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Abstract
We study a class of boundary value problems for a fractional differential equation with
integral boundary conditions. By means of u0-positive operator we obtain results on
the existence and uniqueness of positive solutions for the boundary value problem.
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1 Introduction
Nowadays, fractional differential equations become more and more important. They play
an important role in engineering, science,economics, and so on. More and more people
pay attention to the study of theory and applications of fractional differential equations
[–]. Many efforts have also been made to develop the theory of fractional evolution
equations: we refer the readers to [–]. A lot of papers are devoted to the positive solu-
tions of boundary value problem for fractional differential equations, such as [–].

For example, Jiang and Yuan [] investigated the existence and multiplicity of positive
solutions of the Dirichlet-type boundary value problem for the nonlinear fractional dif-
ferential equation

⎧
⎨

⎩

Dp
+ x(t) + f (t, x(t)) = , t ∈ (, ),

x() = x() = .
(.)

Zhang, Liu, and Wu [] studied the existence of multiple positive solutions for the bound-
ary value problem

⎧
⎨

⎩

–Dp
+ x(t) + p(t)f (t, x(t)) – q(t) = , t ∈ (, ),

x() = x′() = , x() = ,
(.)

where  < p ≤  is a real number, q : (, ) → [, +∞] is a Lebesgue-integrable function
nonvanishing identically on any subinterval of (, ). The authors obtained existence re-
sults by Krasnoselskii’s fixed point theorem in a cone.
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Cui [] considered the uniqueness of the fractional differential equations with easy
boundary conditions

⎧
⎨

⎩

Dp
+ x(t) + p(t)f (t, x(t)) + q(t) = , t ∈ (, ),

x() = x′() = , x() = ,
(.)

where  < p ≤  is a real number, and f (t, x) is a continuous function. The author studied
the existence of solutions for (.) by using a u-positive operator.

In this paper, we discuss the existence and uniqueness of a positive solution for the fol-
lowing boundary value problems with integral boundary conditions:

⎧
⎨

⎩

Dp
+ x(t) + p(t)f (t, x(t)) + q(t) = , t ∈ (, ),

x() = x′() = , x() =
∫ 

 l(s)x(s) ds,
(.)

where  < p ≤  is a real number, and Dp
+ is the standard Riemann-Liouville derivative.

By means of a new u-positive operator we get the existence and uniqueness of positive
solutions for (.).

Throughout this paper, we always assume that the following conditions are satisfied:

(A) p : (, ) → [, +∞) is a continuous function nonvanishing identically on any subin-
terval of (, ) with

∫ 


p(s) ds < +∞.

(A) f : [, ] × R → [, +∞) is continuous, and q : (, ) → [, +∞) is continuous and
Lebesgue integrable.

(A) l : (, ) → [, +∞) is continuous, and  ≤ ∫ 
 l(t)tp– dt < .

2 Preliminaries and relevant lemmas
In order to obtain the main results of this work, we present some necessary definitions
and several fundamental lemmas.

Definition . ([, ]) The Riemann-Liouville fractional integral of order p >  of a func-
tion u : (, +∞) →R is given by

Ip
+ u(t) =


�(p)

∫ t


(t – s)p–u(s) ds,

provided that the right-hand side is pointwise defined on (, +∞).

Definition . ([, ]) The Riemann-Liouville fractional derivative of order p >  of a
function u : (, +∞) →R is given by

Dp
+ u(t) =


�(n – p)

dn

dtn

∫ t


(t – s)n–p–u(s) ds,

where n –  ≤ p < n, provided that the right-hand side is pointwise defined on (, +∞).
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Definition . ([, ]) Let E be a Banach space, and P a cone in E . We say that a bounded
linear operator S : E → E is u-positive on the cone P if there exists u ∈ P \ {θ} such that
for every x ∈ P \ {θ}, there exist a natural number n and positive constants α(x), β(x) such
that

α(x)u ≤ Snx ≤ β(x)u.

Lemma . ([, ]) Let E be a Banach space. Suppose that S : E → E is a completely
continuous linear operator and S(P) ⊂ P. If there exist ψ ∈ E \ {–P} and a constant c > 
such that cSψ ≥ ψ , then the spectral radius r(S) 	= , and S has a positive eigenfunction ϕ

corresponding to its first eigenvalue λ = (r(S))–, that is, ϕ = λSϕ.

Let E = C[, ], which is a Banach space with norm ‖x‖ = maxt∈[,] |x(t)|.
Set P = {x ∈ E|x(t) ≥ ,∀t ∈ [, ]}. In the rest of this paper, the partial ordering in C[, ]

is always given by P.

Lemma . ([]) Let p > , and let u(t) be an integrable function. Then

Ip
+ Dp

+ u(t) = u(t) + ctp– + ctp– + · · · + cntp–n,

where ci ∈R (i = , , . . . , n), and n is the smallest integer greater than or equal to p.

Lemma . Let σ ∈ C(, ) ∩ L(, ),  < p ≤ . Then the unique solution of

⎧
⎨

⎩

Dp
+ x(t) + σ (t) = , t ∈ (, ),

x() = x′() = , x() =
∫ 

 l(s)x(s) ds,
(.)

is given by

x(t) =
∫ 


G(t, s)σ (s) ds –

∫ 


∫ 
τ

l(s)(s – τ )p–σ (τ ) ds dτ

 –
∫ 

 l(s)sp– ds
tp–,

where

G(t, s) =

⎧
⎪⎨

⎪⎩


�(p) { tp–(–s)p–

–
∫ 

 l(t)tp– dt
– (t – s)p–},  ≤ s ≤ t ≤ ,


�(p) { tp–(–s)p–

–
∫ 

 l(t)tp– dt
},  ≤ t ≤ s ≤ .

(.)

Proof From Lemma . it follows that

x(t) = –Ip
+σ (t) + ctp– + ctp– + ctp–.

So, the solution of (.) is

x(t) = –


�(p)

∫ t


(t – s)p–σ (s) ds + ctp– + ctp– + ctp–.

Since x() = x′() = , we have that c = c = .
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In addition,

x() = –


�(p)

∫ 


( – s)p–σ (s) ds + c

=
∫ 


l(s)

[

–


�(p)

∫ s


(s – τ )p–σ (τ ) dτ + csp–

]

ds

yields

c =


�(p) [
∫ 

 ( – s)p–σ (s) ds –
∫ 


∫ 
τ

l(s)(s – τ )p–σ (τ ) ds dτ ]

 –
∫ 

 l(s)sp– ds
.

Therefore, the solution of (.) is

x(t) =


�(p)

{∫ t



[
tp–( – s)p–

 –
∫ 

 l(t)tp– dt
– (t – s)p–

]

σ (s) ds +
∫ 

t

tp–( – s)p–

 –
∫ 

 l(t)tp– dt
σ (s) ds

}

–
∫ 


∫ 
τ

l(s)(s – τ )p–σ (τ ) ds dτ

 –
∫ 

 l(s)sp– ds
tp–

=
∫ 


G(t, s)σ (s) ds –

∫ 


∫ 
τ

l(s)(s – τ )p–σ (τ ) ds dτ

 –
∫ 

 l(s)sp– ds
· tp–.

This finishes the proof. �

Let L =
∫ 

 l(t)tp– dt and Q(s) =
∫ 

s l(u)(u–s)p– du
–L . By (A) we know that  ≤ L < .

Remark . If G(t, s) is defined by (.), then G(t, s) ≥  for t, s ∈ (, ).

Define the operators T and A as

(Tx)(t) =
∫ 



[
G(t, s) + Q(s)tp–]p(s)x(s) ds, t ∈ [, ], x ∈ E, (.)

(Ax)(t) =
∫ 



[
G(t, s) + Q(s)tp–][p(s)f

(
s, x(s)

)
+ q(s)

]
ds, t ∈ [, ], x ∈ E. (.)

It is easy to show that T : E → E is a linear completely continuous operator and T(P) ⊂ P.
It is not difficult to see that the solution for (.) is, equivalently, a fixed point of A in E.

Lemma . The operator A : E → E defined in (.) is completely continuous, and
A(P) ⊂ P.

Proof Obviously, A : E → E, and A(P) ⊂ P. The continuity of A in P is obvious. For any
bounded set D ⊂ P, A(D) is bounded, so that the functions in A(D) are uniformly bounded.
It is easy to prove that A is equicontinuous. By the Ascoli-Arzelà theorem A is completely
continuous. �

Lemma . T is a u-positive operator, and u(t) = tp–.
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Proof For any x ∈ P \ {θ}, it follows from the definition of T that

(Tx)(t) =
∫ 



[
G(t, s) + Q(s)tp–]p(s)x(s) ds

=
∫ t



{


�(p)

[
tp–( – s)p–

 – L
– (t – s)p–

]

+ Q(s)tp–
}

p(s)x(s) ds

+
∫ 

t

[


�(p)
tp–( – s)p–

 – L
+ Q(s)tp–

]

p(s)x(s) ds

≤
∫ 




�(p)

tp–( – s)p–

 – L
p(s)x(s) ds +

∫ 


Q(s)tp–p(s)x(s) ds

=
∫ 



[


�(p)
( – s)p–

 – L
+ Q(s)

]

p(s)x(s) ds · tp–.

On the other hand, we have

(Tx)(t) =
∫ 



[
G(t, s) + Q(s)tp–]p(s)x(s) ds

=
∫ t



{


�(p)

[
tp–( – s)p–

 – L
– (t – s)p–

]

+ Q(s)tp–
}

p(s)x(s) ds

+
∫ 

t

[


�(p)
tp–( – s)p–

 – L
+ Q(s)tp–

]

p(s)x(s) ds

≥
∫ t



{


�(p)

[
tp–( – s)p–

 – L
– (t – ts)p–

]

+ Q(s)tp–
}

p(s)x(s) ds

+
∫ 

t

[


�(p)
tp–( – s)p–

 – L
+ Q(s)tp–

]

p(s)x(s) ds

=
{∫ 




�(p)( – L)

( – s)p–p(s)x(s) ds –
∫ t



( – s)p–

�(p)
p(s)x(s) ds

+
∫ 


Q(s)p(s)x(s) ds

}

tp–

≥
{

L
�(p)( – L)

∫ 


( – s)p–p(s)x(s) ds +

∫ 


Q(s)p(s)x(s) ds

}

tp–

=
{∫ 



[
L

�(p)( – L)
( – s)p– + Q(s)

]

p(s)x(s) ds
}

tp–.

The inequalities imply that T is a u-positive operator and u(t) = tp–. This proof is
completed. �

Lemma . Let T be defined in (.). Then the spectral radius r(T) 	= , and T has a
positive eigenfunction ϕ∗(t) corresponding to its first eigenvalue λ = (r(T))–.

Proof Let ψ(t) = tp– and c = {∫ 
 [ L

�(p)(–L) ( – s)p– + Q(s)]p(s)ψ(s) ds}– > . Then from the
proof of Lemma . we have cTψ ≥ ψ . Thereby, from Lemma . we get that r(T) 	=  and
that T has a positive eigenfunction ϕ∗(t) corresponding to its first eigenvalue λ = (r(T))–,
that is, ϕ∗(t) = λTϕ∗. This completes the proof. �

From Lemma . and Definition . we get the following lemma.
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Lemma . There exist k(ϕ∗), k(ϕ∗) >  such that

k
(
ϕ∗)u ≤ Tϕ∗ =


λ

ϕ∗ ≤ k
(
ϕ∗)u.

Furthermore, T is a u-positive operator, and u(t) = ϕ∗(t).

3 Main results
Theorem . Suppose that there exists k ∈ [, )such that

∣
∣f (t, u) – f (t, v)

∣
∣ ≤ kλ|u – v|, ∀t ∈ [, ], u, v ∈R,

where λ is the first eigenvalue of T . Then (.) has a unique positive solution x∗, and for
any x ∈ P, the iterative sequence xn = Axn– (n = , , . . .) converges to x∗.

Proof For any given x ∈ P, let xn = Axn– (n = , , . . .). Because A(P) ⊂ P, we know that
{xn} ⊂ P. By Lemmas . and . there exists β >  such that

(
T |x – x|

)
(t) ≤ βϕ

∗(t), t ∈ [, ].

Notice that T is increasing on P. Then, for n ∈N
+,

∣
∣xn+(t) – xn(t)

∣
∣ =

∣
∣(Axn)(t) – (Axn–)(t)

∣
∣

=
∣
∣
∣
∣

∫ 



(
G(t, s) + Q(s)tp–)[p(s)f

(
s, xn(s)

)
+ q(s)

]
ds

–
∫ 



(
G(t, s) + Q(s)tp–)[p(s)f

(
s, xn–(s)

)
+ q(s)

]
ds

∣
∣
∣
∣

≤
∫ 



(
G(t, s) + Q(s)tp–)p(s)

∣
∣f

(
s, xn(s)

)
– f

(
s, xn–(s)

)∣
∣ds

≤ kλ

∫ 



(
G(t, s) + Q(s)tp–)p(s)

∣
∣xn(s) – xn–(s)

∣
∣ds

≤ kλT
(|xn – xn–|

)
(t) ≤ · · · ≤ knλn

 Tn(|x – x|
)
(t)

≤ knλn
 Tn–(βϕ

∗(t)
)

= knβλ
n



λn–


ϕ∗(t) = knβλϕ

∗(t).

Thus, for any m ∈N
+,

∣
∣xn+m(t) – xn(t)

∣
∣ =

∣
∣xn+m(t) – xn+m–(t) + · · · + xn+(t) – xn(t)

∣
∣

≤ ∣
∣xn+m(t) – xn+m–(t)

∣
∣ + · · · +

∣
∣xn+(t) – xn(t)

∣
∣

≤ βλ
(
kn+m– + · · · + kn)ϕ∗(t)

= βλ
kn( – km)

 – k
ϕ∗(t) ≤ βλ

kn

 – k
ϕ∗(t).

Therefore,

‖xn+m – xn‖ ≤ βλ
kn

 – k
∥
∥ϕ∗∥∥.

Because limn→∞ βλ
kn

–k ‖ϕ∗‖ = , {xn} is a Cauchy sequence.
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By the completeness of E and the closeness of P there exists x∗ ∈ P such that
limn→∞ xn = x∗.

Passing to the limit in xn+ = Axn, we get x∗ = Ax∗, and it follows that x∗ is a fixed point
of A in P.

Next, we prove the uniqueness of a fixed point of A in P. Suppose that there exist two
elements x, y ∈ P such that x = Ax and y = Ay. By Lemmas . and . there exists β > 
such that

(
T

(|x – y|))(t) ≤ βϕ
∗(t), t ∈ [, ].

Then, for any n ∈N
+, we get

∣
∣x(t) – y(t)

∣
∣ =

∣
∣
(
Anx

)
(t) –

(
Any

)
(t)

∣
∣ =

∣
∣
[
A

(
An–x

)]
(t) –

[
A

(
An–y

)]
(t)

∣
∣

=
∣
∣
∣
∣

∫ 



(
G(t, s) + Q(s)tp–)[p(s)f

(
s, An–x(s)

)
+ q(s)

]
ds

–
∫ 



(
G(t, s) + Q(s)tp–)[p(s)f

(
s, An–y(s)

)
+ q(s)

]
ds

∣
∣
∣
∣

≤
∫ 



(
G(t, s) + Q(s)tp–)p(s)

∣
∣f

(
s, An–x(s)

)
– f

(
s, An–y(s)

)∣
∣ds

≤ kλ

∫ 



(
G(t, s) + Q(s)tp–)p(s)

∣
∣An–x(s) – An–y(s)

∣
∣ds

≤ kλT
(∣
∣An–x – An–y

∣
∣
)
(t) ≤ · · · ≤ knλn

 Tn(|x – y|)(t)

≤ knλn
 Tn–(βϕ

∗(t)
)

= knβλ
n



λn–


ϕ∗(t) = knβλϕ

∗(t).

From ‖x – y‖ ≤ knβλ‖ϕ∗‖ and limn→∞ knβλ‖ϕ∗‖ =  we have ‖x – y‖ ≤ , and thus
x = y. Therefore, x∗ is the unique fixed point of A in P or, equivalently, x∗ is the unique
positive solution of (.). The proof is completed. �

4 Conclusions
The method of a u-positive operator is an important tool in boundary value problems
for fractional differential equations. We established the existence of positive solutions
for a fractional differential problem with integral boundary conditions by means of a u-
positive operator.
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