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the usual addition were a commutative semi-group but failed as a group. Unfortunately,

since such systems are not an Abelian group for addition, interval arithmetic cannot yield

the structure of a linear space. Generally, the arithmetic of addition is irreversible, namely

for any two interval numbersa andb, if a + b = 	, b is not equivalent to …a usually, where

	 = [	, 	]. This way, whereas the di�erence of a and b can be de“ned by such a version

of addition, many properties present in real analysis are not true in the context of inter-

val number arithmetic,e.g. a…a �= 	. In order to develop a useful theoretical framework

on interval number like real number theory, Hukuhara [�� ] introduced another concept

of interval di�erence for a and b in �
��, namely the Hukuhara di�erence (H-di�erence,

a � b), wherea � b = c if and only if a = b + c. However, although such a concept can

satisfya � a = 	, a � b is meaningful only whenw(a) ≥ w(b), wherew(a) and w(b) de-

note the widths ofa andb, respectively. In order to overcome one such fault, after Markov

[�� ] pointed out that the width of a …b was equal to the sum of the widths ofa andb, he

gave the concept of a nonstandard subtraction expressed also by the symbol of •…•. Such

a concept can guarantee thata …a = 	, and the width of the interval a …b equals the ab-

solute value of the di�erence of the widths ofa and b. Thereafter, Stefanini [
 , �� …�
 ]

extended the version of the H-di�erence to the concept of a generalized Hukuhara di�er-

ence (gH-di�erence,a �g b) which coincided with the nonstandard subtraction operator

introduced in Markov [�� ], De“nition �, p.���. Such a gH-di�erence has been comprehen-

sively adopted to investigate interval dynamic systems, because apart from still satisfying

a �g a = 	, the gH-di�erence always exists for any two intervals. Thus, it is an invaluable

mathematical concept in probing interval number theory. In our last work [�	 ], some fun-

damental arithmetic rules on interval numbers, based on the conventional addition and

gH-di�erence were extended to the case of interval-valued vectors, while some properties,

in particular associative and distributive laws, were obtained.

After the conventional subtraction arithmetic was generalized, multiple kinds of con-

cepts of derivatives for interval-valued functions were reported [
 , �� , �� , �� , �� …�� ].

Hukuhara [�� ] introduced the concept of H-di�erentiability for set-valued functions by

using the concept of the H-di�erence. This is a starting point to study set, fuzzy and later

interval di�erential equations. However, the H-derivative has some shortcomings which

make it di�cult to study the properties of interval-valued di�erential or integral equa-

tions, as the H-di�erence does not always exist for any two interval numbers. This limits

its wide application to interval dynamic systems. Fortunately, based on the H-di�erence

and the gH-di�erence, two recent generalized concepts of the GH-derivative [�� ] and

gH-derivative [
 ] were introduced by Stefaniniet al. Two such kinds of derivatives can

be more comprehensively adopted to study IDEs by comparison with the H-derivative.

Many valuable fundamental properties have been discovered by researchers [�� , �� , �� ].

We also note that there exist some intrinsic relationships between these two concepts,

for example a GH-di�erential interval-valued function is usually a gH-di�erential under

a few weak assumptions [
 ]. From the viewpoint of theoretical analysis, the gH-derivative

of an interval-valued function at some point can be computed by only one formula,

but the GH-derivative is opposite. Therefore, in comparison with the concept of the

GH-derivative, the version of the gH-derivative will become more and more focused

upon in the coming theoretical research on IDEs, demonstrated by some recent results

[
 , �� …�� , �� ].
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Recently, several researchers have paid great attention to studies on the properties

of interval-valued functions, in particular continuity, di�erentiability, and integrability.

Some reported representative achievements promote the importance of interval dynam-

ics. Chalco-Canoet al. [�� , �� , �� ] made hard e�orts to study systematically some rela-

tionships among GH-, gH-, Markov, andπ -di�erentiability [ 
 , �� , �� , �� ]. They claimed

that (i) if an interval-valued functionf was GH-di�erentiable, then it wasπ -di�erentiable,

and (ii) if f wasπ -di�erentiable, then it was gH-di�erentiable. They also derived several

Ostrowski inequalities capable of being used for studying IDEs• solution estimates, rely-

ing upon the concept of the gH-derivative [�� ]. The concepts of the GH-derivative and the

gH-derivative are usually utilized to de“ne the types of the solutions for IDEs [
 …�� , �� ,

�� , �� ]. However, since many arithmetic properties of real number theory are not true in

the branch of interval analysis, it is extremely di�cult to probe IDEs• theoretical founda-

tions. Even so, some pioneering works on the existence and uniqueness of the solutions are

gaining great interest among researchers. Theoretically, studies on IDEs depend greatly on

the type of interval-valued derivative, as di�erent concepts of derivatives require that IDEs

satisfy di�erent conditions so as to ensure IDEs• solution existence and uniqueness.

More recently, several special IDEs were de“ned based on GH-di�erentiability, and then

transformed into integral equations with the H-di�erence [�	 …�� , �� …�	 , �
 ]. Their so-

lution properties, including the existence, uniqueness, and continuous dependence, have

been well investigated by some researchers. Malinowski [�	 , �� ] made great contributions

to analyzing a kind of IDE, depending on the second type of Hukuhara derivative included

in the concept of GH-derivative. Subsequently, some important properties of the solu-

tions were found such as the existence of local solutions, convergence, and continuous

dependence of the solution on initial value and right-hand side of the equation. Skripnic

[�� ] proved the existence of the solutions of IDEs by virtue of the Caratheodory theo-

rem and the concept of generalized di�erentiability [�
 ], in which the version of deriva-

tive was equivalent to that of GH-derivative. Additionally, based on the GH-derivative,

Ngo et al. [�� , �� , �
 …�	 ] carried out a series of studies for multiple kinds of IDEs such

as interval-valued integro-di�erential equations, interval-valued functional di�erential

equations, and so on. They obtained some signi“cant conclusions as regards the existence

of the solutions, by developing comparison theorems.

On the other hand, IDEs have also been well studied based on the concept of the

gH-di�erence in the recent years [
 , �� …�� , �� , �� , �� , �	 ]. Stefanini and Bede [
 ] gave

the existence and uniqueness of two types of local solutions for an initial valued IDE

with a gH-derivative, and meanwhile the characteristics of the solutions were found. After

that, they also carried out an experimental analysis of such a kind of IDE [�� ]. Especially,

Chalco-Canoet al.[�� ] investigated exhaustively the properties of an interval-valued func-

tion expressed byCg(t) with interval number C and real single-valued functiong. They

also derived out the representation of the solutions for a class of linear initial valued IDEs.

In addition, Lupulescu [�� ] proposed the concepts of di�erentiability and integrability for

the interval-valued functions on time scales, while the properties of the delta generalized

Hukuhra derivative and integration of interval-valued functions on time scales were stud-

ied. An illustrative example of an IDE on time scale was also given. Lupulescu [�	 ] also

use the gH-di�erence to develop a theory of the fractional calculus for interval-valued

functions, and it is the foundation of interval-valued fractional di�erential equations.
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Summarizing, interval di�erential dynamic systems are a still open research topic in the
context of di�erential dynamic systems. Three fundamental issues are under considera-
tion: (i) how to de“ne and analyze the space of the solutions, (ii) whether some classical
conclusions such as “xed point theorems in the branch of classical functional analysis
can be adapted to IDEs, and (iii) how to derive analytic solutions or numerical ones for
IDEs. Thus, in this paper we probe into the existence and uniqueness of the solutions
for a class of semi-linear interval dynamic systems, after developing a complete normed
quasi-linear space. Most precisely, we “rst give a quasi-linear space on interval number
and a related continuous interval-valued function space, and meanwhile their properties
are su�ciently discussed. Second, an important and classical “xed point theorem is gen-
eralized to the interval-valued case so as to discover IDEs• properties. Finally, we conclude
that there exists at least a strong solution for a kind of semi-linear IDE as considered in
this work.

2 Preliminaries and basic properties of gH-difference
Let IR denote a set composed of all closed intervals inR. For a given intervala = [aL,aR],
a is said to be a degenerate interval ifaL = aR. We say thata equals intervalb only when
aL = bL and aR = bR, whereb = [bL,bR]. Some interval arithmetic rules onIR are de“ned
below [�� ]:

(i) a + b = [aL + bL,aR + bR];
(ii) ka =

{ [kaL,kaR], k ≥ 	,
[kaR,kaL], k < 	;

(iii) a …b = a + (…�)b = [aL …bR,aR …bL];
(iv) ab = [min{u ∈ A},max{u ∈ A}], where A = {aLbL,aLbR,aRbL,aRbR};
(v) |a| = max{|aL|, |aR|}, w(a) = aR …aL;

(vi) a ≤ b ⇔ aL ≤ bL, aR ≤ bR.
In general,a…a does not equal 	 except thata is a degenerate interval. This indicates that

the subtraction is not the inverse of Minkowski addition above. However, the cancellation
law of addition on interval numbers holds,i.e., a+c= b+cif and only if a = b. Sincea…a �=
	, many properties of the real number theory cannot be extended to interval analysis.
So, Hukuhara [�� ] introduced another concept of subtraction in order to overcome this
drawback. He de“ned the H-di�erence (i.e., a � b) of a and b asc if a = b + c, namely
a � b = c. Although such a subtraction can yielda � a = 	, a � b exists only whenw(a) ≥
w(b). Subsequently, Stefanini [�� …�
 ] proposed a more general concept of subtraction as
below.

Definition . ([�
 ]) The gH-di�erence of a andb is de“ned by

a �g b = c, (�.�)

wherec satis“esa = b + c if w(a) ≥ w(b), or b = a + (…�)c if w(a) < w(b).

The above de“nition indicates that any two intervalsa and b have their gH-di�erence.
In addition, we notice that the concepts of the gH-di�erence and H-di�erence have an
important relationship, namelya�g b = a� b if w(a) ≥ w(b). However, whenw(a) < w(b),
a �g b is meaningful, buta � b is not. Thus, the gH-di�erence is an extension version
of the H-di�erence. Further, Stefanini [�
 ] obtained the following basic properties of the
gH-di�erence:
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(i) a �g b = [min{aL …bL,aR …bR},max{aL …bL,aR …bR}];
(ii) a �g a = 	 , a �g 	 = a, 	 �g a = (…�)a;

(iii) (…a) �g b = (…b) �g a;
(iv) a �g b = (…b) �g (…a) = …(b�g a);
(v) (a + b) �g b = a, a �g (a + b) = …b;

(vi) (a �g b) + b = a, if w(a) ≥ w(b); a + (…�)(a �g b) = b, if w(a) < w(b);
(vii) k(a �g b) = ka�g kb, k ∈ R.
In our last work [�	 ], we also obtained some properties of the gH-di�erence, for exam-

ple:
(i) (a + b) �g c= a + b�g c if and only if w(c) ≤ w(b) with c∈ IR;

(ii) a(b�g c) = ab�g ac, if b and c are symmetric, or one of the following conditions
holds:
(a) w(b) ≥ w(c), and 	 ≤ c≤ b, b ≤ c≤ 	 ;
(b) w(b) ≤ w(c), and 	 ≤ b ≤ c, c≤ b ≤ 	 .

In the present work, in terms of the concept of the gH-di�erence, we obtain some prop-
erties summed up below.

Lemma . The following properties are true:
(i) a �g b = 	 if and only if b = a;

(ii) (a + b) �g (a + c) = b�g c;
(iii) (a �g b) �g (a �g c) = c�g b, if w(a) ≤ min(w(b),w(c)) or w(a) ≥ max(w(b),w(c)).

Proof Case (i) is true by the de“nition of the gH-di�erence.
Case (ii): write (a+ b)�g (a+ c) = d. Based on the gH-di�erence, we havea+ b = a+ c+ d

or a + c= a + b+ (…�)d. Hence, it follows from the cancellation law of addition on interval
number that b = c+ d or c= b + (…�)d. This illustrates thatb�g c= d.

Case (iii): writea �g b = e, a �g c = f , ande�g f = g. When w(a) ≤ min(w(b),w(c)), we
note that b = a + (…�)e and c = a + (…�)f . Thus, if w(e) ≥ w(f ), then e= f + g, and hence
a + (…�)e= a + (…�)f + (…�)g. This yieldsb = c+ (…�)g. On the other hand, ifw(e) < w(f ), we
havef = e+ (…�)g, and hencea + (…�)f = a + (…�)e+ g. Thus one derives thatc= b + g. In
total, we obtaing= c�g b. Similarly, whenw(a) ≥ max(w(b),w(c)), it follows that a = b+ e
anda = c+ f . If w(e) ≥ w(f ), one can derive thatc+ f = b+ e= b+ f + g, that is,c= b+ g. On
the other hand, ifw(e) < w(f ), we haveb + e= c+ f = c+ e+ (…�)g, and thenb = c+ (…�)g.
Thus we also getg= c�g b. �

For the convenience of notation, writerab = w(a) …w(b) andrbc = w(b) …w(c). We obtain
the following properties.

Lemma . The following properties hold:

(i) (a �g b) �g c=

{
a �g (b + c), if r ab ≥ 	,

(a + (…�)c) �g b, else;

(ii) a �g (b�g c) =

{
(a + c) �g b, if r bc ≥ 	,

c�g (b + (…�)a), else;

(iii) a �g (b + c) =

{
(a �g b) �g c, if r ab ≥ 	,

a �g b + (…�)c, else;
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(iv) a �g b + c=

{
(a + c) �g b, if r ab ≥ 	,

a �g (b + (…�)c), else.

Proof Write a�gb = d andb�gc= d� . If rab ≥ 	, then a = b+d; if rab < 	, then b = a+(…�)d.

Similarly, if rbc ≥ 	, then b = c+ d� ; if rbc < 	 then c= b + (…�)d� .

Case (i): writed�gc= e� . By de“nition, it implies that d = c+e� if w(d) ≥ w(c), andc= d+

(…�)e� if w(d) < w(c). In the case ofrab ≥ 	, if w(d) ≥ w(c), one gets thata = b+d = b+c+e� ;

and ifw(d) < w(c), thenb+c= b+d+(…�)e� = a+(…�)e� . Therefore, we havee� = a�g(b+c).

Conversely, in the case ofrab < 	, if w(d) ≥ w(c), thenb = a+ (…�)d = a+ (…�)c+ (…�)e� , and

if w(d) < w(c), thena+(…�)c= a+(…�)d+e� = b+e� . This indicates thate� = (a+(…�)c)�gb.

Case (ii): writea�gd� = e� . We can obtaina = d� +e� if w(a) ≥ w(d� ), andd� = a+(…�)e� if

w(a) < w(d� ). In the case ofrbc ≥ 	, if w(a) ≥ w(d� ), one can derive thata + c= c+ d� + e� =

b + e� ; if w(a) < w(d� ), then b = c + d� = a + c + (…�)e� . These two equalities follow from

e� = (a + c) �g b. On the other hand, in the case ofrbc < 	, if w(a) ≥ w(d� ), thenb+ (…�)a =

b + (…�)d� + (…�)e� = c+ (…�)e� ; if w(a) < w(d� ), then c= b + (…�)d� = b + (…�)a + e� . Thus,

we gete� = c�g (b + (…�)a).

Case (iii): writea �g (b+ c) = e� . The “rst equality is the same as the “rst one of case (i).

We only need to demonstrate the second one. To this end, ifrab < 	, it is obvious that

w(a) ≤ w(b + c). This means thatb + c= a + (…�)e� . Therefore, (a + (…�)d) + c= a + (…�)e� .

Hence, we gete� = d + (…�)c.

Case (iv): in the case ofrab ≥ 	, we know that a = b+d, which yieldsa+c= b+c+d; again

sincew(a + c) ≥ w(b), we getd + c= (a + c) �g b. Conversely, in the case ofrab < 	, we note

that w(a) < w(b+ (…�)c) andb = a + (…�)d, which illustrates thatb+ (…�)c= a + (…�)(d + c).

Thus,d + c= a �g (b + (…�)c). This completes the proof. �

3 Normed quasi-linear space
3.1 Interval number space
In this section, we “rst develop a quasi-linear space onIR, and then we analyze its prop-

erties under the gH-di�erence, by introducing the Hausdor�-Pompeiu metric on inter-

val numbers. Fora,b,c ∈ IR, and k,l ∈ R, the addition and scalar multiplication have

some well-known properties: (i)a + b = b + a, (ii) a + (b + c) = (a + b) + c, (iii) a + 	 = a,

(iv) k(a + b) = ka + kb, (v) k(la) = (kl)a, (vi) �a = a. Unfortunately, there usually does not

existd ∈ IR s.t.a + d = 	, and the equality (k + l)a = ka + la is true only whenkl ≥ 	 [ �� ].

For example, takea = [�, �], b = […�,…�],k = �, and l = …�. Obviously, one can “nd that

(k + l)a = 	 and ka+ la = [�, �]. Thus, ( k + l)a �= ka+ lb; on the other hand, ifa+ b = 	, then

� + bL = 	 and � + bR = 	, and henceb = […�,…�], which yields a contradiction.

In brief, IR is not a linear space under the above arithmetic rules of addition and scalar

multiplication, but it can almost keep the features of linear space, provided that we replace

subtraction by the gH-di�erence. Thus, we callIRa quasi-linear space with gH-di�erence.

In one such quasi-linear space, we can easily obtain an additional property, namely for

a givena ∈ IR, there exists a uniqued ∈ IR such that a �g d = 	. Additionally, in order

to investigate the relation between elements inIR, we introduce the Hausdor�-Pompeiu

metric [�� ] on IR, i.e.,

H(a,b) = max
{∣∣aL …bL

∣∣,
∣∣aR …bR

∣∣}. (�.�)
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Through simple induction, the triangle inequality of the Hausdor�-Pompeiu metric onIR

always holds, namely

H(a,b) ≤ H(a,c) + H(c,b). (�.�)

Aubin and Cellina [�� ] asserted that (IR,H) was a complete metric space. Further, such a

metric can imply the following properties with the H-di�erence [�	 , �� ]:

(i) H(a + b,a + c) = H(b,c);
(ii) H(ka,kb) = |k|H(a,b), where k ∈ R;

(iii)

H(a + b,c+ d) ≤ H(a,c) + H(b,d); (�.�)

(iv) if a � b, a � c exist, then H(a � b,a � c) = H(b,c);
(v) if a � b, c� d exist, then H(a � b,c� d) = H(a + d,b + c).

Notice that equations (iv) and (v) are true only whena � b, a � c, andc� d exist. We

next identify whether the two equations of (iv) and (v) above hold after replacing� by�g.

For convenience of the representation, writerab = w(a) …w(b), rac = w(a) …w(c), andrcd =

w(c) …w(d) with a,b,c,d ∈ IR.

Lemma . There always exists the following inequality:

H(a �g b,a �g c) ≤ H(b,c). (�.�)

Especially, the equality holds if rabrac ≥ 	.

Proof Write d = a �g b and e= a �g c. In the case ofrabrac ≥ 	, if rab ≥ 	 and rac ≥ 	, we

can obtaind = a�b ande= a�cby the de“nition as in equation (�.� ), and hence it follows

from property (iv) of Hausdor�-Pompeiu metric above that the equality is true; ifrab ≤ 	

andrac ≤ 	, then b = a+(…�)d andc= a+(…�)e. This, together with properties (i) and (ii) of

Hausdor�-Pompeiu metric above, easily showsH(d,e) = H(a + (…�)d,a + (…�)e) = H(b,c).

Therefore, whenrab andrac have the same sign, the equality in equation (�.� ) holds. In the

case ofrabrac < 	, if rab > 	 and rac < 	, then a = b + d and c = a + (…�)e, and accordingly,

we have

H(b,c) = H
(
b,b + d + (…�)e

)

= H
(
	, d + (…�)e

)

= max
{∣∣dL …eR

∣∣,
∣∣dR …eL

∣∣}

≥ max
{∣∣dL …eL

∣∣,
∣∣dR …eR

∣∣} = H(d,e).

Similarly, whenrab < 	 and rac > 	, we can also prove that equation (�.� ) holds. �

The above lemma can be illustrated by takinga = [�, �], b = […�,…�], andc = [�, �].

Through simple inference, we obtain thatH(a �g b,a �g c) = H([�, �], […�,…�]) = �, and

H(b,c) = H([…�,…�], [�, �]) = �. So, equation (�.� ) is true.
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Lemma . The following inequality is always true,

H(a �g b,c�g d) ≤ H(a + d,b + c). (�.�)

Especially, the equality holds if rabrcd ≥ 	.

Proof Write e= a �g b and h = c �g d. In the case ofrabrcd ≥ 	, if rab ≥ 	 and rcd ≥ 	,

we can obtain bothe= a � b and h = c� d; if rab ≤ 	 and rcd ≤ 	, then b = a + (…�)eand

d = c+(…�)h. This easily shows that equation (�.� ) is valid. In the case ofrabrcd < 	, if rab > 	

andrcd < 	, then a = b + eandd = c+ (…�)h. Therefore,

H(a + d,b + c) = H
(
b + c+ e+ (…�)h,b + c

)

= H
(
e+ (…�)h, 	

)

= max
{∣∣eL …hR

∣∣,
∣∣eR …hL

∣∣}

≥ max
{∣∣eL …hL

∣∣,
∣∣eR …hR

∣∣} = H(e,h).

In the same way, ifrab < 	 and rcd > 	, then

H(a + d,b + c) = H
(
a + d,a + d + (…�)e+ h

)

= H
(
	, (…�)e+ h

) ≥ H(e,h).

In brief, the above conclusion holds. �

For example, takea = [�, �], b = [�, �], c = [�, �], and d = […�,…�]. We can see that

H(a�gb,c�gd) = H([…�,…�], [�, �]) = 
, and H(a+d,b+c) = H([…�, �], [�, ��]) = �	. Hence,

equation (�.� ) is valid.

Lemma . ([�� ]) Let a,b,c∈ IR, then

H(ac,bc) ≤ H(	, c)H(a,b). (�.�)

Based on the above Hausdor�-Pompeiu metric, de“ne‖a‖I = H(a, 	) with a ∈ IR. Fur-

ther, by simple inference we notice that‖ · ‖I satis“es the basic properties of the classical

concept of norm. Therefore,IR can be naturally said to be a normed quasi-linear space.

Theorem . For a,b ∈ IR, the following basic properties are true:

(i) ‖a �g b‖I = H(a,b);
(ii) ‖a‖I …‖b‖I ≤ ‖a �g b‖I ≤ ‖a‖I + ‖b‖I ;

(iii) ‖ab‖I = ‖a‖I‖b‖I .

Proof Cases (i) and (ii) hold obviously. Case (iii): since

‖ab‖I = H(ab, 	)

= max
{∣∣aLbL

∣∣,
∣∣aLbR

∣∣,
∣∣aRbL

∣∣,
∣∣aRbR

∣∣}
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= max
{∣∣aL

∣∣,
∣∣aR

∣∣} · max
{∣∣bL

∣∣,
∣∣bR

∣∣}

= H(a, 	) H(b, 	) = ‖a‖I‖b‖I ,

the conclusion is true. �

Takea = […�,…�] andb = [�, �]. Then ‖a�gb‖I = ‖[…�,…�]‖I = � and H(a,b) = �. Further,
‖a‖I …‖b‖I = …�,‖a‖I + ‖b‖I = �, ‖ab‖I = ‖[…�,…�]‖I = �, and ‖a‖I‖b‖I = �. Thus, the
above conclusions in Theorem�.� hold.

We next discuss the completeness of the normed quasi-linear spaceIR, where a version
of interval convergence is given.

Definition . For an,a ∈ IR, n = �, �, . . . , if ‖an �g a‖I → 	 as n → ∞, {an}n≥� is said to
be convergent toa (simply written aslimn→∞ an = a).

Similarly, we introduce the version of Cauchy convergence inIR. That is,{an}n≥� is con-
vergent if and only if‖an �g am‖I → 	 as m,n → ∞. It is easy to prove that (IR,‖ · ‖I ) is
complete by means of the completeness of (IR,H).

Theorem . (IR,‖ · ‖I ) is a complete normed quasi-linear space.

Proof Let {an}n≥� be an arbitrary Cauchy sequence in (IR,‖ · ‖I ). SinceH(an,am) = ‖an �g

am‖I , we obtainH(an,am) → 	 as m,n → ∞. Therefore,{an}n≥� is a Cauchy sequence in
(IR,H) and, accordingly, there existsa ∈ IR such thatH(an,a) → 	 as n → ∞, due to the
completeness of (IR,H). This implies that‖an �g a‖I → 	 as n → ∞. �

3.2 Interval-valued function space
Let I = [t� , t� ] and t	 ∈ I . f : I → IR is an interval-valued function. We say thata ∈ IR is
the limit of f at the point t	 if ‖f (t) �g a‖I → 	 as t → t	 . f is said to be continuous on
I , if for any givent	 ∈ I , ‖f (t) �g f (t	 )‖I → 	 as t → t	 . De“ne the following continuous
interval-valued function space,

C(I ,IR) = {f |f : I → IR,f is continuous onI }.

Introduce the following well-known arithmetic rules forf ,g∈ C(I ,IR):
(i) (f + g)(t) = f (t) + g(t);

(ii) (kf )(t) = kf (t), k ∈ R;
(iii) (f �g g)(t) = f (t) �g g(t);
(iv) (fg)(t) = f (t)g(t).
Under these arithmetic rules, we discuss some basic properties inC(I ,IR).

Theorem . If f ,g∈ C(I ,IR), then kf, f + g, f �g g, and fg are continuous on I.

Proof For anyt	 ∈ I , since

H
(
kf (t),kf (t	 )

)
= |k|H(

f (t),f (t	 )
)
, k ∈ R,

kf is continuous at the pointt	 . Again, through equation (�.� ), we obtain

H
(
f (t) + g(t),f (t	 ) + g(t	 )

) ≤ H
(
f (t),f (t	 )

)
+ H

(
g(t),g(t	 )

)
.
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Thus, following the de“nition of continuity, we derive thatf + g∈ C(I ,IR). Further, equa-
tions (�.� ) and (�.� ) yield

H
(
f (t) �g g(t),f (t	 ) �g g(t	 )

)

≤ H
(
f (t) + g(t	 ),g(t) + f (t	 )

)

≤ H
(
f (t),f (t	 )

)
+ H

(
g(t),g(t	 )

)
.

Thus, f �g g∈ C(I ,IR). On the other hand, equations (�.� ) and (�.� ) imply that

H
(
f (t)g(t),f (t	 )g(t	 )

)

≤ H
(
f (t)g(t),f (t)g(t	 )

)
+ H

(
f (t)g(t	 ),f (t	 )g(t	 )

)

≤ H
(
	, f (t)

)
H

(
g(t),g(t	 )

)
+ H

(
	, g(t	 )

)
H

(
f (t),f (t	 )

)

and, consequently,fg∈ C(I ,IR). �

Through the process of the proof above, we notice thatf ∈ C(I ,IR) if and only if f L, f R ∈
C(I ,R), wheref (t) = [f L(t),f R(t)]. Further, according to the above arithmetic rules,C(I ,IR)
is also a quasi-linear space. De“ne

ρ(f ,g) = sup
t∈I

{
H

(
f (t),g(t)

)}
. (�.�)

One can prove that the metric ofρ satis“es the three basic properties of a metric space,
namely if f ,g,h ∈ C(I ,IR), then

(i) ρ(f ,g) ≥ 	 ; ρ(f ,g) = 	 if and only if f = g;
(ii) ρ(f ,g) = ρ(g,f );

(iii) ρ(f ,g) ≤ ρ(f ,h) + ρ(h,g).
Thus, (C(I ,IR),ρ) is a metric space. In addition, in terms of the properties of the

Hausdor�-Pompeiu metric, it is easy to see thatρ has the following properties, namely
if f ,g,ϕ,ψ ∈ C(I ,IR), then:

(i) ρ(f + ϕ, f + ψ) = ρ(ϕ,ψ);
(ii) ρ(kf ,kg) = |k|ρ(f ,g), where k ∈ R;

(iii) ρ(f ϕ, f ψ) = ρ(	, f )ρ(ϕ,ψ);
(iv) ρ(f + g,ϕ + ψ) ≤ ρ(f ,ϕ) + ρ(g,ψ);
(v) ρ(f �g ϕ, f �g ψ) ≤ ρ(ϕ,ψ);

(vi) ρ(f �g g,ϕ �g ψ) ≤ ρ(f + ψ ,g+ ϕ).
We further discuss some properties ofC(I ,IR) useful for studying the properties of IDEs.

To this point, introduce the version of convergence of an interval-valued function se-
quence. Forfn,f ∈ C(I ,IR),n = �, �, . . . , if ρ(fn, f ) → 	 as n → ∞, {fn}n≥� is said to be conver-
gent to f . Similarly, we say that{fn}n≥� is a Cauchy sequence ifρ(fn, fm) → 	 as m,n → ∞.

Theorem . The quasi-linear space(C(I ,IR),ρ) is complete.

Proof Let {fn}n≥� be an arbitrary Cauchy sequence inC(I ,IR). It follows that for anyε > 	,
there existsN	 (ε) > 	 such that if n,m > N	 (ε), then

∥∥fn(t) �g fm(t)
∥∥

I = H
(
fn(t),fm(t)

) ≤ ρ(fn, fm) <
ε

�
, t ∈ I .
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Therefore, for any “xedt, {fn(t)}n≥� is a Cauchy sequence in the complete normed quasi-
linear spaceIRand, accordingly, there exists an elementf (t) ∈ IRsuch that whenn > N	 (ε),
one can derive that

∥∥fn(t) �g f (t)
∥∥

I <
ε

�
.

This way,{fn}n≥� converges uniformly tof on I . On the other hand, for anyt	 ∈ I there
existsδ(ε) > 	 such that if |t …t	 | < δ(ε), then‖fn(t) �g fn(t	 )‖I < ε

� . According to equation
(�.� ) and property (i) as in Theorem�.� , we see that

∥∥f (t) �g f (t	 )
∥∥

I ≤ ∥∥f (t) �g fn(t)
∥∥

I +
∥∥fn(t) �g fn(t	 )

∥∥
I +

∥∥fn(t	 ) �g f (t	 )
∥∥

I < ε.

Consequently,f ∈ C(I ,IR), and hence the proof is completed. �

Like the above normed quasi-linear spaceIR, we can introduce the version of a norm
on C(I ,IR), namely‖f ‖C = ρ(f , 	). By means of the Hausdor�-Pompeiu metric on interval
numbers above, one can see that (C(I ,IR),‖ · ‖C) is a normed quasi-linear space. We also
notice that |f (t)| = H(f (t), 	). Therefore, we can rewrite‖f ‖C assupt∈I |f (t)|. Additionally,
by means of Theorems�.� and �.
 , the following basic properties are valid.

Theorem . If f ,g∈ C(I ,IR), then
(i) ‖f �g g‖C = ρ(f ,g);

(ii) ‖f ‖C …‖g‖C ≤ ‖f �g g‖C ≤ ‖f ‖C + ‖g‖C;
(iii) ‖fg‖C ≤ ‖f ‖C‖g‖C;
(iv) (C(I ,IR),‖ · ‖C) is a complete normed quasi-linear space.

We next develop a “xed point theorem under the gH-di�erence.x is said to be a “xed
point of a mappingT : C(I ,IR) → C(I ,IR) if Tx = x. We say thatT is a contraction mapping
on C(I ,IR), if there exists a real numberα with 	 < α < � such that ‖Tx �g Ty‖C ≤ α‖x �g

y‖C for any x,y ∈ C(I ,IR). Similar to the process of the proof as in the classical principle
of contraction mapping, we obtain a “xed point theorem as below.

Theorem . If T : C(I ,IR) → C(I ,IR) is a contraction mapping, there exists a “xed
point.

4 The properties of gH-differentiability
Since the addition arithmetic on interval number is irreversible, the concept of a derivative
of an interval-valued function has been gaining great concern among researchers. As to
this point, Hukuhara [�� ] introduced the concept of the H-derivative related to the version
of the H-di�erence. However, as we mention in Section� , this concept cannot be compre-
hensively adopted to investigate the properties of interval-valued functions, as it cannot
ensure that the H-di�erence exists for any two interval numbers. Thereafter, Bede and Gal
[�� ] generalized such concept of a derivative to the version of a GH-derivative. However,
the latter concept is relatively more useful, it still needs the same basic assumptions as
the concept of H-derivative. Fortunately, Stefanini and Bede [
 ] proposed a more general
concept of derivative (i.e., the gH-derivative) by comparison with the GH-derivative. The
main merit consists in the fact that their concept is similar to the version of the derivative
of a real-valued function.
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Definition . ([
 ]) f : I → IR is said to be gH-di�erentiable onI if f is gH-di�erentiable
in t ∈ I , namely there exists an interval numberf ′(t) ∈ IR such that

f ′(t) = lim
h→	

f (t + h) �g f (t)
h

. (�.�)

f is said to be (i)-di�erentiable in t ∈ I if f ′(t) = [(f L)′(t), (f R)′(t)] and (ii)-di�erentiable if
f ′(t) = [(f R)′(t), (f L)′(t)], wheref (t) = [f L(t),f R(t)].

The main advantage of such a de“nition is that the formulation of the gH-derivative is
simpler than that of the GH-derivative. Thus, it is easily utilized to study interval-valued
functions. According to the de“nition, we observe that, whenf is (i)-di�erentiable, w(f (t))
is an increasing function, and conversely whenf is (ii)-di�erentiable, w(f (t)) is decreas-
ing. Further, similar to the formulation of the conventional derivative in real analysis, the
formulas of left and right derivatives at the pointt for f can be expressed by

f ′
+(t) = lim

h→	 +

�
h

[
f (t + h) �g f (t)

]
, (�.�)

f ′
…(t) = lim

h→	 …

�
h

[
f (t + h) �g f (t)

]
. (�.�)

Accordingly, we can give a su�cient and necessary condition on gH-di�erentiability be-
low.

Theorem . f is gH-di�erentiable in t ∈ I if and only if f ′
+(t) and f ′

…(t) exist and f′+(t) =
f ′
…(t).

Proof If f is gH-di�erentiable in t ∈ I , then for anyε > 	, there exists δ(ε) > 	, such that
when |h| < δ(ε), we have

∥∥∥∥
�
h

[
f (t + h) �g f (t)

] �g f ′(t)
∥∥∥∥

I
< ε. (�.�)

Consequently, if taking 	 <h < δ(ε) or …δ(ε) < h < 	, the conclusion is true. Conversely,
when f ′

+(t) = f ′
…(t), it is easy to prove that the conclusion is valid through equations (�.� )

and (�.� ). �

Based on the concept of the gH-derivative, Stefaniniet al. developed the relationship
between gH-derivative and conventional derivatives, in other words, the gH-derivative of
f can be expressed by the derivatives of its endpoint functions.

Theorem . ([
 ]) f : I → IR is gH-di�erentiable in t if and only if f L and f R are both
di�erentiable, and

f ′ =
[
min

{(
f L)′

,
(
f R)′}

,max
{(

f L)′
,
(
f R)′}]

. (�.�)

It should be pointed out that usually one can only “nd that (f + g)′ ⊆ f ′ + g′ when f and
g are di�erentiable [
 ]. However, in some weak assumptions, the symbol of inclusion can
be replaced by the symbol of equality. To this end, for convenience of notation below, we
write ω(t) = f (t) �g g(t), u(t,h) = f (t + h) �g f (t), andv(t,h) = g(t + h) �g g(t) with t + h ∈ I .
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Theorem . The following property is true:

(f + g)′ = f ′ + g′, (�.�)

provided that f and g are simultaneously(i)-di�erentiable or (ii)-di�erentiable .

Proof Assume thatf and g are (i)-di�erentiable. One can prove that bothw(f (t)) and
w(g(t)) are increasing functions. Hence, in the case ofh > 	, since w(f (t + h)) ≥ w(f (t))
andw(g(t + h)) ≥ w(g(t)), through the de“nition of the gH-di�erence we obtain f (t + h) =
f (t) + u(t,h) andg(t + h) = g(t) + v(t,h), and thus

f (t + h) + g(t + h) = f (t) + g(t) + u(t,h) + v(t,h). (�.�)

Further, in the case ofh < 	, since w(f (t + h)) ≤ w(f (t)) and w(g(t + h)) ≤ w(g(t)), we get
f (t) = f (t + h) + (…�)u(t,h) andg(t) = g(t + h) + (…�)v(t,h), and accordingly

f (t) + g(t) = f (t + h) + g(t + h) + (…�)
[
u(t,h) + v(t,h)

]
. (�.
)

Hence,

lim
h→	 +

�
h

[(
f (t + h) + g(t + h)

) �g
(
f (t) + g(t)

)]

= lim
h→	 +

�
h

[
u(t,h) + v(t,h)

]
= f ′(t) + g′(t)

= lim
h→	 …

�
h

[(
f (t + h) + g(t + h)

) �g
(
f (t) + g(t)

)]
.

Thus, f + g is gH-di�erentiable and equation (�.� ) is true. Similarly, whenf and g are
(ii)-di�erentiable, one can prove thatf + g is gH-di�erentiable and equation (�.� ) is also
true. �

Theorem . The following property is true:

(f �g g)′ = f ′ + (…�)g′, (�.
)

if one of the following conditions is satis“ed:
(i) f is (i)-differentiable and g is (ii)-differentiable;

(ii) f is (ii)-differentiable and g is (i)-differentiable.

Proof Case (i): by the de“nition of the gH-derivative,w(f (t)) is increasing andw(g(t)) is
decreasing. Consequently, in the case ofh > 	, we obtain f (t + h) = f (t) + u(t,h) andg(t) =
g(t + h) + (…�)v(t,h). Hence,

f (t + h) + g(t) = f (t) + g(t + h) + u(t,h) + (…�)v(t,h). (�.�	)

Again if f (t) = g(t) + ω(t), equation (�.�	 ) yields

g(t + h) + ω(t + h) + g(t) = g(t) + ω(t) + g(t + h) + u(t,h) + (…�)v(t,h), (�.��)
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from which, together with the cancellation of addition on interval numbers, it follows that

ω(t + h) = ω(t) + u(t,h) + (…�)v(t,h). (�.��)

In the same way, ifg(t) = f (t) + (…�)ω(t), from equation (�.�	 ) it follows that

ω(t) = ω(t + h) + (…�)
[
u(t,h) + (…�)v(t,h)

]
. (�.��)

Hence, equations (�.�� ) and (�.�� ) imply that

ω(t + h) �g ω(t) = u(t,h) + (…�)v(t,h). (�.��)

In the case ofh < 	, since w(f (t + h)) ≤ w(f (t)) andw(g(t + h)) ≥ w(g(t)), the de“nition of
the gH-di�erence yieldsf (t) = f (t + h) + (…�)u(t,h) andg(t + h) = g(t) + v(t,h), and then we
also see that equation (�.�� ) is valid. This, together with the di�erentiability of f and g,
yields

ω′
+(t) = lim

h→	 +

�
h

[
ω(t + h) �g ω(t)

]

= lim
h→	 +

�
h

[
u(t,h) + (…�)v(t,h)

]

= f ′(t) + (…�)g′(t) = ω′
…(t).

Thus, equation (�.
 ) is true in case (i). Similar to the process of the proof above, one can
see that equation (�.
 ) is also valid in case (ii). �

Notice that whenf andg are both (i)-di�erentiable or both (ii)-di�erentiable, equation
(�.
 ) is not true, which can be illustrated by a simple example as below.

Example . Takef (t) = [t, � t + �] and g(t) = [t, � t + �] with 	 ≤ t ≤ �. Then f (t) �g g(t) =
[…t, 	]. Again f and g are (i)-di�erentiable. One can know that (f (t) �g g(t))′ = […t, 	] ′ =
[…�, 	]. However, f ′(t) + (…�)g′(t) = [�, �] + (…�)[�, �] = […�, �]. Thus, ( f (t) �g g(t))′ �= f ′(t) +
(…�)g′(t).

As we know, if two real scalar functions are di�erentiable, their product function is also
di�erentiable. However, for two given interval-valued functions, even if they are all di�er-
entiable, their product function is not di�erentiable usually. This can be illustrated by an
example as below.

Example . Takef (t) = [et ,et+� ] and g(t) = […cos t ,cos t ] with 	 ≤ t ≤ π
� . It is easy to see

that f (t)g(t) = […et+� cos t ,et+� cos t ]. Further, through a simple deduction, we know that

(
f (t)g(t)

)′
=

[
…et+� (cos t …sin t),et+� (cos t …sin t)

]
,

f ′(t)g(t) =
[
…et+� cos t ,et+� cos t

]
, f (t)g′(t) =

[
…et+� sin t ,et+� sin t

]
.

This is a hint that

f ′(t)g(t) + f (t)g′(t) �= (
f (t)g(t)

)′
.
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In the following subsection, we degenerate the interval-valued functionf into a scalar

function, and we study some properties of the product function offg. In addition to the

notations presented in Theorems�.� and �.� , write W(t,h) = f (t + h)g(t + h) �g f (t)g(t),

U(t,h) = f (t + h) …f (t).

Theorem . Assume that f∈ C� (I ,R) and g is(i)-di�erentiable . If f (t)f ′(t) > 	, then

(fg)′ = f ′g+ fg′. (�.��)

Proof In the case ofh > 	 with t + h ∈ I , sinceg is (i)-di�erentiable, w(g(t)) is increasing

and, accordingly,g(t + h) = g(t) + v(t,h). Again, sincef (t)f ′(t) > 	, f (t) andU(t,h) have the

same sign, which yields

f (t + h)g(t + h) = f (t)g(t) + f (t)v(t,h) + U(t,h)g(t) + U(t,h)v(t,h). (�.��)

Thus,

W(t,h) = f (t)v(t,h) + U(t,h)g(t) + U(t,h)v(t,h). (�.��)

On the other hand, in the case ofh < 	, we have w(g(t + h)) ≤ w(g(t)), and henceg(t) =

g(t + h) + (…�)v(t,h). Further, it follows from f (t)f ′(t) > 	 that f (t + h) and (…�)U(t,h) have

the same sign. Consequently,

f (t)g(t) = f (t + h)g(t + h) + (…�)
[
f (t + h)v(t,h)

+ U(t,h)g(t + h) + (…�)U(t,h)v(t,h)
]
. (�.�
)

Hence,

W(t,h) = f (t + h)v(t,h) + U(t,h)g(t + h) + (…�)U(t,h)v(t,h). (�.�
)

Further, depending on the continuity and di�erentiability off andg, equations (�.�� ) and

(�.�
 ) imply that

lim
h→	 +

�
h

W(t,h) = lim
h→	 +

(
�
h

U(t,h)
)

g(t) + f (t) lim
h→	 +

�
h

v(t,h)

+ lim
h→	 +

U(t,h)
(

�
h

v(t,h)
)

= f ′(t)g(t) + f (t)g′(t) = lim
h→	 …

�
h

W(t,h). (�.�	)

This shows that equation (�.�� ) is valid by Theorem�.� . �

Theorem . Let g be(i)-di�erentiable and f ∈ C� (I ,R). Under f(t)f ′(t) < 	, if w(f (t)g(t))

is increasing, then fg is gH-di�erentiable and

(fg)′ + (…�)f ′g= fg′; (�.��)
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if w(f (t)g(t)) is decreasing, then fg is gH-di�erentiable and

(fg)′ + (…�)fg′ = f ′g. (�.��)

Proof Let w(f (t)g(t)) be increasing. Sincef (t)f ′(t) < 	, we can see thatf (t + h) and
(…�)U(t,h) have the same sign whenh > 	, and meanwhile f (t) andU(t,h) are so ifh < 	.
In the case ofh > 	, we know that g(t + h) = g(t) + v(t,h) by the (i)-di�erentiability of g.
Thus,

[
f (t + h) + (…�)U(t,h)

]
g(t + h) = f (t)

[
g(t) + v(t,h)

]
. (�.��)

Namely,

f (t + h)g(t + h) + (…�)U(t,h)g(t + h) = f (t)g(t) + f (t)v(t,h). (�.��)

Again sincew(f (t + h)g(t + h)) ≥ w(f (t)g(t)), we can obtain

f (t + h)g(t + h) = f (t)g(t) + W(t,h). (�.��)

This way, by substituting equation (�.�� ) into equation (�.�� ) and using the cancellation
law on interval numbers, we see that

W(t,h) + (…�)U(t,h)g(t + h) = f (t)v(t,h). (�.��)

So,

lim
h→	 +

�
h

W(t,h) + (…�)g(t) lim
h→	 +

�
h

U(t,h) = f (t) lim
h→	 +

�
h

v(t,h),

that is,

(
f (t)g(t)

)′
+ + (…�)f ′(t)g(t) = f (t)g′(t). (�.��)

In addition, in the case ofh < 	, since g is (i)-di�erentiable, we can derive thatg(t) = g(t +
h) + (…�)v(t,h). Thus,

f (t + h)
[
g(t + h) + (…�)v(t,h)

]
=

[
f (t) + U(t,h)

]
g(t). (�.�
)

In other words,

f (t + h)g(t + h) + (…�)f (t + h)v(t,h) = f (t)g(t) + U(t,h)g(t). (�.�
)

Again since

f (t)g(t) = f (t + h)g(t + h) + (…�)W(t,h), (�.�	)

by virtue of the cancellation law on interval numbers from equations (�.�
 ) and (�.�	 ) we
infer that

W(t,h) + (…�)U(t,h)g(t) = f (t + h)v(t,h). (�.��)
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Thus,

lim
h→	 …

�
h

W(t,h) + (…�)g(t) lim
h→	 …

�
h

U(t,h) = f (t) lim
h→	 …

�
h

v(t,h),

namely

(
f (t)g(t)

)′
…+ (…�)f ′(t)g(t) = f (t)g′(t). (�.��)

Equations (�.�� ) and (�.�� ) imply that fg is gH-di�erentiable, and meanwhile equation

(�.�� ) holds. Similar to the process of the proof above, one can prove that equation (�.�� )

is also valid. �

Similarly, wheng is (ii)-di�erentiable, we can obtain the following properties offg ac-

cording to the sign off (t)f ′(t), for which their proofs are omitted.

Theorem . Assume that f∈ C� (I ,R) and g is(ii)-di�erentiable . If f (t)f ′(t) < 	, then

(fg)′ = f ′g+ fg′. (�.��)

Further, under f(t)f ′(t) > 	, no matter whether w(f (t)g(t)) is increasing or decreasing, fg is

gH-di�erentiable. More precisely, if w(f (t)g(t)) is increasing, then

(fg)′ + (…�)fg′ = f ′g; (�.��)

if w(f (t)g(t)) is decreasing, then

(fg)′ + (…�)f ′g= fg′. (�.��)

5 Integral of interval-valued function
In this section, we cite the concept of an integral of an interval-valued function originally

proposed by Stefanini and Bede [
 ], and meanwhile some new properties are discussed.

Let J= [t	 , tf ] and f (t) = [f L(t),f R(t)] with t ∈ J. The integral off is de“ned by the integrals

of the endpoints [
 ], namely

∫ tf

t	

f (t) dt =
[∫ tf

t	

f L(t) dt,
∫ tf

t	

f R(t)dt
]
. (�.�)

In such a case,f is said to be integrable onJ. For an integrable interval-valued function

g, by the de“nition of the gH-di�erence we easily see that

∫ tf

t	

f (t) dt �g

∫ tf

t	

g(t)dt =
[

min

{∫ tf

t	

(
f L(t) …gL(t)

)
dt,

∫ tf

t	

(
f R(t) …gR(t)

)
dt

}
,

max

{∫ tf

t	

(
f L(t) …gL(t)

)
dt,

∫ tf

t	

(
f R(t) …gR(t)

)
dt

}]
. (�.�)

Correspondingly, some fundamental properties have been studied.
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Theorem . ([�� ]) Let f,g∈ C(J,IR). Then

(i)
∫ tf

t	 (f (t) + g(t))dt =
∫ tf

t	 f (t) dt +
∫ tf

t	 g(t)dt ;
(ii)

∫ tf
t	 f (t) dt =

∫ τ

t	
f (t) dt +

∫ tf
τ

f (t) dt , t	 < τ < tf .

Theorem . ([
 ]) Let f ∈ C(J,IR). Then

(i) F(t) is gH-differentiable, and F′(t) = f (t), where F(t) =
∫ t

t	
f (t) dt ;

(ii) G(t) is gH-differentiable, and G′(t) = …f (t), where G(t) =
∫ tf

t f (t) dt .

We next present two important integral properties helpful for discussing the following

IDE.

Theorem . Let f and g be integrable on J. Then f �g g is integrable on J, and meanwhile

∫ tf

t	

(f �g g)(t)dt =
∫ tf

t	

f (t) dt �g

∫ tf

t	

g(t)dt, (�.�)

provided that w(f (t)) ≥ w(g(t)) for t ∈ J or w(f (t)) ≤ w(g(t)) for t ∈ J.

Proof Write f (t) �g g(t) = h(t). If w(f (t)) ≥ w(g(t)) with any t ∈ J, then f (t) = g(t) + h(t),

and accordingly

∫ tf

t	

f (t) dt =
∫ tf

t	

g(t)dt +
∫ tf

t	

h(t)dt. (�.�)

If w(f (t)) ≤ w(g(t)) with any t ∈ J, then g(t) = f (t) + (…�)h(t) and hence,

∫ tf

t	

g(t)dt =
∫ tf

t	

f (t) dt + (…�)
∫ tf

t	

h(t)dt. (�.�)

Thus, equations (�.� ) and (�.� ) illustrate that equation (�.� ) is true. �

Theorem . If g� ,g� ∈ C(J,IR), the following inequality holds:

H
(∫ t

t	

g� (s)ds,
∫ t

t	

g� (s)ds
)

≤
∫ t

t	

H
(
g� (s),g� (s)

)
ds. (�.�)

Proof Write g� (t) = [gL
� (t),gR

� (t)] and g� (t) = [gL
� (t),gR

� (t)]. We can prove that

H
(∫ t

t	

g� (s)ds,
∫ t

t	

g� (s)ds
)

= max

{∣∣∣∣

∫ t

t	

gL
� (s)ds…

∫ t

t	

gL
� (s)ds

∣∣∣∣,
∣∣∣∣

∫ t

t	

gR
� (s)ds…

∫ t

t	

gR
� (s)ds

∣∣∣∣

}

≤ max

{∫ t

t	

∣∣gL
� (s) …gL

� (s)
∣∣ds,

∫ t

t	

∣∣gR
� (s) …gR

� (s)
∣∣ds

}

≤
∫ t

t	

max
{∣∣gL

� (s) …gL
� (s)

∣∣,
∣∣gR

� (s) …gR
� (s)

∣∣}ds=
∫ t

t	

H
(
g� (s),g� (s)

)
ds.

This completes the proof. �
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In terms of Lemma�.� and Theorem�.� , one can easily gain the following conclusion.

Corollary . If f ∈ C(J,R) and g� ,g� ∈ C(J,IR), we have

H
(∫ t

t	

f (s)g� (s)ds,
∫ t

t	

f (s)g� (s)ds
)

≤
∫ t

t	

∣∣f (s)
∣∣H

(
g� (s),g� (s)

)
ds. (�.�)

6 Interval differential equation
In this section, we consider the following semi-linear interval di�erential equation (SIDE):

{
x′ = a(t)x + f (t,x),

x(t	 ) = x	 ,
(�.�)

where a : J→ R is an integrable real scalar function, andf : J× IR → IR is an interval-
valued function;x	 is a given initial interval number inIR. In order to analyze the proper-
ties of the solutions in SIDE, three basic concepts are introduced below.

Definition . For givenx ∈ C(J,IR), x is continuous gH-di�erentiable on J if x′ is con-
tinuous.

Definition . Let x be continuous gH-di�erentiable onJ. x is a strong solution of SIDE
if satisfying the initial condition and the above equation.

Definition . x ∈ C(J,IR) is the (i)-solution of SIDE if

x(t) = exp

(∫ t

t	

a(u)du
)

x	 +
∫ t

t	

f
(
s,x(s)

)
exp

(∫ t

s
a(u)du

)
ds, t ∈ J, (�.�)

and the (ii)-solution if

x(t) = exp

(∫ t

t	

a(u)du
)

x	 �g (…�)
∫ t

t	

f
(
s,x(s)

)
exp

(∫ t

s
a(u)du

)
ds, t ∈ J. (�.�)

Equations (�.� ) and (�.� ) are constructed in terms of the formulation of the solutions
for ordinary di�erentiable equations. However, (i)- and the (ii)-solutions are not SIDE•s
strong solutions usually. Based on this consideration, we discuss the relationship between
SIDE•s solutions, depending on the above properties ofC(J,IR). For the convenience of
representation, write

p(t) = exp

(∫ t

t	

a(u)du
)

and

F(t,x) =
∫ t

t	

f (s,x(s))
p(s)

ds.

Theorem . Let a∈ C(J,R) and f ∈ C(J× IR,IR). If a(t) > 	 with t ∈ J, the (i)-solution x
is a strong solution of SIDE; under a(t) < 	, if (ii)-solution x satis“es

w
(
F(t,x)

) ≤ w(x	 ), (�.�)

it is also SIDE•s strong solution.
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Proof Let a(t) > 	 with t ∈ Jandx be a (i)-solution of SIDE. Write

g(t,x) = x	 + F(t,x). (�.�)

As related to De“nition �.� and Theorem�.� it follows that F(t,x) is (i)-di�erentiable and

that

F′(t,x) =
f (t,x(t))

p(t)
. (�.�)

Hence, Theorem�.� and equation (�.� ) imply that g(t,x) is (i)-di�erentiable and

g′(t,x) =
f (t,x(t))

p(t)
. (�.�)

Again sincea(t) > 	 and p′(t) = a(t)p(t), it is obvious thatp(t)p′(t) > 	. Hence, it follows

from Theorem �.
 and equations (�.� ) and (�.� )-(�.� ) that

x′(t) =
(
p(t)g(t,x)

)′
= p′(t)g(t,x) + p(t)g′(t,x)

= a(t)p(t)g(t,x) + f
(
t ,x(t)

)

= a(t)x(t) + f
(
t ,x(t)

)
. (�.
)

Therefore,x is a strong solution of SIDE.

On the other hand, letx be a (ii)-solution with a(t) < 	. Since p(t) > 	, we know that

p(t)p′(t) < 	. This way, equation (�.� ) can be rewritten by

x(t) = p(t)h(t,x), (�.
)

where

h(t,x) = x	 �g (…�)F(t,x). (�.�	)

As we mentioned above,F(t,x) is (i)-di�erentiable, and accordingly, from Theorem�.�

and equation (�.�	 ) it follows that

h′(t,x) =
f (t,x(t))

p(t)
. (�.��)

Sincew(F(t,x)) ≤ w(x	 ), equations (�.�	 ) and (�.�� ) indicate thath(t,x) is (ii)-di�erentiable.

Therefore, Theorem�.�	 and equation (�.�	 ) imply that

x′(t) = p′(t)h(t,x) + p(t)h′(t,x)

= a(t)p(t)h(t,x) + f
(
t ,x(t)

)

= a(t)x(t) + f
(
t ,x(t)

)
.

Hence, the conclusion is true. �
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In the subsequent subsection, we “rst give a prior estimate of the solution, and then
discuss the existence and uniqueness of strong solutions of SIDE.

Hypothesis . There existK > 	 and α > 	 such that

∥∥f (t,z)
∥∥

I ≤ K‖z‖α
I , ∀(t,z) ∈ J× IR. (�.��)

Lemma . Under Hypothesis�.� , if f ∈ C(J× IR,IR), there is a positive constant Mα such
that the (i)- or (ii)-solution x satis“es

‖x‖C ≤ Mα, (�.��)

where

Mα =

{
‖p‖C(J,R)‖x	 ‖I exp(K‖p‖C(J,R)

∫ tf
t	

�
p(s) ds), if α = �,

[(‖p‖C(J,R)‖x	 ‖I )�…α + (� …α)K‖p‖C(J,R)
∫ tf

t	
�

p(s) ds]
�

�…α , else.

Proof By means of Theorem�.� , Corollary�.� , and equations (�.� ) and (�.� ), we can prove
that

∥∥x(t)
∥∥

I ≤ ‖p‖C(J,R)

(
‖x	 ‖I +

∫ t

t	

‖f (s,x(s))‖I

p(s)
ds

)

≤ ‖x	 ‖I‖p‖C(J,R) + K‖p‖C(J,R)

∫ t

t	

�
p(s)

∥∥x(s)
∥∥α

I ds.

When α = �, the Gronwall inequality indicates that equation (�.�� ) is valid; whenα �= �,
the generalized Bellman lemma [�� ] hints that equation (�.�� ) is also true. �

In addition, based on Lemma�.� , de“ne

Cα(J,IR) =
{
x ∈ C(J,IR) : ‖x‖C ≤ Mα

}
.

We can prove thatCα(J,IR) is a complete metric space.

Hypothesis . Assume thatf satis“es the uniformly Lipschitz condition, namely there
existsL > 	 such that

∥∥f (t,z� ) �g f (t,z� )
∥∥

I ≤ L‖z� �g z� ‖I , (�.��)

with ∀t ∈ Jand‖z� ‖I ,‖z� ‖I ≤ Mα .

In the above SIDE problem, whena(t) ≡ 	, Stefanini and Bede [
 ] proved that there exist
only two strong solutions under some limitations. We here discuss SIDE•s existence and
uniqueness of strong solutions undera(t) �= 	.

Theorem . Let a∈ C(J,R). Under Hypotheses�.� and �.� , when

β = L‖p‖C(J,R)

∫ tf

t	

�
p(s)

ds< �, (�.��)
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SIDE has a unique(i)-solution in Cα(J,IR) if a(t) > 	, and a unique(ii)-solution in Cα(J,IR)
if a(t) < 	, provided that the initial value x	 satis“es

‖p‖C(J,R)‖x	 ‖I ≤ (� …β)Mα. (�.��)

Proof Under a(t) > 	, de“ne a mapping T� on Cα(J,IR) given by

(T� x)(t) = exp

(∫ t

t	

a(u)du
)

x	 +
∫ t

t	

f
(
s,x(s)

)
exp

(∫ t

s
a(u)du

)
ds, (�.��)

with t ∈ J, namely,

(T� x)(t) = p(t)g(t,x), (�.�
)

whereg(t,x) is decided by equation (�.� ) above. Fort,t + �t ∈ Jandx ∈ Cα(J,IR), in terms
of Lemma�.� and Theorem�.� we have

∥∥g(t + �t ,x) �g g(t,x)
∥∥

I =
∥∥F(t + �t ,x) �g F(t,x)

∥∥
I =

∥∥∥∥

∫ t+�t

t

f (s,x(s))
p(s)

ds

∥∥∥∥
I
.

Thus, we see thatg(t,x) is continuous in t, due to Hypothesis�.� and the prior estimate
of the solution in Lemma�.� . This way, from Theorem�.� it follows that p(t)g(t,x) is
continuous in t, and henceT� x ∈ C(J,IR). Additionally, by means of Lemma�.� and the
additive property of the Hausdor�-Pompeiu metric on interval numbers, we derive for
x,y∈ Cα(J,IR) that

H
(
(T� x)(t), (T� y)(t)

)
= H

(
p(t)

(
x	 + F(t,x)

)
,p(t)

(
x	 + F(t,y)

))

≤ H
(
	, p(t)

)
H

(
x	 + F(t,x),x	 + F(t,y)

)

= p(t)H
(
F(t,x),F(t,y)

)
.

Thus,

‖T� x �g T� y‖C = sup
t∈J

H
(
(T� x)(t), (T� y)(t)

) ≤ sup
t∈J

p(t)H
(
F(t,x),F(t,y)

)

= sup
t∈J

p(t)H
(∫ t

t	

f (s,x(s))
p(s)

ds,
∫ t

t	

f (s,y(s))
p(s)

ds
)

= sup
t∈J

p(t)H
(∫ t

t	

f (s,x(s)) �g f (s,y(s))
p(s)

ds, 	
)

≤ sup
t∈J

p(t)
∫ t

t	

‖f (s,x(s)) �g f (s,y(s))‖I

p(s)
ds.

Accordingly, we prove by Hypothesis�.� that

‖T� x �g T� y‖C ≤ L sup
t∈J

p(t)
∫ t

t	

‖x(s) �g y(s)‖I

p(s)
ds

≤ L‖p‖C(J,R)

∫ tf

t	

�
p(s)

ds‖x �g y‖C

= β‖x �g y‖C. (�.�
)
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Further, Theorem�.
 , Hypothesis�.� , and equations (�.�� ), (�.�� ), and (�.�
 ) imply that

‖T� x‖C ≤ ‖T� x �g T� 	 ‖C + ‖T� 	 ‖C

≤ β‖x‖C + ‖T� 	 ‖C

≤ β‖x‖C + ‖p‖C(J,R)‖x	 ‖I ≤ Mα. (�.�	)

Consequently,T� is a contraction mapping onCα(J,IR) and hence has a unique “xed point.

This shows that SIDE has a unique (i)-solution. We next prove that SIDE has a unique (ii)-

solution. If a(t) < 	, de“ne a mapping T� on C(J,IR) given by

(T� x)(t) = exp

(∫ t

t	

a(u)du
)

x	 �g (…�)
∫ t

t	

f
(
s,x(s)

)
exp

(∫ t

s
a(u)du

)
ds, (�.��)

with t ∈ J, namely,

(T� x)(t) = p(t)h(t,x), (�.��)

whereh(t,x) is decided by equation (�.�	 ) above. On one hand, from Lemma�.� it follows

that

∥∥h(t + �t ,x) �g h(t,x)
∥∥

I =
∥∥F(t,x) �g F(t + �t ,x)

∥∥
I =

∥∥∥∥

∫ t+�t

t

f (s,x(s))
p(s)

ds

∥∥∥∥
I
.

On the other hand, Lemmas�.� and �.� yield

H
(
(T� x)(t), (T� y)(t)

)
= H

(
p(t)

(
x	 �g (…�)F(t,x)

)
,p(t)

(
x	 �g (…�)F(t,y)

))

≤ p(t)H
(
F(t,x),F(t,y)

)
. (�.��)

Subsequently, through a similar deduction to above we can prove thatT� is a contraction

mapping onCα(J,IR). Therefore, SIDE has a unique (ii)-solution. �

In the above theoretical analysis, from Theorem�.� one draws the conclusion that

the (i)- and the (ii)-solutions are strong solutions under certain conditions; Theorem�.�

shows the conditions of existence and uniqueness of (i)- and the (ii)-solutions for equa-

tions (�.� ) and (�.� ), respectively. These hint that SIDE has at least a strong solution under

certain assumptions, for which we give a conclusion to emphasize the existence of strong

solutions in SIDE.

Theorem . Let a(t) be a continuous scalar function with at most countable zero points

on J. Then SIDE has at least a strong solution under Theorems�.� and �.� .

Proof Let {tn}n≥� be a series of zero points ofa(t). Divide the intervalJ into countable

subintervalsJn with n ≥ � and Jn = [tn…�,tn], in which a(t) always maintains the same sign

on Jn. If a(t) > 	 with tn…�< t < tn, Theorems�.� and�.� show that the unique (i)-solution,

xn� (t), is a strong solution of SIDE onJn. In the same way, ifa(t) < 	 with tn…�< t < tn, two
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such theorems ensure that SIDE has a strong solution onJn, i.e., the (ii)-solution xn� (t).

Therefore, we can obtain a strong solutionx(t) for the above SIDE given by

x(t) =

{
xn(t), if a(t) �= 	, t ∈ (tn…�, tn),

xn…�(tn…�), if t = tn…�,

where

xn(t) =

{
xn� (t), if a(t) > 	, t ∈ (tn…�, tn),

xn� (t), if a(t) < 	, t ∈ (tn…�, tn).

Especially, whenn = �, x� (t) denotes a strong solution of SIDE on [t	 , t� ]; whenn = �, x� (t� )

takes the form ofx� (t� ). This way,x(t) takes the formxn…�(tn…�) at the endpointtn…�. �

7 Illustrative examples
In this section, our experiments are implemented through MATLAB•s �.	 standard ODE

solver (ode��). Three simple interval-valued Cauchy problems are used to examine our

theoretical results.

Example . ([
 ])

{
x′ = …x + [�, �] sin t , 	 ≤ t ≤ �,

x(	) = [�, �].

This in fact is a linear interval-valued Cauchy problem, satisfying the conditions of The-

orem �.� with a(t) = …�. Therefore, there exists a strong solution,i.e., the (ii)-solution,

expressed by

x(t) =

{
e…t([�, �] �g (…�)[�, �]

∫ t
	 essin sds), 	 ≤ t ≤ π ,

eπ…t(x(π) �g [�, �]
∫ t
π

…es…π sin sds), π < t ≤ �.

One such solution,x = [xL,xR], is drawn in Figure� , wherexL and xR denote the lower

and upper bound curves of the (ii)-solutionx obtained through Theorem�.� . x� = [xL
� ,xR

� ]

andx� = [xL
� ,xR

� ] represent the curves of I- and II-type solutions gotten through (i)-di�er-

entiability and the (ii)-di�erentiability, respectively [
 ].

Figure 1 Comparison of curves of the solutions
for Example 7.1.
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Figure 2 Comparison of curves of the solutions
for Example 7.2.

By Figure� , solutionsx andx� have the same switching pointtα = �.��	�, and meanwhile
are almost the same in [	,tα]. However, they present di�erent characteristics withintα and
�, as w(x(t)) is decreasing butw(x� (t)) is increasing. This indicates the uncertainty degree
of x is ever smaller with timet, and therebyx is better thanx� . In addition, whereasx� is
of a smaller uncertainty degree thanx� , it will become divergent with timet. In total, x�

andx� are not rational because of their divergence.

Example .
{

x′ = x sin t + f (t,x), 	 ≤ t ≤ � π ,

x(	) = [�, �],

wheref (t,x) =
{ sin t, 	 ≤ t ≤ π ,

x sin t, π < t ≤ � π .

We note that there is a zero pointπ for a(t) = sin t . It can be checked thatf is a contin-
uous interval-valued function int andx, and it satis“es the conditions as in Theorem�.� .
Consequently, there exists a strong solution composed of the (i)-solution in [	,π ] and the
(ii)-solution in (π , � π ], namely

x(t) =

{
e�…cos t ([�, �] +

∫ t
	 ecos s…�sin sds), 	 ≤ t ≤ π ,

e…�…�cos t x(π), π < t ≤ � π .

The solutionx is drawn in Figure� . In addition, x� andx� represent the curves of I- and
II-type solutions mentioned above, respectively.

By Figure� , solutionsx and x� are almost the same in [	,π ]. However,w(x(t)) is de-
creasing butw(x� (t)) is increasing in (π , � π ]. This indicates the uncertainty degree ofx is
smaller than that ofx� in (π , � π ], and thusx is superior tox� . On the other hand,x� is of a
smaller uncertainty degree thanx andx� , asw(x� (t)) remains decreasing. It is emphasized
that I- and the II-type solutions are two kinds of extreme solutions decided under (i)-dif-
ferentiability and the (ii)-di�erentiability, whereas through Theorem�.� , we can obtain a
more rational strong solution which switches between the (i)- and the (ii)-solutions.

Example .
{

x′ = xcos t + x� sin t
�		+ sin� t

, 	 ≤ t ≤ � π ,

x(	) = […�, �].
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Figure 3 Comparison of curves of the solutions
for Example 7.3.

It can be examined thatf satis“es Hypotheses�.� and �.� , wheref (t,x) = x� ϕ(t) and

ϕ(t) = sin t
�		+ sin� t

. The reason can be found below.

(i) For any (t,x) ∈ J× IR, since

∥∥f (t,x)
∥∥

I = H
(
f (t,x), 	

)
= max

{∣∣(xL)�
ϕ(t)

∣∣,
∣∣(xR)�

ϕ(t)
∣∣} ≤ ‖x‖�

I .

Therefore, Hypothesis . holds.
(ii) For ‖x‖C,‖y‖C ≤ Mα , we have

H
(
f (t,x),f (t,y)

)
= max

{∣∣(xL)�
ϕ(t) …

(
yL)�

ϕ(t)
∣∣,

∣∣(xR)�
ϕ(t) …

(
yR)�

ϕ(t)
∣∣}

≤ max
{∣∣(xL)�

…
(
yL)� ∣∣,

∣∣(xR)�
…

(
yR)� ∣∣}

≤ � M �
αH(x,y).

This illustrates that Hypothesis . is true.
We note that there are two zero pointsπ� and � π

� for a(t) = cos t . As associated to Theo-

rem�.� , there exists a strong solution composed of two (i)-solutions on [	,π� ] and (� π
� , � π ],

and a (ii)-solution on (π� , � π
� ], namely

x(t) =

⎧
⎪⎪⎨

⎪⎪⎩

esin t ([…�, �] +
∫ t

	 ϕ(s)x� (s)e…sin sds), 	 ≤ t ≤ π
� ,

esin t…�(x(π
� ) �g (…�)

∫ t
π
�

ϕ(s)x� (s)e…sin s+� ds), π
� < t ≤ � π

� ,

esin t+� (x( � π
� ) +

∫ t
� π
�

ϕ(s)x� (s)e…sin s…�ds), � π
� < t ≤ � π .

The solution x is drawn in Figure� . In addition, x� and x� represent the curves of I- and

II-type solutions gotten in the same fashion as above, respectively.

By Figure� , the solutionsx andx� are almost the same on [	,π� ]. w(x(t)) is increasing in

[	, π
� ], decreasing in (π� , � π

� ], and increasing in (� π
� , � π ]. On the other hand,w(x� (t)) always

remains increasing, andw(x� (t)) keeps decreasing. This shows that the I-type solutionx�

diverges and the II-type solutionx� is very conservative. Thus,x� andx� cannot e�ectively

re”ect the dynamic characteristics of the above dynamic system, butx is opposite.

8 Conclusions
This work aims at studying the properties of interval-valued functions under the gH-dif-

ference and also probing the existence of the solutions for a class of semi-linear interval
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di�erential equations. As associated to the concept of the gH-di�erence and also the con-

ventional arithmetic rules such as addition and scalar multiplication, we have developed a

complete normed quasi-linear space on interval numbers, in which some important prop-

erties of the gH-di�erence are found under the Hausdor�-Pompeiu metric. Subsequently,

on the basis of one such space, we introduced a continuous interval-valued function space

which has been proven to be a complete normed quasi-linear space. A contracting map-

ping theorem on one such space, similar to the classical contracting mapping principle,

has been obtained, relying upon the gH-di�erence. Based on these fundamental works,

some arithmetic properties of the gH-derivative for interval-valued functions were inves-

tigated exhaustively, among which some results can be adopted to study the existence and

uniqueness of the solutions for such a kind of semi-linear equation. After some simple

properties of the integral of interval-valued functions were discussed, we have obtained a

necessary condition that the (i)- and the (ii)-solutions are strong solutions, including the

conditions of the existence and uniqueness of the solutions.
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