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Abstract
A Holling type III functional response predator-prey system with constant gestation
time delay and impulsive perturbation on the prey is investigated. The sufficient
conditions for the global attractivity of a predator-extinction periodic solution are
obtained by the theory of impulsive differential equations, i.e. the impulsive period is
less than the critical value T∗

1 . The conditions for the permanence of the system are
investigated, i.e. the impulsive period is larger than the critical value T∗

2 . Numerical
examples show that the system has very complex dynamic behaviors, including (1)
high-order periodic and quasi-periodic oscillations, (2) period-doubling and -halving
bifurcations, and (3) chaos and attractor crises. Further, the importance of the
impulsive period, the gestation time delay, and the impulsive perturbation
proportionality constant are discussed. Finally, the impulsive control strategy and the
biological implications of the results are discussed.

Keywords: predator-prey system; impulsive perturbation; time delay; extinction;
permanence; chaos

1 Introduction
The time delay population dynamics system describes the current state of the population
not only related to the current state but also related to the state of the population in the
past. That is to say, the time delay effect is very important in population dynamics, which
tends to destabilize the positive equilibria and cause a loss of stability, bifurcate into var-
ious periodic solutions, even make chaotic oscillations. Recently, there has been much
work dealing with time delayed population systems (see [–]). For example, a stage-
structured prey-predator system with time delay and Holling type-III functional response
is considered by Wang et al. [], the existence and properties of the Hopf bifurcations
are established. A delayed eco-epidemiology model with Holling-III functional response
was instigated by Zou et al. [], and one found that time delay may lead to Hopf bifur-
cation under certain conditions. The Hopf bifurcation of a delayed predator-prey system
with Holling type-III functional response also has been considered in [–]. The exis-
tence of positive periodic solutions of a delayed nonautonomous prey-predator system
with Holling type-III functional response was considered in [–], by using the continu-
ation theorem of coincidence degree theory. Therefore, time delays would make the prey-
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predator system subject to periodic oscillations via a local Hopf bifurcation, and destroy
the stability of the system.

Recently, more and more authors have discussed the impulsive perturbation on prey-
predator systems, since the system would be stabilized by impulsive effects, and would
make the system subject to complex dynamical behaviors [–]. For example, a predator-
prey model with impulsive effect and generalized Holling type III functional response was
studied by Su et al. [], and the sufficient conditions for the existence of a pest-eradication
periodic solution and permanence of the system are obtained. The existence of positive
periodic solutions of the nonautonomous prey-predator system with Holling type III func-
tional response and impulsive perturbation is considered in [, ]. By using a continua-
tion theorem of coincidence degree theory, the sufficient conditions for the existence of a
positive periodic solution are obtained for the system.

Note that harmful delays would destroy the stability of the system via bifurcations and
even lead the system to extinction. At this point, the impulsive control strategies can be
considered, which can both improve the stability of the system and control the amplitude
of the bifurcated periodic solution effectively. For example, a time delayed Holling type
II functional response prey-predator system with impulsive perturbations is investigated
by Jia et al. [], and the problems of the predator-extinction periodic solution and the
permanence of the system are investigated. So, how does the dynamical behavior go when
the delayed system with impulsive effect? Especially, what would happen for the delayed
predator-prey system with Holling type III functional response under impulsive pertur-
bation?

Motivated by the aforementioned observations, we assume the predator needs a certain
time to gestate the prey, and we consider the following delayed Holling type III functional
response prey-predator system with impulsive perturbation on the prey:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x′(t) = rx(t)( – x(t)
K ) – αx(t)y(t)

+βx(t) ,
y′(t) = kαx(t–τ )y(t–τ )

+βx(t–τ ) – dy(t),

⎫
⎬

⎭
t �= nT ,

�x(t) = –px(t),
�y(t) = ,

}

t = nT ,

()

where x(t) and y(t) are the prey and predator populations at time t, respectively; r, K , α,
β , k, d are positive. r is the intrinsic rate of increase of the prey, K is the carrying capacity
of the prey. α is the predation coefficient of the predator, which reflects the size of the
predator’s ability, and β is predation regulation factor (saturation factor) of the predator.
d is the death rate of the predator, k ( < k < ) is the rate of conversing prey into predator.
�x(t) = x(t+) – x(t), �y(t) = y(t+) – y(t), T is the impulsive periodic. n ∈ N+, N+ = {, , . . .},
p >  is the proportionality constant which represents the rate of mortality due to the
applied pesticide. The initial conditions for system () are

(
φ(s),φ(s)

) ∈ C+ = C
(
[–τ , ],R

+
)
, φi() >  (i = , ). ()

The paper is arranged as follows. Some notations and lemmas are given in the next sec-
tion, and we consider the existence and global attraction of the predator-extinction pe-
riodic solutions of the system. The sufficient conditions for the permanence of the sys-
tem are given by using the theory on impulsive and delay differential equation. Numerical
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examples are given to support the theoretical research, and some complex dynamic be-
haviors are shown. For example, we see period-halving and period-doubling bifurcations,
periodic and high-order quasi-periodic oscillations, even chaotic oscillation. The impor-
tance of the impulsive period T , the gestation time delay τ , and the impulsive perturbation
proportionality constant p are discussed. Finally, the impulsive control strategy and bio-
logical implications of the results are discussed.

2 Preliminaries
Let R+ = [,∞), R

+ = {x ∈ R
|x ≥ }. Denote by f = (f, f) the map defined by the right

hand of the first two equations of system (), and let N be the set of all non-negative inte-
gers. Let V : R+ ×R


+ →R+, then V is said to belong to class V if:

() V is continuous in (t, x) ∈ (nT , (n + )T] ×R

+ and for each x ∈R


+, n ∈ N,

lim(t,y)→(nT+,x) V (t, y) = V (nT+, x) exists.
() V is locally Lipschitzian in x.

Definition . Let V ∈ V, then for (t, x) ∈ (nT , (n + )T] ×R

+, the upper right derivative

of V (t, x) with respect to the impulsive differential system () is defined as

D+V (t, x) = lim
h→+

sup

h
[
V

(
t + h, x + hf (t, x)

)
– V (t, x)

]
.

Definition . System () is said to be permanent if there exist two positive constants
m, M, and T such that each positive solution X(t) = (x(t), y(t)) of the system () satisfies
m ≤ x(t) ≤ M, m ≤ y(t) ≤ M for all t > T.

The solution of system () is a piecewise continuous function x : R+ 
→R

+, x(t) is contin-

uous on (nT , (n + )T], n ∈N, and x(nT+) = limt→nT+ x(t) exists, the smoothness properties
of f guarantee the global existence and uniqueness of solutions of system (), for details
see [, ].

Lemma . Let X(t) be a solution of system () with X(+) ≥ , then X(t) ≥  for all t ≥ 
and further X(t) >  for all t ≥  if X(+) > .

Lemma . [] Suppose V ∈ V. Assume that

{
D+V (t, x) ≤ g(t, V (t, x)), t �= nT ,
V (t, x(t+)) ≤ ψn(V (t, x)), t = nT ,

()

where g : R+ × R+ 
→ R is continuous in (nT , (n + )T] × R+ and for u ∈ R+, n ∈ N,
lim(t,y)→(nT+,u) = g(nT+, u) exists, ψn : R+ → R+ is non-decreasing. Let r(t) be the maximal
solution of the scalar impulsive differential equation

⎧
⎪⎨

⎪⎩

u′(t) = g(t, u(t)), t �= nT ,
u(t+) = ψn(u(t)), t = nT ,
u(+) = u,

()

existing on [,∞). Then V (+, x) ≤ u implies that V (t, x(t)) ≤ r(t), t ≥  where X(t) is
any solution of system ().
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We consider the following subsystem of system ():

{
x′(t) = rx(t)( – x(t)

K ), t �= nT ,
�x(t) = –px(t), t = nT .

()

Clearly, if ( – p)erT > ,

x∗(t) =
x∗



( – x∗


K )e–r(t–nT) + x∗


K

, t ∈ (
nT , (n + )T

]
, x∗

 =
K[( – p)erT – ]

erT – 
,

is a globally asymptotically stable positive periodic solution of system () [].

Lemma . If ( – p)erT > , system () has a predator-extinction periodic solution X(t) =
(x∗(t), ) for t ∈ (nT , (n + )T], and for any solution X(t) = (x(t), y(t)) of system (), we have
x(t) → x∗(t) as t → +∞.

Lemma . Consider the following delay differential equation []:

x′(t) = ax(t – τ ) – bx(t),

where a, b, τ are all positive constants and x(t) >  for t ∈ [–τ , ].
(i) If a < b, then limt→+∞ x(t) = .

(ii) If a > b, then limt→+∞ x(t) = +∞.

3 Extinction and permanence
Denote

X∗
 =

K[( – p)erT – ]
( – p)(erT – )

, � =
kαX∗


d( + βX∗

 )
.

Theorem . If � <  and ( – p)erT > , then the predator-extinction periodic solution
X(t) = (x∗(t), ) of system () is globally attractive.

Proof Let X(t) = (x(t), y(t)) be any solution of system () with initial conditions (). By the
second equation of system (), we get

y′(t) ≤ kα

β
y(t – τ ) – dy(t).

Consider the following delayed comparison equation:

z′(t) =
kα

β
z(t – τ ) – dz(t).

If kα < dβ , then � < . According to Lemma ., we have limt→+∞ z(t) = . Note that
y(t) = z(t) = φ(t) >  for all t ∈ [–τ , ], then we have y(t) →  as t → +∞. We assume
that kα > dβ in the rest of this paper. � <  and we note that kαz

+βz is a monotonically
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increasing function about variable z. Therefore, there exists a sufficiently small positive
constant ε such that

kα(X∗
 + ε)

 + β(X∗
 + ε) – d < .

By the first and third equations of system (), we have

{
x′(t) ≤ rx(t)( – x(t)

K ), t �= nT ,
�x(t) = –px(t), t = nT ,

then we consider the following comparison system:

{
z′(t) = rz(t)( – z(t)

K ), t �= nT ,
�z(t) = –pz(t), t = nT ,

()

with z(+) = z() = x(). Recalling system (), we obtain a unique globally asymptotically
stable positive T-periodic solution of system (), where

z∗(t) =
K

[ erT –
(–p)erT – – ]e–r(t–nT) + 

, t ∈ (
nT , (n + )T

]
.

Then, there exists an arbitrarily small positive constant ε and n ∈N such that

x(t) ≤ z∗(t) + ε ≤ K
[ erT –

(–p)erT – – ]e–rT + 
+ ε = X∗

 + ε � η ()

for all t ≥ nT . From () and the second equation of system (), we have

y′(t) ≤ kαη

 + βη y(t – τ ) – dy(t)

for t ≥ nT + τ . Consider the following delayed comparison equation:

z′(t) =
kαη

 + βη z(t – τ ) – dz(t).

According to Lemma ., we get limt→+∞ z(t) = . Note that y(t) = z(t) = φ(t) >  for all
t ∈ [–τ , ], then we have y(t) →  as t → +∞.

Without loss of generality, we may suppose that  < y(t) < ε and r = r – αKε > , K =
rK/r for ε small enough and t ≥ . By the first equation of system (), we obtain

x′(t) ≥ rx(t)
(

 –
x(t)
K

)

.

Then we have z∗
 (t) → x∗(t) as ε →  (t → +∞), where z∗

 (t) is the unique periodic solution
of the following comparison system:

{
z′

(t) = rz(t)( – z(t)
K

), t �= nT ,
�z(t) = –pz(t), t = nT ,

()
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with initial condition z(+) = x(+). From (), we get

z∗
 (t) =

z∗


( – z∗


K
)e–r(t–nT) + z∗


K

, t ∈ (
nT , (n + )T

]
,

where

z∗
 =

K[( – p)erT – ]
erT – 

.

Therefore, for any ε >  there exists a T >  such that

x(t) > z∗
 (t) – ε ()

for t > T.
By the first equation of system (), we get

x(t) ≤ rx(t)
(

 –
x(t)
K

)

.

Consider the following comparison system:

{
z′

(t) = rz(t)( – z(t)
K ), t �= nT ,

�z(t) = –pz(t), t = nT ,
()

with initial condition z(+) = x(+). Then, we have

x(t) < z∗
(t) + ε ()

as t → +∞ and z∗
(t) = x∗(t), where z∗

(t) is the unique positive periodic solution of ().
Let ε → , and by () and (), we have

x∗(t) – ε < x(t) < x∗(t) + ε

for sufficiently large t. This implies x(t) → x∗(t) as t → +∞. �

Theorem . There exists a constant Y = M/d –kK > , such that x(t) ≤ K and y(t) ≤ Y

for any solution X(t) = (x(t), y(t)) of system () with all t large enough.

Proof Let V (t) = kx(t) + y(t + τ ). Note that V ∈ V. We get V ′(t) by calculating the upper
right derivative of V (t) along a solution of system ():

V ′(t) = krx(t)
(

 –
x(t)
K

)

– dy(t + τ ) = –dV (t) + kx(t)
[

d + r
(

 –
x(t)
K

)]

.

Let M = max{Kkd, K (r+d)

 }, then we have

dV (t)
dt

≤ –dV (t) + M.
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Consider the following differential inequalities:

{
V ′(t) ≤ –dV (t) + M, t �= nT ,
V (t+) ≤ V (t), t = nT ,

according to Lemma ., we have

V (t) ≤
(

V
(
+)

–
M

d

)

e–dt +
M

d
.

Therefore limt→+∞ V (t) ≤ M/d � M, then V (t) is ultimately bounded. Therefore, any
positive solution of system () is uniformly ultimately bounded. �

Denote

� =
kαx∗


d( + βx∗

 )
.

Theorem . If � >  and r > αKY, then system () is uniformly persistent.

Proof Suppose that X(t) = (x(t), y(t)) is each positive solution of system () with initial
conditions (). Rewrite the second equation of system () as follows:

dy(t)
dt

=
(

kαx(t)
 + βx(t)

– d
)

y(t) – kα
d
dt

∫ t

t–τ

x(θ )
 + βx(θ )

y(θ ) dθ .

Define

V (t) = y(t) + kα

∫ t

t–τ

x(θ )
 + βx(θ )

y(θ ) dθ .

Calculating V ′(t) along the solution of system (), we have

V ′(t) = d
(

kα

d
x(t)

 + βx(t)
– 

)

y(t). ()

Since � > , there exist two positive constants m∗
 and ε small enough such that

kα

d
ρ

 + βρ > , ()

where

ρ =
K[( – p)erT – ]

erT – 
– ε > , r = r – αKm∗

 > ,

K =
Kr

r
> ,  < m∗

 <
rT + ln( – p)

αKT
.

We claim that: for any positive constant t, the inequality y(t) < m∗
 cannot hold for all

t ≥ t. Otherwise, we can choose a positive constant t such that y(t) < m∗
 for all t ≥ t.
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By the first and third equations of system (), we obtain

{
x′(t) ≥ rx(t)( – x(t)

K
), t �= nT ,

�x(t) = –px(t), t = nT .
()

Then, we have z∗
(t) ≤ x(t), where z∗

(t) is an unique positive solution of the following com-
parison system:

{
z′

(t) = rz(t)( – z(t)
K

), t �= nT ,
�z(t) = –pz(t), t = nT ,

()

with initial condition z(+) = x(+). From (), we obtain

z∗
(t) =

z∗


( – z∗


K
)e–r(t–nT) + z∗


K

,

for t ∈ (nT , (n + )T], where

z∗
 =

K[( – p)erT – ]
erT – 

.

Then, for any ε >  there exists a T >  such that

x(t) > z∗
(t) – ε ≥ z∗

 – ε � ρ, ()

for t > T.
When t ≥ T, from () and () we get

V ′(t) > d
(

kα

d
ρ

 + βρ – 
)

y(t). ()

Let y = min{y(t)|T ≤ t ≤ T + τ }. We show that y(t) ≥ y for all t ≥ T. Otherwise, there
exists a nonnegative constant T such that

y(t) ≥ y (T ≤ t ≤ T + T + τ ), y(T + T + τ ) = y, y′(T + T + τ ) ≤ .

Thus, by the second equation of system (), (), and (), we obtain

y′(T + T + τ ) > d
(

kα

d
ρ

 + βρ – 
)

y > ,

which is a contradiction. Hence, we get y(t) > y >  for all t ≥ T. From (), we have

V ′(t) > d
(

kα

d
ρ

 + βρ – 
)

y(t) > ,

which implies V (t) → +∞ as t → +∞. This is a contradiction to V (t) ≤ M. Then, for any
given positive constant t, the inequality y(t) < m∗

 cannot hold for all t ≥ t.
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Figure 1 The two thresholds T∗
1 and T∗

2 for system (18).

On the one hand, if y(t) ≥ m∗
 holds true for all sufficiently large t, then our aim is

reached. On the other hand, suppose y(t) is oscillatory about m∗
. Let m = min{m∗

/,
m∗

 exp(–dτ )} and we will prove that y(t) ≥ m. There exist two positive constants t̄ and ω

such that y(t̄) = y(t̄ + ω) = m∗
 and y(t) < m∗

 for t ∈ (t̄, t̄ + ω). The inequality x(t) > ρ holds
true for t ∈ (t̄, t̄ + ω) when t̄ is large enough.

Since there is no impulsive effect on y(t), y(t) is uniformly continuous. Then, there exists
a constant T (with  < T < τ and T is dependent of the choice of t̄) such that y(t) > m∗

/
for all t ∈ [t̄, t̄ + T].

If ω ≤ T, our aim is reached. If T < ω ≤ τ , by the second equation of system () we get
y′(t) ≥ –dy(t) for t ∈ (t̄, t̄ +ω]. Then we get y(t) ≥ m∗

 exp(–dτ ) for t̄ < t ≤ t̄ +ω ≤ t̄ + τ since
y(t) = m∗

. Therefore, y(t) ≥ m for t ∈ (t̄, t̄ + ω].
If ω ≥ τ , from the second equation of system (), then we get y(t) ≥ m for t ∈ (t̄, t̄ + τ ].

Thus, we have y(t) ≥ m for t ∈ [t̄ + τ , t̄ + ω]. According to the above proof. Since the
interval [t̄, t̄ + ω] is arbitrarily chosen, we have y(t) ≥ m for sufficiently large t. From our
arguments above, the choice of m is independent of the positive solution of system ()
which shows that y(t) ≥ m holds for sufficiently large t.

By Theorem ., we obtain y(t) ≤ Y for sufficiently large t. Therefore, by the first equa-
tion of system (), we get

x′(t) ≥ rx(t)
(

 –
x(t)
K

)

for sufficiently large t, where r = r – αKY and K = Kr/r. Therefore, we have x(t) ≥
z∗

(t), where z∗
(t) is a unique globally asymptotically stable positive periodic solution of
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Figure 2 Time-series of prey population x(t) of system (18) without (left) and with (right) impulsive
period T = 0.5 < T∗

1 when the time delay τ = 0.5, 0.7, 3, 6, respectively.

the following comparison system:

{
z′

(t) = rz(t)( – z(t)
K

), t �= nT ,
�z(t) = –pz(t), t = nT ,

with initial condition z(+) = x(+). Similarly, we can choose a ε >  small enough such
that

x(t) > z∗
(t) – ε ≥ K[( – p)erT – ]

erT – 
– ε � m

holds for sufficiently large t. �

Remark  Let ( – p)erT >  and

F
(
f(p, T)

)
=

kαf 
 (p, T)

d( + f 
 (p, T))

– , f(p, T) =
K[( – p)erT – ]
( – p)(erT – )

.

Note that F(f(p, T)) is a monotonically increasing function with respect to f(p, T), and
f(p, T) is a monotonically increasing function with respect to T (T > – ln( – p)/r) and a
monotonically decreasing function with respect to p ( < p <  – exp(–rT)), since

f ′
p(p, T) =

–K
(erT – )( – p) < , f ′

T (p, T) =
rpKerT

( – p)(erT – ) > .
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Figure 3 Time-series of predator population y(t) of system (18) without (left) and with (right)
impulsive period T = 0.5 < T∗

1 when time delay τ = 0.5, 0.7, 3, 6, respectively.

So, there exists a unique T∗
 such that F(f(p, T∗

 )) =  if we fix p, similarly, there exists a
unique p∗

 such that F(f(p∗
 , T)) =  if we fix T . Therefore, the condition � <  is equiva-

lent to T < T∗
 (or p > p∗

 ), where T∗
 (p∗

 ) is the unique solution of F(f(p, T)) = .
Similarly, let

F
(
f(p, T)

)
=

kαf 
 (p, T)

d( + f 
 (p, T))

– , f(p, T) =
K[( – p)erT – ]

erT – 
.

Note that F(f(p, T)) is a monotonically increasing function with respect to f(p, T), and
f(p, T) is a monotonically increasing function with respect to T (T > – ln( – p)/r) and a
monotonically decreasing function with respect to p ( < p <  – exp(–rT)), since

f ′
p(p, T) = –KerT < , f ′

T (p, T) =
rpKerT

(erT – ) > .

So, there exists a unique T∗
 such that F(f(p, T∗

 )) =  if we fix p, similarly, there exists a
unique p∗

 such that F(f(p∗
, T)) =  if we fix T . Therefore, the condition � >  is equiv-

alent to T > T∗
 (or p < p∗

), where T∗
 (p∗

) is the unique solution of F(f(p, T)) = .

Remark  Note that f(p, T) > f(p, T), so T∗
 < T∗

 for F(f(p, T∗
 )) =  and F(f(p, T∗

 )) = 
with respect to the same value of the parameter p. Therefore, if T < T∗

 the predator-
extinction periodic solution is globally attractive and if T > T∗

 the system has perma-
nence. If system () is without time delay, according to [], we know that there would be
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Figure 4 Time-series of prey (left) and predator (right) population y(t) of system (18) with impulsive
period T = 0.8 > T∗

2 when the time delay τ = 0.5, 0.7, 3, 6, respectively.

a threshold Tmax. If T < Tmax, then the prey- (or predator)-eradication periodic solution is
locally asymptotically stable; if T > Tmax the system is permanent. But we get two thresh-
olds T∗

 and T∗
 , and there is no information as regards the system when T∗

 < T < T∗
 . This

is essentially different when system () is with or without time delay.

4 Numerical analysis
Numerical experiments are carried out to integrate the system by using the DDE algo-
rithm method in MATLAB.

4.1 Example 1
We consider the following delayed Holling type-III response prey-predator system with
impulsive perturbation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x′(t) = .x(t)( – x(t)
 ) – .x(t)y(t)

+x(t) ,
y′(t) = x(t–τ )y(t–τ )

[+x(t–τ )] – .y(t),

}

t �= nT ,

�x(t) = –px(t),
�y(t) = ,

}

t = nT ,

()

where r = ., K = , α = ., β = , k = ., d = ., with initial conditions (φ(t),φ(t)) =
(, ), t ∈ [–τ , ]. From Remark , we can get thresholds T∗

 and T∗
 when varying the values

of parameter p from . to .. From Figure , we see that T∗
 gets more and more close

to T∗
 when p gets more and more close to zero.

According to [, ], there would be a time delay critical value τ, and there is a Hopf
bifurcation when the time delay τ crosses the critical value τ when system () is without
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Figure 5 Time-series of prey (left) and predator (right) population y(t) of system (18) with time delay
τ = 0.5 when the impulsive period T = 1.8, 2.8, 3.8, 4.8, respectively.

impulsive perturbation (i.e. p = ). From the time-series of the prey population (Figure 
(left)) and the predator population (Figure  (left)) with time delay τ = ., ., , , respec-
tively, we know that the time delay critical value τ is between . and .. The prey and
predator populations are locally stable when the time delay τ ≤ . and coexist with sable
cycles when τ ≥ ..

From Theorem ., Theorem ., and Remark , one knows that if T < T∗
 the predator-

extinction periodic solution is globally attractive and if T > T∗
 the system has permanence.

From Figure , we see T∗
 ≈ . and T∗

 ≈ . when p = .. Then, the predator-
extinction periodic solution is globally attractive when T = . < T∗

 (see Figure  (right)
and Figure  (right)) where the time delay τ = ., ., , , respectively. The system is
permanent when T = . > T∗

 where the time delay τ = ., ., , , respectively (see Fig-
ure ). Furthermore, when the time delay τ = . < τ the predator and prey populations
coexist with sable cycles, where the impulsive period T = ., ., ., ., respectively (see
Figure ). That is to say, an impulsive effect would destabilize the system under some con-
ditions. If we increasing the time delay from  to ., that large time delay could stabilize
the system (see Figure  and Figure ).

4.2 Example 2
We consider the following delayed Holling type-III response predator-prey system with
impulsive perturbation:
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Figure 6 Time-series of prey-predator population y(t) of system (18) with time delay τ = 2 (left) and
τ = 2.5 (right) when the impulsive period T = 1.8, 2.8, 3.8, 4.8, respectively.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x′(t) = .x(t)( – x(t)
 ) – .x(t)y(t)

+.x(t) ,
y′(t) = .x(t–τ )y(t–τ )

+.x(t–τ ) – .y(t),

}

t �= nT ,

�x(t) = –px(t),
�y(t) = ,

}

t = nT ,

()

where r = ., K = , α = ., β = ., k = ., d = ., with initial condition (φ(s),
φ(s)) = (, ), s ∈ [–τ , ]. First of all, we let p = ., τ = , and we consider the effect of the
impulsive period T on system (). The bifurcation diagrams of the impulsive period T
over [., .] and [., .], show that system () has complex dynamics (see Figure  and
Figure ), including high-order periodic and quasi-periodic oscillating, period-doubling
and period-halving bifurcations, and chaos and attractor crises. For example, there exist
T , T , T periodic solutions when T = ., ., ., respectively (see Figure ). When
T increases from . to ., there is an attractor crisis leading to a chaotic solution (see
Figure ). These results imply that an impulsive effect could destroy the stability of the
system and lead to multiple attractors, bifurcations, even chaos oscillations, which makes
the dynamical behaviors very complex.

Second, we let p = ., T =  and consider the effect of the time delay τ on system ().
The bifurcation diagrams of time delay τ over [., .] and [., .], show that system ()
has very complex dynamic behaviors (see Figure  and Figure ). These results imply that
the time delay would make the dynamical behaviors more complex. For example, there is
a cascade of period-doubling bifurcations leading to chaos (see Figure ).
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Figure 7 Time-series of prey predator population y(t) of system (18) with time delay τ = 4 (left) and
τ = 4.8 (right) when the impulsive period T = 1.8, 2.8, 3.8, 4.8, respectively.

Figure 8 Bifurcation diagrams of system (19): prey population x(t) (top) and predator population y(t)
(bottom) when p = 0.3, τ = 3 with impulsive period T over [0.5, 8.5].
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Figure 9 Bifurcation diagrams of system (19): prey population x(t) (top) and predator population y(t)
(bottom) when p = 0.3, τ = 3 with impulsive period T over [6.9, 7.5].

Figure 10 Phase portrait of the system (19). 5T , 4T , 3T periodic solution when T = 3.5, 4.5, 6.5, respectively.

Finally, we let τ = , T = , and we investigate the impulsive perturbation proportion-
ality constant p on system (). The bifurcation diagrams of impulsive perturbation pro-
portionality constant p over [., .] show that system () has complex dynamics (see
Figure ). These results imply that the impulsive perturbation proportionality constant p
would make the dynamical behaviors more complex, too. From the bifurcation diagrams
(Figures , , ,  and ), we know that the parameters impulsive period T , time de-
lay τ , and impulsive perturbation proportionality constant p would be important factors
to affect the dynamic behaviors of the system, and make the system subject to complex
dynamical behaviors.
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Figure 11 Crisis are shown: from left to right there is a crisis that the chaos suddenly appears when
T = 6.93, 6.94, respectively.

Figure 12 Bifurcation diagrams of system (19): prey population x(t) (top) and predator population
y(t) (bottom) when p = 0.3, T = 7 with time delay τ over [0.2, 7.0].

5 Conclusion
In this paper, we have investigated a prey-predator system with constant gestation time
delay and impulsive perturbation on the prey in detail. We have shown that there exists
a globally attractive predator-extinction periodic solution when the impulsive period T is
less than the critical value T∗

 . The system is permanent when the impulsive period T is
larger than the critical value T∗

 . Therefore, we get two thresholds T∗
 and T∗

 , and there
is no information as regards the system () when T∗

 < T < T∗
 . If the system () is without

time delay, then T∗
 = Tmax = T∗

 would be the unique threshold. This is essentially different
when system () is with or without time delay.
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Figure 13 Bifurcation diagrams of system (19): prey population x(t) (top) and predator population
y(t) (bottom) when p = 0.3, T = 7 with time delay τ over [2.5, 3.1].

Figure 14 Period-doubling bifurcation leads to chaos. From left to right: phase portrait of T-periodic,
2T-periodic solutions and chaos when τ = 4.1, 4.2, 4.3, respectively.

Numerical examples show that system () have various kinds of periodic oscillations,
including high-order periodic and quasi-periodic oscillations, chaotic oscillations. These
results imply that the parameters of impulsive period T , time delay τ , and impulsive per-
turbation proportionality constant p would be important factors to affect the dynamic
behaviors of the system (), and make the system () subject to complex dynamical behav-
iors. That large time delay could stabilize the system, an impulsive effect could destabilize
the system. Therefore, the dynamical behaviors would be more complex when the system
is subject to both time delay and an impulsive effect.
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Figure 15 Bifurcation diagrams of system (19): prey population x(t) (top) and predator population
y(t) (bottom) when τ = 7, T = 7 with parameter p over [0.2, 0.74].
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