theorem . ([]) Let f , g ∈ C(J , IR). Then
(i)

∫ tf
t (f (t) + g(t)) dt =

∫ tf
t f (t) dt +

∫ tf
t g(t) dt;

(ii)
∫ tf

t f (t) dt =
∫ τ

t
f (t) dt +

∫ tf
τ

f (t) dt, t < τ < tf .

Theorem . ([]) Let f ∈ C(J , IR). Then
(i) F(t) is gH-differentiable, and F ′(t) = f (t), where F(t) =

∫ t
t

f (t) dt;
(ii) G(t) is gH-differentiable, and G′(t) = –f (t), where G(t) =

∫ tf
t f (t) dt.

We next present two important integral properties helpful for discussing the following
IDE.

Theorem . Let f and g be integrable on J . Then f �g g is integrable on J , and meanwhile

∫ tf

t

(f �g g)(t) dt =
∫ tf

t

f (t) dt �g

∫ tf

t

g(t) dt, (.)

provided that w(f (t)) ≥ w(g(t)) for t ∈ J or w(f (t)) ≤ w(g(t)) for t ∈ J .

Proof Write f (t) �g g(t) = h(t). If w(f (t)) ≥ w(g(t)) with any t ∈ J , then f (t) = g(t) + h(t),
and accordingly

∫ tf

t

f (t) dt =
∫ tf

t

g(t) dt +
∫ tf

t

h(t) dt. (.)

If w(f (t)) ≤ w(g(t)) with any t ∈ J , then g(t) = f (t) + (–)h(t) and hence,

∫ tf

t

g(t) dt =
∫ tf

t

f (t) dt + (–)
∫ tf

t

h(t) dt. (.)

Thus, equations (.) and (.) illustrate that equation (.) is true. �

Theorem . If g, g ∈ C(J , IR), the following inequality holds:

H
(∫ t

t

g(s) ds,
∫ t

t

g(s) ds
)

≤
∫ t

t

H
(
g(s), g(s)

)
ds. (.)

Proof Write g(t) = [gL
 (t), gR

 (t)] and g(t) = [gL
 (t), gR

 (t)]. We can prove that

H
(∫ t

t

g(s) ds,
∫ t

t

g(s) ds
)

= max

{∣∣∣∣

∫ t

t

gL
 (s) ds –

∫ t

t

gL
 (s) ds

∣∣∣∣,
∣∣∣∣

∫ t

t

gR
 (s) ds –

∫ t

t

gR
 (s) ds

∣∣∣∣

}

≤ max

{∫ t

t

∣∣gL
 (s) – gL

 (s)
∣∣ds,

∫ t

t

∣∣gR
 (s) – gR

 (s)
∣∣ds

}

≤
∫ t

t

max
{∣∣gL

 (s) – gL
 (s)

∣∣,
∣∣gR

 (s) – gR
 (s)

∣∣}ds =
∫ t

t

H
(
g(s), g(s)

)
ds.

This completes the proof. �
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In terms of Lemma . and Theorem ., one can easily gain the following conclusion.

Corollary . If f ∈ C(J , R) and g, g ∈ C(J , IR), we have

H
(∫ t

t

f (s)g(s) ds,
∫ t

t

f (s)g(s) ds
)

≤
∫ t

t

∣∣f (s)
∣∣H

(
g(s), g(s)

)
ds. (.)

6 Interval differential equation
In this section, we consider the following semi-linear interval differential equation (SIDE):

{
x′ = a(t)x + f (t, x),
x(t) = x,

(.)

where a : J → R is an integrable real scalar function, and f : J × IR → IR is an interval-
valued function; x is a given initial interval number in IR. In order to analyze the proper-
ties of the solutions in SIDE, three basic concepts are introduced below.

Definition . For given x ∈ C(J , IR), x is continuous gH-differentiable on J if x′ is con-
tinuous.

Definition . Let x be continuous gH-differentiable on J . x is a strong solution of SIDE
if satisfying the initial condition and the above equation.

Definition . x ∈ C(J , IR) is the (i)-solution of SIDE if

x(t) = exp

(∫ t

t

a(u) du
)

x +
∫ t

t

f
(
s, x(s)

)
exp

(∫ t

s
a(u) du

)
ds, t ∈ J , (.)

and the (ii)-solution if

x(t) = exp

(∫ t

t

a(u) du
)

x �g (–)
∫ t

t

f
(
s, x(s)

)
exp

(∫ t

s
a(u) du

)
ds, t ∈ J . (.)

Equations (.) and (.) are constructed in terms of the formulation of the solutions
for ordinary differentiable equations. However, (i)- and the (ii)-solutions are not SIDE’s
strong solutions usually. Based on this consideration, we discuss the relationship between
SIDE’s solutions, depending on the above properties of C(J , IR). For the convenience of
representation, write

p(t) = exp

(∫ t

t

a(u) du
)

and

F(t, x) =
∫ t

t

f (s, x(s))
p(s)

ds.

Theorem . Let a ∈ C(J , R) and f ∈ C(J × IR, IR). If a(t) >  with t ∈ J , the (i)-solution x
is a strong solution of SIDE; under a(t) < , if (ii)-solution x satisfies

w
(
F(t, x)

) ≤ w(x), (.)

it is also SIDE’s strong solution.
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Proof Let a(t) >  with t ∈ J and x be a (i)-solution of SIDE. Write

g(t, x) = x + F(t, x). (.)

As related to Definition . and Theorem . it follows that F(t, x) is (i)-differentiable and
that

F ′(t, x) =
f (t, x(t))

p(t)
. (.)

Hence, Theorem . and equation (.) imply that g(t, x) is (i)-differentiable and

g ′(t, x) =
f (t, x(t))

p(t)
. (.)

Again since a(t) >  and p′(t) = a(t)p(t), it is obvious that p(t)p′(t) > . Hence, it follows
from Theorem . and equations (.) and (.)-(.) that

x′(t) =
(
p(t)g(t, x)

)′ = p′(t)g(t, x) + p(t)g ′(t, x)

= a(t)p(t)g(t, x) + f
(
t, x(t)

)

= a(t)x(t) + f
(
t, x(t)

)
. (.)

Therefore, x is a strong solution of SIDE.
On the other hand, let x be a (ii)-solution with a(t) < . Since p(t) > , we know that

p(t)p′(t) < . This way, equation (.) can be rewritten by

x(t) = p(t)h(t, x), (.)

where

h(t, x) = x �g (–)F(t, x). (.)

As we mentioned above, F(t, x) is (i)-differentiable, and accordingly, from Theorem .
and equation (.) it follows that

h′(t, x) =
f (t, x(t))

p(t)
. (.)

Since w(F(t, x)) ≤ w(x), equations (.) and (.) indicate that h(t, x) is (ii)-differentiable.
Therefore, Theorem . and equation (.) imply that

x′(t) = p′(t)h(t, x) + p(t)h′(t, x)

= a(t)p(t)h(t, x) + f
(
t, x(t)

)

= a(t)x(t) + f
(
t, x(t)

)
.

Hence, the conclusion is true. �
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In the subsequent subsection, we first give a prior estimate of the solution, and then
discuss the existence and uniqueness of strong solutions of SIDE.

Hypothesis . There exist K >  and α >  such that

∥∥f (t, z)
∥∥

I ≤ K‖z‖α
I , ∀(t, z) ∈ J × IR. (.)

Lemma . Under Hypothesis ., if f ∈ C(J × IR, IR), there is a positive constant Mα such
that the (i)- or (ii)-solution x satisfies

‖x‖C ≤ Mα , (.)

where

Mα =

{
‖p‖C(J ,R)‖x‖I exp(K‖p‖C(J ,R)

∫ tf
t


p(s) ds), if α = ,

[(‖p‖C(J ,R)‖x‖I)–α + ( – α)K‖p‖C(J ,R)
∫ tf

t


p(s) ds] 
–α , else.

Proof By means of Theorem ., Corollary ., and equations (.) and (.), we can prove
that

∥∥x(t)
∥∥

I ≤ ‖p‖C(J ,R)

(
‖x‖I +

∫ t

t

‖f (s, x(s))‖I

p(s)
ds

)

≤ ‖x‖I‖p‖C(J ,R) + K‖p‖C(J ,R)

∫ t

t


p(s)

∥∥x(s)
∥∥α

I ds.

When α = , the Gronwall inequality indicates that equation (.) is valid; when α �= ,
the generalized Bellman lemma [] hints that equation (.) is also true. �

In addition, based on Lemma ., define

Cα(J , IR) =
{

x ∈ C(J , IR) : ‖x‖C ≤ Mα

}
.

We can prove that Cα(J , IR) is a complete metric space.

Hypothesis . Assume that f satisfies the uniformly Lipschitz condition, namely there
exists L >  such that

∥∥f (t, z) �g f (t, z)
∥∥

I ≤ L‖z �g z‖I , (.)

with ∀t ∈ J and ‖z‖I ,‖z‖I ≤ Mα .

In the above SIDE problem, when a(t) ≡ , Stefanini and Bede [] proved that there exist
only two strong solutions under some limitations. We here discuss SIDE’s existence and
uniqueness of strong solutions under a(t) �= .

Theorem . Let a ∈ C(J , R). Under Hypotheses . and ., when

β = L‖p‖C(J ,R)

∫ tf

t


p(s)

ds < , (.)
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SIDE has a unique (i)-solution in Cα(J , IR) if a(t) > , and a unique (ii)-solution in Cα(J , IR)
if a(t) < , provided that the initial value x satisfies

‖p‖C(J ,R)‖x‖I ≤ ( – β)Mα . (.)

Proof Under a(t) > , define a mapping T on Cα(J , IR) given by

(Tx)(t) = exp

(∫ t

t

a(u) du
)

x +
∫ t

t

f
(
s, x(s)

)
exp

(∫ t

s
a(u) du

)
ds, (.)

with t ∈ J , namely,

(Tx)(t) = p(t)g(t, x), (.)

where g(t, x) is decided by equation (.) above. For t, t + �t ∈ J and x ∈ Cα(J , IR), in terms
of Lemma . and Theorem . we have

∥∥g(t + �t, x) �g g(t, x)
∥∥

I =
∥∥F(t + �t, x) �g F(t, x)

∥∥
I =

∥∥∥∥

∫ t+�t

t

f (s, x(s))
p(s)

ds
∥∥∥∥

I
.

Thus, we see that g(t, x) is continuous in t, due to Hypothesis . and the prior estimate
of the solution in Lemma .. This way, from Theorem . it follows that p(t)g(t, x) is
continuous in t, and hence Tx ∈ C(J , IR). Additionally, by means of Lemma . and the
additive property of the Hausdorff-Pompeiu metric on interval numbers, we derive for
x, y ∈ Cα(J , IR) that

H
(
(Tx)(t), (Ty)(t)

)
= H

(
p(t)

(
x + F(t, x)

)
, p(t)

(
x + F(t, y)

))

≤ H
(
, p(t)

)
H

(
x + F(t, x), x + F(t, y)

)

= p(t)H
(
F(t, x), F(t, y)

)
.

Thus,

‖Tx �g Ty‖C = sup
t∈J

H
(
(Tx)(t), (Ty)(t)

) ≤ sup
t∈J

p(t)H
(
F(t, x), F(t, y)

)

= sup
t∈J

p(t)H
(∫ t

t

f (s, x(s))
p(s)

ds,
∫ t

t

f (s, y(s))
p(s)

ds
)

= sup
t∈J

p(t)H
(∫ t

t

f (s, x(s)) �g f (s, y(s))
p(s)

ds, 
)

≤ sup
t∈J

p(t)
∫ t

t

‖f (s, x(s)) �g f (s, y(s))‖I

p(s)
ds.

Accordingly, we prove by Hypothesis . that

‖Tx �g Ty‖C ≤ L sup
t∈J

p(t)
∫ t

t

‖x(s) �g y(s)‖I

p(s)
ds

≤ L‖p‖C(J ,R)

∫ tf

t


p(s)

ds‖x �g y‖C

= β‖x �g y‖C . (.)
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Further, Theorem ., Hypothesis ., and equations (.), (.), and (.) imply that

‖Tx‖C ≤ ‖Tx �g T‖C + ‖T‖C

≤ β‖x‖C + ‖T‖C

≤ β‖x‖C + ‖p‖C(J ,R)‖x‖I ≤ Mα . (.)

Consequently, T is a contraction mapping on Cα(J , IR) and hence has a unique fixed point.
This shows that SIDE has a unique (i)-solution. We next prove that SIDE has a unique (ii)-
solution. If a(t) < , define a mapping T on C(J , IR) given by

(Tx)(t) = exp

(∫ t

t

a(u) du
)

x �g (–)
∫ t

t

f
(
s, x(s)

)
exp

(∫ t

s
a(u) du

)
ds, (.)

with t ∈ J , namely,

(Tx)(t) = p(t)h(t, x), (.)

where h(t, x) is decided by equation (.) above. On one hand, from Lemma . it follows
that

∥∥h(t + �t, x) �g h(t, x)
∥∥

I =
∥∥F(t, x) �g F(t + �t, x)

∥∥
I =

∥∥∥∥

∫ t+�t

t

f (s, x(s))
p(s)

ds
∥∥∥∥

I
.

On the other hand, Lemmas . and . yield

H
(
(Tx)(t), (Ty)(t)

)
= H

(
p(t)

(
x �g (–)F(t, x)

)
, p(t)

(
x �g (–)F(t, y)

))

≤ p(t)H
(
F(t, x), F(t, y)

)
. (.)

Subsequently, through a similar deduction to above we can prove that T is a contraction
mapping on Cα(J , IR). Therefore, SIDE has a unique (ii)-solution. �

In the above theoretical analysis, from Theorem . one draws the conclusion that
the (i)- and the (ii)-solutions are strong solutions under certain conditions; Theorem .
shows the conditions of existence and uniqueness of (i)- and the (ii)-solutions for equa-
tions (.) and (.), respectively. These hint that SIDE has at least a strong solution under
certain assumptions, for which we give a conclusion to emphasize the existence of strong
solutions in SIDE.

Theorem . Let a(t) be a continuous scalar function with at most countable zero points
on J . Then SIDE has at least a strong solution under Theorems . and ..

Proof Let {tn}n≥ be a series of zero points of a(t). Divide the interval J into countable
subintervals Jn with n ≥  and Jn = [tn–, tn], in which a(t) always maintains the same sign
on Jn. If a(t) >  with tn– < t < tn, Theorems . and . show that the unique (i)-solution,
xn(t), is a strong solution of SIDE on Jn. In the same way, if a(t) <  with tn– < t < tn, two
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such theorems ensure that SIDE has a strong solution on Jn, i.e., the (ii)-solution xn(t).
Therefore, we can obtain a strong solution x(t) for the above SIDE given by

x(t) =

{
xn(t), if a(t) �= , t ∈ (tn–, tn),
xn–(tn–), if t = tn–,

where

xn(t) =

{
xn(t), if a(t) > , t ∈ (tn–, tn),
xn(t), if a(t) < , t ∈ (tn–, tn).

Especially, when n = , x(t) denotes a strong solution of SIDE on [t, t]; when n = , x(t)
takes the form of x(t). This way, x(t) takes the form xn–(tn–) at the endpoint tn–. �

7 Illustrative examples
In this section, our experiments are implemented through MATLAB’s . standard ODE
solver (ode). Three simple interval-valued Cauchy problems are used to examine our
theoretical results.

Example . ([])

{
x′ = –x + [, ] sin t,  ≤ t ≤ ,
x() = [, ].

This in fact is a linear interval-valued Cauchy problem, satisfying the conditions of The-
orem . with a(t) = –. Therefore, there exists a strong solution, i.e., the (ii)-solution,
expressed by

x(t) =

{
e–t([, ] �g (–)[, ]

∫ t
 es sin s ds),  ≤ t ≤ π ,

eπ–t(x(π ) �g [, ]
∫ t
π

–es–π sin s ds), π < t ≤ .

One such solution, x = [xL, xR], is drawn in Figure , where xL and xR denote the lower
and upper bound curves of the (ii)-solution x obtained through Theorem .. x = [xL

 , xR
 ]

and x = [xL
, xR

 ] represent the curves of I- and II-type solutions gotten through (i)-differ-
entiability and the (ii)-differentiability, respectively [].

Figure 1 Comparison of curves of the solutions
for Example 7.1.
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Figure 2 Comparison of curves of the solutions
for Example 7.2.

By Figure , solutions x and x have the same switching point tα = ., and meanwhile
are almost the same in [, tα]. However, they present different characteristics within tα and
, as w(x(t)) is decreasing but w(x(t)) is increasing. This indicates the uncertainty degree
of x is ever smaller with time t, and thereby x is better than x. In addition, whereas x is
of a smaller uncertainty degree than x, it will become divergent with time t. In total, x

and x are not rational because of their divergence.

Example .
{

x′ = x sin t + f (t, x),  ≤ t ≤ π ,
x() = [, ],

where f (t, x) =
{ sin t,  ≤ t ≤ π ,

x sin t, π < t ≤ π .

We note that there is a zero point π for a(t) = sin t. It can be checked that f is a contin-
uous interval-valued function in t and x, and it satisfies the conditions as in Theorem ..
Consequently, there exists a strong solution composed of the (i)-solution in [,π ] and the
(ii)-solution in (π , π ], namely

x(t) =

{
e–cos t([, ] +

∫ t
 ecos s– sin s ds),  ≤ t ≤ π ,

e–– cos tx(π ), π < t ≤ π .

The solution x is drawn in Figure . In addition, x and x represent the curves of I- and
II-type solutions mentioned above, respectively.

By Figure , solutions x and x are almost the same in [,π ]. However, w(x(t)) is de-
creasing but w(x(t)) is increasing in (π , π ]. This indicates the uncertainty degree of x is
smaller than that of x in (π , π ], and thus x is superior to x. On the other hand, x is of a
smaller uncertainty degree than x and x, as w(x(t)) remains decreasing. It is emphasized
that I- and the II-type solutions are two kinds of extreme solutions decided under (i)-dif-
ferentiability and the (ii)-differentiability, whereas through Theorem ., we can obtain a
more rational strong solution which switches between the (i)- and the (ii)-solutions.

Example .
{

x′ = x cos t + x sin t
+sin t ,  ≤ t ≤ π ,

x() = [–, ].
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Figure 3 Comparison of curves of the solutions
for Example 7.3.

It can be examined that f satisfies Hypotheses . and ., where f (t, x) = xϕ(t) and
ϕ(t) = sin t

+sin t . The reason can be found below.
(i) For any (t, x) ∈ J × IR, since

∥∥f (t, x)
∥∥

I = H
(
f (t, x), 

)
= max

{∣∣(xL)
ϕ(t)

∣∣,
∣∣(xR)

ϕ(t)
∣∣} ≤ ‖x‖

I .

Therefore, Hypothesis . holds.
(ii) For ‖x‖C ,‖y‖C ≤ Mα , we have

H
(
f (t, x), f (t, y)

)
= max

{∣∣(xL)
ϕ(t) –

(
yL)

ϕ(t)
∣∣,

∣∣(xR)
ϕ(t) –

(
yR)

ϕ(t)
∣∣}

≤ max
{∣∣(xL) –

(
yL)∣∣,

∣∣(xR) –
(
yR)∣∣}

≤ M
αH(x, y).

This illustrates that Hypothesis . is true.
We note that there are two zero points π

 and π
 for a(t) = cos t. As associated to Theo-

rem ., there exists a strong solution composed of two (i)-solutions on [, π
 ] and ( π

 , π ],
and a (ii)-solution on ( π

 , π
 ], namely

x(t) =

⎧
⎪⎪⎨

⎪⎪⎩

esin t([–, ] +
∫ t

 ϕ(s)x(s)e– sin s ds),  ≤ t ≤ π
 ,

esin t–(x( π
 ) �g (–)

∫ t
π


ϕ(s)x(s)e– sin s+ ds), π
 < t ≤ π

 ,
esin t+(x( π

 ) +
∫ t

π


ϕ(s)x(s)e– sin s– ds), π
 < t ≤ π .

The solution x is drawn in Figure . In addition, x and x represent the curves of I- and
II-type solutions gotten in the same fashion as above, respectively.

By Figure , the solutions x and x are almost the same on [, π
 ]. w(x(t)) is increasing in

[, π
 ], decreasing in ( π

 , π
 ], and increasing in ( π

 , π ]. On the other hand, w(x(t)) always
remains increasing, and w(x(t)) keeps decreasing. This shows that the I-type solution x

diverges and the II-type solution x is very conservative. Thus, x and x cannot effectively
reflect the dynamic characteristics of the above dynamic system, but x is opposite.

8 Conclusions
This work aims at studying the properties of interval-valued functions under the gH-dif-
ference and also probing the existence of the solutions for a class of semi-linear interval
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differential equations. As associated to the concept of the gH-difference and also the con-
ventional arithmetic rules such as addition and scalar multiplication, we have developed a
complete normed quasi-linear space on interval numbers, in which some important prop-
erties of the gH-difference are found under the Hausdorff-Pompeiu metric. Subsequently,
on the basis of one such space, we introduced a continuous interval-valued function space
which has been proven to be a complete normed quasi-linear space. A contracting map-
ping theorem on one such space, similar to the classical contracting mapping principle,
has been obtained, relying upon the gH-difference. Based on these fundamental works,
some arithmetic properties of the gH-derivative for interval-valued functions were inves-
tigated exhaustively, among which some results can be adopted to study the existence and
uniqueness of the solutions for such a kind of semi-linear equation. After some simple
properties of the integral of interval-valued functions were discussed, we have obtained a
necessary condition that the (i)- and the (ii)-solutions are strong solutions, including the
conditions of the existence and uniqueness of the solutions.
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