RESEARCH

Open Access

Existence of periodic solutions for a class of second order discrete Hamiltonian systems

Wen Guan^{1,2*} and Kuo Yang²

*Correspondence: mathguanw@163.com ¹College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou, 730050, People's Republic of China ²Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, 730050, People's Republic of China

Abstract

By using the variational minimizing method and the saddle point theorem, the periodic solutions for non-autonomous second-order discrete Hamiltonian systems are considered. The results obtained in this paper complete and extend previous results.

Keywords: periodic solutions; second-order discrete Hamiltonian systems; saddle point theorem; least action principle

1 Introduction and main results

Consider the second-order discrete Hamiltonian system

$$\Delta^2 u(n-1) = \nabla F(n, u(n)), \tag{1.1}$$

where $\Delta^2 u(n) = \Delta(\Delta u(n))$ and $\nabla F(n, x)$ denotes the gradient of *F* with respect to the second variable. *F* satisfies the following assumption:

(A) $F(n,x) \in C^1(\mathbb{R}^N, \mathbb{R})$ for any $n \in \mathbb{Z}$, F(n + T, x) = F(n, x) for $(n, x) \in \mathbb{Z} \times \mathbb{R}^N$, *T* is a positive integer.

Since Guo and Yu developed a new method to study the existence and multiplicity of periodic solutions of difference equations by using critical point theory (see [1-4]), the existence and multiplicity of periodic solutions for system (1.1) have been extensively studied and lots of interesting results have been worked out; see [5-16] and the references therein. System (1.1) is a discrete form of classical second-order Hamiltonian systems, which has been paid much attention to by many mathematicians in the past 30 years; see [17-24] for example.

In particular, when the nonlinearity $\nabla F(n, x)$ is bounded, Guo and Yu [3] obtained one periodic solution to system (1.1). When the gradient of the potential energy does not exceed sublinear growth, *i.e.* there exist $M_1 > 0$, $M_2 > 0$, and $\alpha \in [0, 1)$, such that

$$\left|\nabla F(n,x)\right| \le M_1 |x|^{\alpha} + M_2, \quad \forall (n,x) \in \mathbb{Z}[1,T] \times \mathbb{R}^N,$$
(1.2)

where $\mathbb{Z}[a, b] := \mathbb{Z} \cap [a, b]$ for every $a, b \in \mathbb{Z}$ with $a \leq b$, Xue and Tang [12, 13] considered the periodic solutions of system (1.1), which completed and extended the results in [3]

© 2016 Guan and Yang. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

under the condition where

$$\lim_{|x| \to \infty} |x|^{-2\alpha} \sum_{n=1}^{T} F(n, x) = +\infty,$$
(1.3)

or

$$\lim_{|x| \to \infty} |x|^{-2\alpha} \sum_{n=1}^{T} F(n, x) = -\infty.$$
(1.4)

Under weaker conditions on $\nabla F(n, x)$, *i.e.*,

$$\lim_{|x| \to \infty} |x|^{-2\alpha} \sum_{n=1}^{T} F(n, x) < +\infty,$$
(1.5)

or

$$\lim_{|x|\to\infty}|x|^{-2\alpha}\sum_{n=1}^{T}F(n,x)>-\infty,$$
(1.6)

Tang and Zhang [11] considered the periodic solutions of system (1.1), which completed and extended the results in [12, 13].

In this paper, we will further investigate periodic solutions to the system (1.1) under the conditions of (1.5) or (1.6). Our main results are the following theorems.

Theorem 1.1 Suppose that $F(n,x) = F_1(n,x) + F_2(x)$, where F_1 and F_2 satisfy (A) and the following conditions:

(1) there exist $f, g: \mathbb{Z}[1, T] \rightarrow \mathbb{R}^+$ and $\alpha \in [0, 1)$ such that

$$\left| \nabla F_1(n,x) \right| \leq f(n) |x|^{\alpha} + g(n), \text{ for all } (n,x) \in \mathbb{Z}[1,T] \times \mathbb{R}^N;$$

(2) there exist constants r > 0 and $\gamma \in [0, 2)$ such that

$$(\nabla F_2(x) - \nabla F_2(y), x - y) \ge -r|x - y|^{\gamma}, \text{ for all } x, y \in \mathbb{R}^N;$$

(3)

$$\liminf_{|x|\to+\infty} |x|^{-2\alpha} \sum_{n=1}^{T} F(n,x) > \frac{1}{8\sin^2 \frac{\pi}{T}} \sum_{n=1}^{T} f^2(n).$$

Then system (1.1) has at least one T-periodic solution.

Theorem 1.2 Suppose that $F(n,x) = F_1(n,x) + F_2(x)$, where F_1 and F_2 satisfy (A), (1), (2), and the following conditions:

(4) there exist $\delta \in [0, 2)$ and C > 0 such that

$$(\nabla F_2(x) - \nabla F_2(y), x - y) \le C |x - y|^{\delta}, \text{ for all } x, y \in \mathbb{R}^N;$$

(5)

$$\limsup_{|x|\to+\infty} |x|^{-2\alpha} \sum_{n=1}^{T} F(n,x) < -\frac{3}{8\sin^2 \frac{\pi}{T}} \sum_{n=1}^{T} f^2(n).$$

Then system (1.1) has at least one T-periodic solution.

Theorem 1.3 Suppose that $F(n, x) = F_1(n, x) + F_2(x)$, where F_1 and F_2 satisfy (A), (1), and the following conditions:

(6) there exists a constant $0 < r < \frac{6}{T^2-1}$, such that

$$(\nabla F_2(x) - \nabla F_2(y), x - y) \ge -r|x - y|^2$$
, for all $x, y \in \mathbb{R}^N$;

(7)

$$\liminf_{|x|\to+\infty} |x|^{-2\alpha} \sum_{n=1}^{T} F(n,x) > \frac{3}{(24-4(T^2-1)r)\sin^2\frac{\pi}{T}} \sum_{n=1}^{T} f^2(n).$$

Then system (1.1) has at least one T-periodic solution.

Theorem 1.4 Suppose that $F = F_1 + F_2$, where F_1 and F_2 satisfy (A), (1), and the following conditions:

(8) there exist $h : \mathbb{Z}[1, T] \to \mathbb{R}^+$ and (λ, u) -subconvex potential $G : \mathbb{R}^N \to \mathbb{R}$ with $\lambda > 1/2$ and $1/2 < \mu < 2\lambda^2$, such that

$$(\nabla F_2(n, x), y) \ge -h(n)G(x - y), \text{ for all } x, y \in \mathbb{R}^N \text{ and } n \in \mathbb{Z}[1, T];$$

(9)

$$\begin{split} \limsup_{|x| \to +\infty} |x|^{-2\alpha} \sum_{n=1}^{T} F_1(n,x) < -\frac{3}{8 \sin^2 \frac{\pi}{T}} \sum_{n=1}^{T} f^2(n), \\ \limsup_{|x| \to +\infty} |x|^{-\beta} \sum_{n=1}^{T} F_2(n,x) < -8\mu \max_{|s| \le 1} G(s) \sum_{n=1}^{T} h(n), \end{split}$$

where $\beta = \log_{2\lambda}(2\mu)$. Then system (1.1) has at least one *T*-periodic solution.

Remark 1.5 Theorems 1.1-1.3 extend some existing results. On the one hand, we decomposed the potential F into F_1 and F_2 . On the other hand, if $F_2 = 0$, the theorems in [11], Theorems 1 and 2, are special cases of Theorem 1.1 and Theorem 1.2, respectively. Some examples of F are given in Section 4, which are not covered in the references. Moreover, our Theorem 1.4 is a new result.

2 Some important lemmas

 H_T can be equipped with the inner product

$$\langle u,v\rangle = \sum_{n=1}^T [(\Delta u(n), \Delta v(n)) + (u(n), v(n))], \quad \forall u,v \in H_T,$$

by which the norm $\|\cdot\|$ can be induced by

$$||u|| = \left(\sum_{n=1}^{T} \left[\left| \Delta u(n) \right|^2 + \left| u(n) \right|^2 \right] \right)^{\frac{1}{2}}, \quad \forall u \in H_T.$$

Define

$$\Phi(u) = \frac{1}{2} \sum_{t=1}^{T} |\Delta u(t)|^2 - \sum_{t=1}^{T} F(t, u(t))$$

and

$$\left\langle \Phi'(u), v \right\rangle = \sum_{t=1}^{T} \left(\Delta u(t), \Delta v(t) \right) - \sum_{t=1}^{T} \left(\nabla F(t, u(t)), v(t) \right),$$

for $u, v \in H_T$.

By (A), it is easy to see that Φ is continuously differentiable, and the critical points of Φ are the *T*-periodic solutions of system (1.1).

The following lemma is a discrete form of Wirtinger's inequality and Sobolev's inequality (see [19]).

Lemma 2.1 [11] If $u \in H_T$ and $\sum_{t=1}^{T} u(t) = 0$, then

$$\begin{split} & \sum_{t=1}^{T} \left| u(t) \right|^{2} \leq \frac{1}{4 \sin^{2} \frac{\pi}{T}} \sum_{t=1}^{T} \left| \Delta u(t) \right|^{2}, \\ & \| u \|_{\infty}^{2} \coloneqq \left(\max_{t \in \mathbb{Z}[1,T]} \left| u(t) \right| \right)^{2} \leq \frac{T^{2} - 1}{6T} \sum_{t=1}^{T} \left| \Delta u(t) \right|^{2}. \end{split}$$

Lemma 2.2 [25] Let $E = V \oplus X$, where E is a real Banach space and $V \neq \{0\}$ and is finite dimensional. Suppose $I \in C^1(E, \mathbb{R})$, it satisfies (PS), and

- (i) there is a constant α and a bounded neighborhood D of 0 in V such that $I|_{\partial D} \leq \gamma$, and
- (ii) there is a constant $\beta > \gamma$ such that $I \mid_X \ge \beta$.

Then I possesses a critical value $c \ge \beta$ *. Moreover, c can be characterized as*

$$c = \inf_{h \in \Gamma} \max_{s \in \overline{D}} I(h(s)),$$

where

$$\Gamma = \left\{ h \in C(\overline{D}, E) \mid h(s) = s, s \in \partial D \right\}.$$

3 Proof of theorems

For convenience, we denote

$$R_1 = \left(\sum_{n=1}^T f^2(n)\right)^{1/2}$$
, $R_2 = \sum_{n=1}^T f(n)$, and $R_3 = \sum_{n=1}^T g(n)$.

Proof of Theorem 1.1 According to (3), there exists $a_1 > \frac{1}{4 \sin^2 \frac{\pi}{T}}$ satisfying

$$\liminf_{x \to +\infty} |x|^{-2\alpha} \sum_{n=1}^{T} F(n,x) > \frac{a_1}{2} R_1^2.$$

From (1) and Lemma 2.1, for any $u \in H_T$, one has

$$\begin{split} \sum_{n=1}^{T} \left[F_{1}(n,u(n)) - F_{1}(n,\bar{u}) \right] \\ &= \left| \sum_{n=1}^{T} \int_{0}^{1} \left(\nabla F_{1}(n,\bar{u}+s\tilde{u}(n)),\tilde{u}(n) \right) ds \right| \\ &\leq \sum_{n=1}^{T} \int_{0}^{1} f(n) |\bar{u}+s\tilde{u}(n)|^{\alpha} |\tilde{u}(n)| ds + \sum_{n=1}^{T} \int_{0}^{1} g(n) |\tilde{u}(n)| ds \\ &\leq \sum_{n=1}^{T} f(n) (|\bar{u}|+|\tilde{u}(n)|)^{\alpha} |\tilde{u}(n)| + \sum_{n=1}^{T} g(n) |\tilde{u}(n)| \\ &\leq \sum_{n=1}^{T} f(n) |\bar{u}|^{\alpha} |\tilde{u}(n)| + \sum_{n=1}^{T} f(n) |\tilde{u}(n)|^{\alpha+1} + \sum_{n=1}^{T} g(n) |\tilde{u}(n)| \\ &\leq |\bar{u}|^{\alpha} \left(\sum_{n=1}^{T} f^{2}(n) \right)^{1/2} \left(\sum_{n=1}^{T} |\tilde{u}(n)|^{2} \right)^{1/2} + \|\tilde{u}\|_{\infty}^{\alpha+1} \sum_{n=1}^{T} f(n) + \|\tilde{u}\|_{\infty} \sum_{n=1}^{T} g(n) \\ &\leq \frac{1}{2a_{1}} \sum_{n=1}^{T} |\tilde{u}(n)|^{2} + \frac{a_{1}}{2} R_{1}^{2} |\bar{u}|^{2\alpha} + R_{2} \|\tilde{u}\|_{\infty}^{\alpha+1} + R_{3} \|\tilde{u}\|_{\infty} \\ &\leq \frac{1}{8a_{1} \sin^{2} \frac{\pi}{T}} \sum_{n=1}^{T} |\Delta u(n)|^{2} + \frac{a_{1}}{2} R_{1}^{2} |\bar{u}|^{2\alpha} + \left(\frac{T^{2}-1}{6T} \right)^{(\alpha+1)/2} R_{2} \left(\sum_{n=1}^{T} |\Delta u(n)|^{2} \right)^{(\alpha+1)/2} \\ &+ \left(\frac{T^{2}-1}{6T} \right)^{1/2} R_{3} \left(\sum_{n=1}^{T} |\Delta u(n)|^{2} \right)^{1/2}. \end{split}$$

From (2) and Lemma 2.1, for any $u \in H_T$, we have

$$\sum_{n=1}^{T} \left[F_{2}(u(n)) - F_{2}(\bar{u}) \right]$$

$$= \sum_{n=1}^{T} \int_{0}^{1} \frac{1}{s} \left(\nabla F_{2}(\bar{u} + s\tilde{u}(n)) - \nabla F_{2}(\bar{u}), s\tilde{u}(n) \right) ds$$

$$\geq -\sum_{n=1}^{T} \int_{0}^{1} r s^{\gamma-1} |\tilde{u}(n)|^{\gamma} ds$$

$$\geq -\frac{rT}{\gamma} \|\tilde{u}\|_{\infty}^{\gamma}$$

$$\geq -\frac{rT}{\gamma} \left(\frac{T^{2}-1}{6T} \right)^{\gamma/2} \left(\sum_{n=1}^{T} |\Delta u(n)|^{2} \right)^{\gamma/2}.$$
(3.2)

Combining (3.1) with (3.2), for all $u \in H_T^1$ one has

$$\begin{split} \varphi(u) &= \frac{1}{2} \sum_{n=1}^{T} \left| \Delta u(n) \right|^2 + \sum_{n=1}^{T} \left[F_1(n, u(n)) - F_1(n, \bar{u}) \right] \\ &+ \sum_{n=1}^{T} \left[F_2(u(n)) - F_2(\bar{u}) \right] + \sum_{n=1}^{T} F(n, \bar{u}) \\ &\geq \left(\frac{1}{2} - \frac{1}{8a_1 \sin^2 \frac{\pi}{T}} \right) \sum_{n=1}^{T} \left| \Delta u(n) \right|^2 - \left(\frac{T^2 - 1}{6T} \right)^{(\alpha+1)/2} R_2 \left(\sum_{n=1}^{T} \left| \Delta u(n) \right|^2 \right)^{(\alpha+1)/2} \\ &- \left(\frac{T^2 - 1}{6T} \right)^{1/2} R_3 \left(\sum_{n=1}^{T} \left| \Delta u(n) \right|^2 \right)^{1/2} - \frac{rT}{\gamma} \left(\frac{T^2 - 1}{6T} \right)^{\gamma/2} \left(\sum_{n=1}^{T} \left| \Delta u(n) \right|^2 \right)^{\gamma/2} \\ &+ \left| \bar{u} \right|^{2\alpha} \left(\left| \bar{u} \right|^{-2\alpha} \sum_{n=1}^{T} F(n, \bar{u}) - \frac{a_1}{2} R_1^2 \right). \end{split}$$

Hence, $\varphi(u) \to \infty$ as $||u|| \to \infty$. From this result, if $\{u_k\} \subset H_T$ is a minimizing sequence for φ , *i.e.*, $\varphi(u_k) \to \inf \varphi$, $k \to \infty$, then $\{u_k\}$ is bounded. Since H_T is finite dimensional, going if necessary to a subsequence, we can assume that $\{u_k\}$ converges to some $u_0 \in H_T$. Because of φ is continuously differentiable on H_T , one has

$$\varphi(u_0) = \inf \varphi$$
 and $\varphi'(u_0)$.

Obviously, $u_0 \in H_T$ is a *T*-periodic solution of system (1.1).

Proof of Theorem 1.2 *Step* 1. To prove φ satisfies the (PS) condition. Suppose that u_k is a (PS) sequence, that is, $\varphi'(u_k) \to 0$ as $k \to \infty$ and $\varphi(u_k)$ is bounded. According to (5), there exists $a_2 > \frac{1}{4\sin^2 \frac{\pi}{T}}$ satisfying

$$\limsup_{x \to +\infty} |x|^{-2\alpha} \sum_{n=1}^{T} F(n,x) < -\left(a_2 + \frac{1}{8\sin^2 \frac{\pi}{T}}\right) R_1^2.$$

In the same way as (3.1), for any $u \in H_T$, one has

$$\left|\sum_{n=1}^{T} \left(\nabla F_1(n, u_k(n)), \tilde{u}_k(n)\right)\right| \leq \frac{1}{8a_2 \sin^2 \frac{\pi}{T}} \sum_{n=1}^{T} \left|\Delta u_k(n)\right|^2 + \frac{a_2}{2} R_1^2 |\bar{u}_k|^{2\alpha} + \left(\frac{T^2 - 1}{6T}\right)^{(\alpha+1)/2} R_2 \left(\sum_{n=1}^{T} \left|\Delta u_k(n)\right|^2\right)^{(\alpha+1)/2} + \left(\frac{T^2 - 1}{6T}\right)^{1/2} R_3 \left(\sum_{n=1}^{T} \left|\Delta u_k(n)\right|^2\right)^{1/2}$$
(3.3)

and

$$\sum_{n=1}^{T} \left(\nabla F_2(u_k(n)), \tilde{u}_k(n) \right) \geq -\frac{rT}{\gamma} \left(\frac{T^2 - 1}{6T} \right)^{\gamma/2} \left(\sum_{n=1}^{T} \left| \Delta u_k(n) \right|^2 \right)^{\gamma/2}.$$

Hence, we have

$$\begin{split} \|\tilde{u}_{k}\| &\geq \left\langle \varphi'(u_{k}), \tilde{u}_{k} \right\rangle \\ &= \sum_{n=1}^{T} \left| \Delta u_{k}(n) \right|^{2} + \sum_{n=1}^{T} \left(\nabla F(n, u_{k}(n)), \tilde{u}_{k}(n) \right) \\ &\geq \left(1 - \frac{1}{8a_{2} \sin^{2} \frac{\pi}{T}} \right) \sum_{n=1}^{T} \left| \Delta u_{k}(n) \right|^{2} - \left(\frac{T^{2} - 1}{6T} \right)^{(\alpha + 1)/2} R_{2} \left(\sum_{n=1}^{T} \left| \Delta u_{k}(n) \right|^{2} \right)^{(\alpha + 1)/2} \\ &+ \left(\frac{T^{2} - 1}{6T} \right)^{1/2} R_{3} \left(\sum_{n=1}^{T} \left| \Delta u_{k}(n) \right|^{2} \right)^{1/2} - \frac{a_{2}}{2} R_{1}^{2} |\tilde{u}_{k}|^{2\alpha} \\ &- \frac{rT}{\gamma} \left(\frac{T^{2} - 1}{6T} \right)^{\gamma/2} \left(\sum_{n=1}^{T} |\Delta u_{k}(n)|^{2} \right)^{\gamma/2} \end{split}$$
(3.4)

for all large *k*.

By Lemma 2.1, one has

$$\|\tilde{u}_{k}\| \leq \frac{(4\sin^{2}\frac{\pi}{T}+1)^{1/2}}{2\sin\frac{\pi}{T}} \left(\sum_{n=1}^{T} |\Delta u_{k}(n)|^{2}\right)^{1/2}.$$
(3.5)

By (3.4) and (3.5), for all $u \in H^1_T$ one has

$$\frac{a_{2}}{2}R_{1}^{2}|\bar{u}_{k}|^{2\alpha} \geq \left(1 - \frac{1}{8a_{2}\sin^{2}\frac{\pi}{T}}\right)\sum_{n=1}^{T}|\Delta u_{k}(n)|^{2} \\
- \left(\frac{T^{2}-1}{6T}\right)^{(\alpha+1)/2}R_{2}\left(\sum_{n=1}^{T}|\Delta u_{k}(n)|^{2}\right)^{(\alpha+1)/2} \\
- \left[\frac{(4\sin^{2}\frac{\pi}{T}+1)^{1/2}}{2\sin\frac{\pi}{T}} + \left(\frac{T^{2}-1}{6T}\right)^{1/2}R_{3}\right]\left(\sum_{n=1}^{T}|\Delta u_{k}(n)|^{2}\right)^{1/2} \\
- \frac{rT}{\gamma}\left(\frac{T^{2}-1}{6T}\right)^{\gamma/2}\left(\sum_{n=1}^{T}|\Delta u_{k}(n)|^{2}\right)^{\gamma/2} \\
\geq \frac{1}{2}\sum_{n=1}^{T}|\Delta u_{k}(n)|^{2} + C_{1},$$
(3.6)

where

$$\begin{split} C_1 &= \min_{s \in [0,+\infty)} \bigg\{ \frac{4a_2 \sin^2 \frac{\pi}{T} - 1}{8a_2 \sin^2 \frac{\pi}{T}} s^2 - \left(\frac{T^2 - 1}{6T}\right)^{(\alpha+1)/2} R_2 s^{\alpha+1} - \frac{rT}{\gamma} \left(\frac{T^2 - 1}{6T}\right)^{\gamma/2} s^{\gamma} \\ &- \bigg[\frac{(4\sin^2 \frac{\pi}{T} + 1)^{1/2}}{2\sin \frac{\pi}{T}} + \left(\frac{T^2 - 1}{6T}\right)^{1/2} R_3 \bigg] s \bigg\}. \end{split}$$

By the choice of $a_2 > \frac{1}{4\sin^2 \frac{\pi}{T}}$, $-\infty < C_1 < 0$. Hence

$$\sum_{n=1}^{T} \left| \Delta u_k(n) \right|^2 \le a_2 R_1^2 |\bar{u}_k|^{2\alpha} - 2C_1,$$
(3.7)

and then

$$\left(\sum_{n=1}^{T} \left|\Delta u_{k}(n)\right|^{2}\right)^{1/2} \leq \sqrt{a_{2}}R_{1}|\bar{u}_{k}|^{\alpha} + C_{2},$$
(3.8)

where $0 < C_2 < +\infty$.

From Theorem 1.1, one has

$$\left|\sum_{n=1}^{T} \left[F_{1}(n, u_{k}(n)) - F_{1}(n, \bar{u}_{k})\right]\right| \leq \frac{1}{8a_{2}\sin^{2}\frac{\pi}{T}} \sum_{n=1}^{T} \left|\Delta u_{k}(n)\right|^{2} + \frac{a_{2}}{2}R_{1}^{2}|\bar{u}_{k}|^{2\alpha} + \left(\frac{T^{2}-1}{6T}\right)^{(\alpha+1)/2} R_{2} \left(\sum_{n=1}^{T} \left|\Delta u_{k}(n)\right|^{2}\right)^{(\alpha+1)/2} + \left(\frac{T^{2}-1}{6T}\right)^{1/2} R_{3} \left(\sum_{n=1}^{T} \left|\Delta u_{k}(n)\right|^{2}\right)^{1/2}.$$
(3.9)

By (4), we obtain

$$\sum_{n=1}^{T} \left[F_2(u_k(n)) - F_2(\bar{u}_k) \right]$$

= $\sum_{n=1}^{T} \int_0^1 \frac{1}{s} \left(\nabla F_2(\bar{u}_k + s\tilde{u}_k(n)) - \nabla F_2(\bar{u}_k), s\tilde{u}_k(n) \right) ds$
 $\leq \sum_{n=1}^{T} \int_0^1 C s^{\delta - 1} |\tilde{u}_k(t)|^{\delta} ds \leq \frac{CT}{\delta} \|\tilde{u}_k\|_{\infty}^{\delta}$
 $\leq \frac{CT}{\delta} \left(\frac{T^2 - 1}{6T} \right)^{\delta/2} \left(\sum_{i=1}^{T} |\Delta u_k(n)|^2 \right)^{\delta/2}.$

Combining the boundedness of $\{\varphi(u_k)\}\$ and (3.7)-(3.9), one has

$$C_{3} \leq \varphi(u_{k})$$

$$= \frac{1}{2} \sum_{n=1}^{T} |\Delta u_{k}(n)|^{2} + \sum_{n=1}^{T} [F_{1}(n, u_{k}(n)) - F_{1}(n, \bar{u}_{k})]$$

$$+ \sum_{n=1}^{T} [F_{2}(u_{k}(n)) - F_{2}(\bar{u}_{k})] + \sum_{n=1}^{T} F(n, \bar{u}_{k})$$

$$\leq \left(\frac{1}{2} + \frac{1}{8a_{2}\sin^{2}\frac{\pi}{T}}\right) \sum_{n=1}^{T} |\Delta u_{k}(n)|^{2} + \left(\frac{T^{2} - 1}{6T}\right)^{(\alpha+1)/2} R_{2} \left(\sum_{n=1}^{T} |\Delta u_{k}(n)|^{2}\right)^{(\alpha+1)/2}$$

$$\begin{split} &+ \left(\frac{T^2 - 1}{6T}\right)^{1/2} R_3 \left(\sum_{n=1}^T \left|\Delta u_k(n)\right|^2\right)^{1/2} + \frac{a_2}{2} R_1^2 |\bar{u}_k|^{2\alpha} \\ &+ \frac{CT}{\delta} \left(\frac{T^2 - 1}{6T}\right)^{\delta/2} \left(\sum_{n=1}^T \left|\Delta u_k(n)\right|^2\right)^{\delta/2} + \sum_{n=1}^T F(n, \bar{u}_k) \\ &\leq \left(\frac{1}{2} + \frac{1}{8a_2 \sin^2 \frac{\pi}{T}}\right) \left(a_2 R_1^2 |\bar{u}_k|^{2\alpha} - 2C_1\right) + \frac{a_2}{2} R_1^2 |\bar{u}_k|^{2\alpha} + \sum_{n=1}^T F(n, \bar{u}_k) \\ &+ \left(\frac{T^2 - 1}{6T}\right)^{(\alpha+1)/2} R_2 \left(\sqrt{a_2} R_1 |\bar{u}_k|^{\alpha} + C_2\right)^{\alpha+1} \\ &+ \frac{CT}{\delta} \left(\frac{T^2 - 1}{6T}\right)^{\delta/2} \left(\sqrt{a_2} R_1 |\bar{u}_k|^{\alpha} + C_2\right)^{\delta} \\ &+ \left(\frac{T^2 - 1}{6T}\right)^{1/2} R_3 \left(\sqrt{a_2} R_1 |\bar{u}_k|^{\alpha} + C_2\right) \\ &\leq |\bar{u}_k|^{2\alpha} \left[|\bar{u}_k|^{-2\alpha} \sum_{n=1}^T F(n, \bar{u}_k) + \left(a_2 + \frac{1}{8 \sin^2 \frac{\pi}{T}}\right) R_1^2 \right] \\ &+ C_4 |\bar{u}_k|^{\alpha(\alpha+1)} + C_5 |\bar{u}_k|^{\alpha} + C_6 |\bar{u}_k|^{\alpha\delta} + C_7 \end{split}$$

for large k. By the choice of a_2 , $\{\bar{u}_k\}$ is bounded. From (3.7), $\{u_k\}$ is bounded. In view of H_T is finite dimensional Hilbert space, φ satisfies the (PS) condition.

Step 2. Let $\tilde{H}_T = \{u \in H_T : \bar{u} = 0\}$. We show that, for $u \in \tilde{H}_T$,

$$\varphi(u) \to +\infty, \quad ||u|| \to \infty.$$
 (3.10)

From (1) and Lemma 2.1, one has

$$\left|\sum_{n=1}^{T} \left[F_{1}(n, u(n)) - F(n, 0)\right]\right| = \left|\sum_{n=1}^{T} \int_{0}^{1} \left(\nabla F_{1}(n, su(n)), u(n)\right) ds\right|$$

$$\leq \sum_{n=1}^{T} f(n) |u(n)|^{\alpha+1} + \sum_{n=1}^{T} g(n) |u(n)|$$

$$\leq R_{2} ||u||_{\infty}^{\alpha+1} + R_{3} ||u||_{\infty}$$

$$\leq \left(\frac{T^{2} - 1}{6T}\right)^{(\alpha+1)/2} R_{2} \left(\sum_{n=1}^{T} |\Delta u(n)|^{2}\right)^{(\alpha+1)/2}$$

$$+ \left(\frac{T^{2} - 1}{6T}\right)^{1/2} R_{3} \left(\sum_{n=1}^{T} |\Delta u(n)|^{2}\right)^{1/2}$$

for all $u \in \tilde{H}_T$. It follows from (2) that

$$\sum_{n=1}^{T} [F_2(u(n)) - F_2(0)]$$

= $\sum_{n=1}^{T} \int_0^1 (\nabla F_2(su(n)) - \nabla F_2(0), u(n)) ds$

$$\geq -\sum_{n=1}^{T} \int_{0}^{1} r s^{\gamma-1} |u(n)|^{\gamma} ds \geq -\frac{rT}{\gamma} ||u||_{\infty}^{\gamma}$$
$$\geq -\frac{rT}{\gamma} \left(\frac{T^{2}-1}{6T}\right)^{\gamma/2} \left(\sum_{n=1}^{T} |\Delta u(n)|^{2}\right)^{\gamma/2}.$$

Hence, we have

$$\begin{split} \varphi(u) &= \frac{1}{2} \sum_{n=1}^{T} \left| \Delta u(n) \right|^2 + \sum_{n=1}^{T} \left[F(n, u(n)) - F(n, 0) \right] + \sum_{n=1}^{T} F(n, 0) \\ &\geq \frac{1}{2} \sum_{n=1}^{T} \left| \Delta u(n) \right|^2 - \left(\frac{T^2 - 1}{6T} \right)^{(\alpha + 1)/2} R_2 \left(\sum_{n=1}^{T} \left| \Delta u(n) \right|^2 \right)^{(\alpha + 1)/2} \\ &- \left(\frac{T^2 - 1}{6T} \right)^{1/2} R_3 \left(\sum_{n=1}^{T} \left| \Delta u(n) \right|^2 \right)^{1/2} + \sum_{n=1}^{T} F(n, 0) \\ &- \frac{rT}{\gamma} \left(\frac{T^2 - 1}{6T} \right)^{\gamma/2} \left(\sum_{n=1}^{T} \left| \Delta u(n) \right|^2 \right)^{\gamma/2}. \end{split}$$

In view of Lemma 2.1, $||u|| \to +\infty$ in \tilde{H}_T if and only if $(\sum_{n=1}^T |\Delta u(n)|^2)^{1/2} \to \infty$. Hence (3.10) is satisfied.

Step 3. By (5), for all $u \in (\tilde{H}_T)^{\perp} = \mathbb{R}^N$, one has

$$\varphi(u) = -\sum_{n=1}^{T} F(n, u(n)) \to -\infty, \quad ||u|| \to \infty.$$

Above all, all conditions of Lemma 2.2 are satisfied. So, by Lemma 2.2, system (1.1) has at least one T-periodic solution.

Proof of Theorem 1.3 By (7), there exists $a_3 > \frac{3}{(12-2(T^2-1)r)\sin^2\frac{\pi}{T}}$ satisfying

$$\liminf_{|x| \to +\infty} |x|^{-2\alpha} \sum_{n=1}^{T} F(n,x) > \frac{a_3}{2} R_1^2.$$

Similar to (3.1), we have

$$\sum_{n=1}^{T} \left[F_1(n, u(n)) - F_1(n, \bar{u}) \right]$$

$$\geq -\frac{1}{8a_3 \sin^2 \frac{\pi}{T}} \sum_{n=1}^{T} \left| \Delta u(n) \right|^2 - \frac{a_3}{2} R_1^2 |\bar{u}|^{2\alpha} - \left(\frac{T^2 - 1}{6T}\right)^{(\alpha+1)/2} R_2 \left(\sum_{n=1}^{T} |\Delta u(n)|^2 \right)^{(\alpha+1)/2}$$

$$- \left(\frac{T^2 - 1}{6T}\right)^{1/2} R_3 \left(\sum_{n=1}^{T} |\Delta u(n)|^2 \right)^{1/2}.$$

By (6) and Lemma 2.1, one has

$$\sum_{n=1}^{T} \left[F_2(u(n)) - F_2(\bar{u}) \right] = \sum_{n=1}^{T} \int_0^1 \frac{1}{s} \left(\nabla F_2(\bar{u} + s\tilde{u}(n)) - \nabla F_2(\bar{u}), s\tilde{u}(n) \right) ds$$
$$\geq -\sum_{n=1}^{T} \int_0^1 rs |\tilde{u}(n)|^2 ds \geq -\frac{(T^2 - 1)r}{12} \sum_{n=1}^{T} |\Delta u(n)|^2.$$

So, for any $u \in H_T$, we have

$$\begin{split} \varphi(u) &= \frac{1}{2} \sum_{n=1}^{T} \left| \Delta u(n) \right|^2 + \sum_{n=1}^{T} \left[F(n, u(n)) - F(n, \bar{u}) \right] + \sum_{n=1}^{T} F(n, \bar{u}) \\ &\geq \left(\frac{1}{2} - \frac{1}{8a_3 \sin^2 \frac{\pi}{T}} - \frac{(T^2 - 1)r}{12} \right) \sum_{n=1}^{T} \left| \Delta u(n) \right|^2 \\ &- \left(\frac{T^2 - 1}{6T} \right)^{(\alpha + 1)/2} R_2 \left(\sum_{n=1}^{T} \left| \Delta u(n) \right|^2 \right)^{(\alpha + 1)/2} - \left(\frac{T^2 - 1}{6T} \right)^{1/2} R_3 \left(\sum_{n=1}^{T} \left| \Delta u(n) \right|^2 \right)^{1/2} \\ &+ \left| \bar{u} \right|^{2\alpha} \left(\left| \bar{u} \right|^{-2\alpha} \sum_{n=1}^{T} F(n, \bar{u}) - \frac{a_3}{2} R_1^2 \right). \end{split}$$

Therefore, $\varphi(u) \to +\infty$ as $||u|| \to +\infty$ due to the choice of a_3 and $r < \frac{6}{T^2-1}$. The rest is similar to the proof of Theorem 1.1.

Proof of Theorem 1.4 First, we prove that φ satisfies the (PS) condition. Suppose that $\{u_k\} \subset H_T$ is a (PS) sequence of φ , that is, $\varphi'(u_k) \to 0$ as $k \to \infty$ and $\{\varphi(u_k)\}$ is bounded. By (9), there exists $a_4 > \frac{1}{4\sin^2 \frac{\pi}{T}}$ satisfying

$$\limsup_{|x| \to +\infty} |x|^{-2\alpha} \sum_{n=1}^{T} F(n,x) < -\left(a_4 + \frac{1}{8\sin^2 \frac{\pi}{T}}\right) R_1^2.$$
(3.11)

By the (λ, μ) -subconvexity of G(x), we have

$$G(x) \le (2\mu|x|^{\beta} + 1)G_0 \tag{3.12}$$

for all $x \in \mathbb{R}^N$, where $G_0 = \max_{|s| \le 1} G(s)$, $\beta = \log_{2\lambda}(2\mu) < 2$. Then

$$\sum_{n=1}^{T} (\nabla F_2(n, u_k(n)), \tilde{u}_k(n)) \ge -\sum_{n=1}^{T} h(n) G(\bar{u}_k)$$
$$\ge -\sum_{n=1}^{T} h(n) (2\mu |\bar{u}_k|^{\beta} + 1) G_0$$
$$= -2\mu R_4 |\bar{u}_k|^{\beta} - R_4, \qquad (3.13)$$

where $R_4 = G_0 \sum_{n=1}^{T} h(n)$. For large *k*, according to (3.3) and (3.13) we have

$$\|\tilde{u}_{k}\| \geq \langle \varphi'(u_{k}), \tilde{u}_{k} \rangle$$

$$= \sum_{n=1}^{T} |\Delta u_{k}(n)|^{2} + \sum_{n=1}^{T} (\nabla F(n, u_{k}(n)), \tilde{u}_{k}(n))$$

$$\geq \left(1 - \frac{1}{8a_{4} \sin^{2} \frac{\pi}{T}}\right) \sum_{n=1}^{T} |\Delta u_{k}(n)|^{2} - \frac{a_{4}}{2} R_{1}^{2} |\bar{u}_{k}|^{2\alpha}$$

$$- \left(\frac{T^{2} - 1}{6T}\right)^{(\alpha+1)/2} R_{2} \left(\sum_{n=1}^{T} |\Delta u_{k}(n)|^{2}\right)^{(\alpha+1)/2}$$

$$- \left(\frac{T^{2} - 1}{6T}\right)^{1/2} R_{3} \left(\sum_{n=1}^{T} |\Delta u_{k}(n)|^{2}\right)^{1/2} - 2\mu R_{4} |\bar{u}_{k}|^{\beta} - R_{4}.$$
(3.14)

By (3.5) and (3.14), one has

$$\frac{a_4}{2} R_1^2 |\bar{u}_k|^{2\alpha} + 2\mu R_4 |\bar{u}_k|^{\beta}
\geq \left(1 - \frac{1}{8a_4 \sin^2 \frac{\pi}{T}}\right) \sum_{n=1}^T |\Delta u_k(n)|^2
- \left(\frac{T^2 - 1}{6T}\right)^{(\alpha+1)/2} R_2 \left(\sum_{n=1}^T |\Delta u_k(n)|^2\right)^{(\alpha+1)/2} - R_4
- \left[\frac{(4\sin^2 \frac{\pi}{T} + 1)^{1/2}}{2\sin \frac{\pi}{T}} + \left(\frac{T^2 - 1}{6T}\right)^{1/2} R_3\right] \left(\sum_{n=1}^T |\Delta u_k(n)|^2\right)^{1/2}
\geq \frac{1}{2} \sum_{n=1}^T |\Delta u_k(n)|^2 + C_8,$$
(3.15)

where

$$\begin{split} C_8 &= \min_{s \in [0, +\infty)} \bigg\{ \left(\frac{1}{2} - \frac{1}{8a_4 \sin^2 \frac{\pi}{T}} \right) s^2 - \left(\frac{T^2 - 1}{6T} \right)^{(\alpha + 1)/2} R_2 s^{\alpha + 1} \\ &- R_4 - \bigg[\frac{(4 \sin^2 \frac{\pi}{T} + 1)^{1/2}}{2 \sin \frac{\pi}{T}} + \left(\frac{T^2 - 1}{6T} \right)^{1/2} R_3 \bigg] s \bigg\}. \end{split}$$

By the choice of a_4 , $-\infty < C_8 < 0$. By (3.15), we have

$$\sum_{n=1}^{T} \left| \Delta u_k(n) \right|^2 \le a_4 R_1^2 |\bar{u}_k|^{2\alpha} + 4\mu R_4 |\bar{u}_k|^{\beta} - 2C_8,$$
(3.16)

and then

$$\left(\sum_{n=1}^{T} \left|\Delta u_{k}(n)\right|^{2}\right)^{1/2} \leq \sqrt{a_{4}}R_{1}|\bar{u}_{k}|^{\alpha} + 2\sqrt{\mu R_{4}}|\bar{u}_{k}|^{\beta/2} + C_{9},\tag{3.17}$$

where $C_9 > 0$. By (8) and (3.12), for any $u \in H_T$, we get

$$\sum_{n=1}^{T} \left[F_{2}(n,u(n)) - F_{2}(n,\bar{u}) \right]$$

$$= -\sum_{n=1}^{T} \int_{0}^{1} \left(\nabla F_{2}(n,\bar{u}_{k} + s\tilde{u}_{k}(n)), \tilde{u}_{k}(n) \right) ds$$

$$\leq \sum_{n=1}^{T} \int_{0}^{1} h(n) G(\bar{u}_{k} + (s+1)\tilde{u}_{k}(n)) ds$$

$$\leq \sum_{n=1}^{T} \int_{0}^{1} h(n) (2\mu |\bar{u}_{k} + (s+1)\tilde{u}_{k}(n)|^{\beta} + 1) G_{0} ds$$

$$\leq 4\mu \sum_{n=1}^{T} h(n) (|\bar{u}_{k}|^{\beta} + 2^{\beta} |\bar{u}_{k}(n)|^{\beta}) G_{0} + R_{4}$$

$$\leq 2^{\beta+2} \mu R_{4} ||\tilde{u}_{k}||_{\infty}^{\beta} + 4\mu R_{4} |\bar{u}_{k}|^{\beta} + R_{4}$$

$$\leq \left(\frac{T^{2}-1}{6T}\right)^{\beta/2} 2^{\beta+2} \mu R_{4} \left(\sum_{n=1}^{T} |\Delta u_{k}(n)|^{2}\right)^{\beta/2} + 4\mu R_{4} |\bar{u}_{k}|^{\beta} + R_{4}. \tag{3.18}$$

Combining the boundedness of $\{\varphi(u_k)\}\$ and (3.16)-(3.18), one has

$$\begin{split} C_{10} &\leq \varphi(u_k) \\ &= \frac{1}{2} \sum_{n=1}^{T} \left| \Delta u_k(n) \right|^2 + \sum_{n=1}^{T} \left[F(n, u_k(n)) - F(n, \bar{u}_k) \right] + \sum_{n=1}^{T} F(n, \bar{u}_k) \\ &\leq \left(\frac{1}{2} + \frac{1}{8a_4 \sin^2 \frac{\pi}{T}} \right) \sum_{n=1}^{T} \left| \Delta u_k(n) \right|^2 + \frac{a_4}{2} R_1^2 |\bar{u}_k|^2 \\ &+ \left(\frac{T^2 - 1}{6T} \right)^{(\alpha+1)/2} R_2 \left(\sum_{n=1}^{T} |\Delta u_k(n)|^2 \right)^{(\alpha+1)/2} \\ &+ \left(\frac{T^2 - 1}{6T} \right)^{\beta/2} 2^{\beta+2} \mu R_4 \left(\sum_{n=1}^{T} |\Delta u_k(n)|^2 \right)^{\beta/2} + 4\mu R_4 |\bar{u}_k|^\beta + R_4 + \sum_{n=1}^{T} F(n, \bar{u}_k) \\ &\leq \left(\frac{1}{2} + \frac{1}{8a_4 \sin^2 \frac{\pi}{T}} \right) \left(a_4 R_1^2 |\bar{u}_k|^{2\alpha} + 4\mu R_4 |\bar{u}_k|^\beta - 2C_8 \right) + \frac{a_4}{2} R_1^2 |\bar{u}_k|^{2\alpha} \\ &+ \left(\frac{T^2 - 1}{6T} \right)^{(\alpha+1)/2} R_2 \left(\sqrt{a_4} R_1 |\bar{u}_k|^\alpha + 2\sqrt{\mu R_4} |\bar{u}_k|^{\beta/2} + C_9 \right)^{\alpha+1} \\ &+ \left(\frac{T^2 - 1}{6T} \right)^{\beta/2} 2^{\beta+2} \mu R_4 \left(\sqrt{a_4} R_1 |\bar{u}_k|^\alpha + 2\sqrt{\mu R_4} |\bar{u}_k|^{\beta/2} + C_9 \right)^{\beta} + 4\mu R_4 |\bar{u}_k|^\beta \end{split}$$

$$\begin{split} &+ R_4 + \sum_{n=1}^{T} F(n,\bar{u}_k) \\ &\leq \left(1 + \frac{1}{8a_4 \sin^2 \frac{\pi}{T}}\right) a_4 R_1^2 |\bar{u}_k|^{2\alpha} + \left(6 + \frac{1}{2a_4 \sin^2 \frac{\pi}{T}}\right) \mu R_4 |\bar{u}_k|^{\beta} \\ &- \left(1 + \frac{1}{4a_4 \sin^2 \frac{\pi}{T}}\right) C_8 \\ &+ \left(\frac{T^2 - 1}{6T}\right)^{(\alpha+1)/2} R_2 \left(2^{\alpha} a_4^{\frac{\alpha+1}{2}} R_1^{\alpha+1} |\bar{u}_k|^{\alpha(\alpha+1)} + 2^{3\alpha+1} \mu^{\frac{\alpha+1}{2}} R_4^{\frac{\alpha+1}{2}} |\bar{u}_k|^{\frac{\beta(\alpha+1)}{2}} + 2^{2\alpha} C_9^{\alpha+1}\right) \\ &+ \left(\frac{T^2 - 1}{6T}\right)^{1/2} R_3 \left(\sqrt{a_4} R_1 |\bar{u}_k|^{\alpha} + 2\sqrt{\mu R_4} |\bar{u}_k|^{\beta/2} + C_9\right) \\ &+ \left(\frac{T^2 - 1}{6T}\right)^{\beta/2} 2^{\beta+2} \mu R_4 \left(2^{\beta-1} a_4^{\frac{\beta}{2}} R_1^{\beta} |\bar{u}_k|^{\alpha\beta} + 2^{3\beta-2} \mu^{\frac{\beta}{2}} R_4^{\frac{\beta}{2}} |\bar{u}_k|^{\frac{\beta^2}{2}} + 2^{2(\beta-1)} C_9^{\beta}\right) \\ &+ R_4 + \sum_{n=1}^{T} F(n, \bar{u}_k) \\ &= |\bar{u}_k|^{2\alpha} \left[|\bar{u}_k|^{-2\alpha} \sum_{n=1}^{T} F_1(n, \bar{u}_k) + \left(a_4 + \frac{1}{8\sin^2 \frac{\pi}{T}}\right) R_1^2 + \left(\frac{T^2 - 1}{6T}\right)^{1/2} \sqrt{a_4} R_1 R_3 |\bar{u}_k|^{-\alpha} \\ &+ \left(\frac{T^2 - 1}{6T}\right)^{(\alpha+1)/2} 2^{\alpha} a_4^{\frac{\alpha+1}{2}} R_1^{\alpha+1} |\bar{u}_k|^{\alpha(\alpha-1)} + \left(\frac{T^2 - 1}{6T}\right)^{\beta/2} 2^{2\beta+1} \mu a_4^{\frac{\beta}{2}} R_1^{\beta} R_4 |\bar{u}_k|^{\alpha(\beta-2)} \right] \\ &+ |\bar{u}_k|^{\beta} \left[|\bar{u}_k|^{-\beta} \sum_{n=1}^{T} F_2(n, \bar{u}_k) + \left(6 + \frac{1}{2a_4 \sin^2 \frac{\pi}{T}}\right) \mu R_4 \\ &+ \left(\frac{T^2 - 1}{6T}\right)^{\beta/2} 2^{4\beta} \mu^{\frac{\beta+2}{2}} R_4^{\frac{\beta+2}{2}} |\bar{u}_k|^{\frac{1}{2}\beta^2 - \beta} \\ &+ \left(\frac{T^2 - 1}{6T}\right)^{(\alpha+1)/2} 2^{3\alpha+1} \mu^{\frac{\alpha+2}{2}} R_2 R_4^{\frac{\alpha+1}{2}} |\bar{u}_k|^{\frac{\beta(\alpha-1)}{2}} + \left(\frac{T^2 - 1}{6T}\right)^{1/2} R_3 \sqrt{\mu R_4} |\bar{u}_k|^{-\beta/2} \right] \\ &- \left(1 + \frac{1}{4a_4 \sin^2 \frac{\pi}{T}}\right) C_8 + \left(\frac{T^2 - 1}{6T}\right)^{(\alpha+1)/2} 2^{2\alpha} R_2 C_9^{\alpha+1} + \left(\frac{T^2 - 1}{6T}\right)^{1/2} R_3 C_9 \\ &+ \left(\frac{T^2 - 1}{6T}\right)^{\beta/2} 2^{3\beta} \mu R_4 C_9^{\beta} + R_4. \end{split}$$

Combining (3.11) and the above inequality, we see that $\{|\bar{u}|\}$ is bounded. By (3.16), $\{u_k\}$ is bounded. Since H_T is a finite dimensional Hilbert space, φ satisfies the (PS) condition.

Similar to the proof of Theorem 1.2, all conditions of Lemma 2.2 are satisfied. So, the proof of Theorem 1.4 is completed. $\hfill \Box$

4 Examples

In this section, we give some examples to illustrate our results.

Example 4.1 Let $F = F_1 + F_2$, with

$$F_1(n,x) = \left(\frac{T+1}{2} - n\right) |x|^{7/4} + (2T-n)|x|^{3/2} + (k(n),x),$$

where $k : \mathbb{Z}[1, T] \longrightarrow \mathbb{R}$ and k(n + T) = k(n), for all $n \in \mathbb{Z}$, r > 0, $C(x) = \frac{3r}{4}(|x_1|^{4/3} + |x_2|^{4/3} + \cdots + |x_N|^{4/3})$. It is easy to see that

$$\begin{aligned} \left|\nabla F_1(n,x)\right| &\leq \frac{7}{8} |T+1-2n||x|^{3/4} + \frac{3}{2} |2T-n||x|^{1/2} + |k(n)| \\ &\leq \frac{7}{8} \left(|T+1-2n|+\varepsilon \right) |x|^{3/4} + \frac{9T^2}{\varepsilon^2} + |k(n)|. \end{aligned}$$

For all $(n, x) \in \mathbb{Z}[1, T] \times \mathbb{R}^N$, where $\varepsilon > 0$,

$$\left(\nabla F_2(x) - \nabla F_2(y), x - y\right) \ge -r|x - y|^{4/3}.$$

Thus, (1), (2) hold with $\alpha = 3/4$, $\gamma = 4/3$, and

$$f(n) = \frac{7}{8} \left(|T+1-2n| + \varepsilon \right), \qquad g(n) = \frac{9T^2}{\varepsilon^2} + \left| k(n) \right|.$$

So, we have

$$\begin{split} |x|^{-2\alpha} \sum_{n=1}^{T} F(n,x) \\ &= |x|^{-3/2} \sum_{n=1}^{T} \left[\left(\frac{T+1}{2} - n \right) |x|^{7/4} + (2T-n) |x|^{3/2} + C(x) - \frac{3r}{4} |x|^{4/3} + \left(k(n), x \right) \right] \\ &= \frac{T(3T-1)}{2} + \frac{T(C(x) - \frac{3r}{4} |x|^{4/3})}{|x|^{3/2}} + \left(\sum_{n=1}^{T} k(n), |x|^{-3/2} x \right). \end{split}$$

On the other hand, one has

$$\frac{1}{8\sin^2\frac{\pi}{T}}\sum_{n=1}^T f^2(n) = \frac{1}{8\sin^2\frac{\pi}{T}}\sum_{n=1}^T \left[\frac{7}{8}\left(|T+1-2n|+\varepsilon\right)\right]^2 \le \frac{49[T(T^2-1+6\varepsilon T+2\varepsilon^2)]}{1,536\sin^2\frac{\pi}{T}}.$$

If $T \in \{2, 3, 4, 5, 6, 7\}$, we can choose $\varepsilon > 0$ such that

$$\liminf_{|x|\to+\infty}|x|^{-2\alpha}\sum_{n=1}^{T}F(n,x)=\frac{T(3T-1)}{2}>\frac{1}{8\sin^2\frac{\pi}{T}}\sum_{n=1}^{T}f^2(n).$$

So, (3) holds. By Theorem 1.1, system (1.1) has at least one T-periodic solution.

Example 4.2 Let $F = F_1 + F_2$, with

$$\begin{split} F_1(n,x) &= \left(\frac{T+1}{2} - n\right) |x|^{7/4} - (2T-n) |x|^{3/2} + \big(k(n),x\big),\\ F_2(x) &= -\frac{4r}{5} |x|^{5/4}, \end{split}$$

where $k : \mathbb{Z}[1, T] \longrightarrow \mathbb{R}^N$ and k(n + T) = k(n) for all $n \in \mathbb{Z}$, r > 0.

In a way similar to Example 4.1, it is easy to see that condition (1) and (4) are satisfied with $\alpha = 3/4$. So,

$$\begin{split} |x|^{-2\alpha} & \sum_{n=1}^{T} F(n,x) \\ &= |x|^{-3/2} \sum_{n=1}^{T} \left[\left(\frac{T+1}{2} - n \right) |x|^{7/4} - (2T-n)|x|^{3/2} - \frac{4r}{5} |x|^{5/4} + \left(k(n),x \right) \right] \\ &= -\frac{T(3T-1)}{2} - \frac{4r}{5} |x|^{-1/4} + \left(\sum_{n=1}^{T} k(n), |x|^{-3/2} x \right). \end{split}$$

If $T \in \{2, 3, 4, 5\}$, we can choose $\varepsilon > 0$ small enough such that

$$\limsup_{|x| \to +\infty} |x|^{-2\alpha} \sum_{n=1}^{T} F(n,x) = -\frac{T(3T-1)}{2} < -\frac{3}{8\sin^2 \frac{\pi}{T}} \sum_{n=1}^{T} f^2(n),$$

which implies that (5) holds. By Theorem 1.2, system (1.1) has at least one T-periodic solution.

Example 4.3 Let $F = F_1 + F_2$, with

$$\begin{split} F_1(n,x) &= \left(\frac{T+1}{2} - n\right) |x|^{7/4} - \left(\frac{T-3n}{2}\right) |x|^{3/2} + \left(k(n), x\right),\\ F_2(x) &= C(x) - \frac{r}{2} |x|^2, \end{split}$$

where $k : \mathbb{Z}[1, T] \longrightarrow \mathbb{R}$ and k(n + T) = k(n) for all $n \in \mathbb{Z}$, r > 0, $C(x) = \frac{r}{2}(|x_1|^4 + |x_2|^2 + \dots + |x_N|^2)$, $0 < r < \frac{6}{T^2 - 1}$.

In a way similar to Example 4.1, it is easy to see that conditions (1) and (6) are satisfied with $\alpha = 3/4$. So

$$\begin{split} |x|^{-2\alpha} \sum_{n=1}^{T} F(n,x) \\ &= |x|^{-3/2} \sum_{n=1}^{T} \left[\left(\frac{T+1}{2} - n \right) |x|^{7/4} - \left(\frac{T-3n}{2} \right) |x|^{3/2} + C(x) - \frac{r}{2} |x|^2 + \left(k(n), x \right) \right] \\ &= \frac{T(T+3)}{4} + \frac{T(C(x) - \frac{r}{2} |x|^2)}{|x|^{3/2}} + \left(\sum_{n=1}^{T} k(n), |x|^{-3/2} x \right) \\ &= \frac{T(T+3)}{4} + \frac{rT(|x|_1^4 - |x|_1^2)}{2|x|^{3/2}} + \left(\sum_{n=1}^{T} k(n), |x|^{-3/2} x \right). \end{split}$$

If $T \in \{2, 3\}$, we choose $\varepsilon > 0$, such that

$$\liminf_{|x| \to +\infty} |x|^{-2\alpha} \sum_{n=1}^{T} F(n,x) = \frac{T(T+3)}{4} > \frac{3}{(24 - 4(T^2 - 1)r)\sin^2 \frac{\pi}{T}} \sum_{n=1}^{T} f^2(n),$$

which implies that (7) holds. By Theorem 1.3, system (1.1) has at least one T-periodic solution.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

The main idea of this paper was proposed by KY and WG, WG prepared the manuscript initially and KY performed a part of the steps of the proofs in this research. All authors read and approved the final manuscript.

Acknowledgements

Research was supported by the Postdoctoral fund in China (Grant No. 2013M531717) and NSFC (11561043).

Received: 17 January 2016 Accepted: 21 February 2016 Published online: 08 March 2016

References

- Guo, ZM, Yu, JS: Existence of periodic and subharmonic solutions for second-order superlinear difference equations. Sci. China Ser. A 46, 506-515 (2003)
- Guo, ZM, Yu, JS: Periodic and subharmonic solutions for superquadratic discrete Hamiltonian systems. Nonlinear Anal. 56, 969-983 (2003)
- 3. Guo, ZM, Yu, JS: The existence of periodic and subharmonic solutions of subquadratic second-order difference equations. J. Lond. Math. Soc. **68**, 419-430 (2003)
- 4. Zhou, Z, Guo, ZM, Yu, JS: Periodic solutions of higher-dimensional discrete systems. Proc. R. Soc. Edinb. 134, 1013-1022 (2004)
- Che, CF, Xue, XP: Infinitely many periodic solutions for discrete second-order Hamiltonian systems with oscillating potential. Adv. Differ. Equ. 2012, 50 (2012)
- Deng, X, Shi, H, Xie, X: Periodic solutions of second order discrete Hamiltonian systems with potential indefinite in sign. Appl. Math. Comput. 218, 148-156 (2011)
- Lin, X, Tang, X: Existence of infinitely many homoclinic orbits in discrete Hamiltonian systems. J. Math. Anal. Appl. 373, 59-72 (2011)
- Long, Y: Multiplicity results for periodic solutions with prescribed minimal periods to discrete Hamiltonian systems. J. Differ. Equ. Appl. 17, 1499-1518 (2011)
- 9. Gu, H, An, TQ: Existence of periodic solutions for a class of second-order discrete Hamiltonian systems. J. Differ. Equ. Appl. 21, 197-208 (2015)
- Guo, ZM, Yu, JS: Multiplicity results for periodic solutions to second-order difference equations. J. Dyn. Differ. Equ. 18, 943-960 (2006)
- Tang, XH, Zhang, XY: Periodic solutions for second-order discrete Hamiltonian systems. J. Differ. Equ. Appl. 17, 1413-1430 (2011)
- 12. Xue, YF, Tang, CL: Existence and multiplicity of periodic solution for second-order discrete Hamiltonian systems. J. Southwest China Normal Univ. Nat. Sci. Ed. **31**, 7-12 (2006)
- Xue, YF, Tang, CL: Existence of a periodic solution for subquadratic second-order discrete Hamiltonian system. Nonlinear Anal. 67, 2072-2080 (2007)
- Xue, YF, Tang, CL: Multiple periodic solutions for superquadratic second-order discrete Hamiltonian systems. Appl. Math. Comput. 196, 494-500 (2008)
- Yan, SH, Wu, XP, Tang, CL: Multiple periodic solutions for second-order discrete Hamiltonian systems. Appl. Math. Comput. 234, 142-149 (2014)
- Zhang, X: Multibump solutions of a class of second-order discrete Hamiltonian systems. Appl. Math. Comput. 236, 129-149 (2014)
- 17. Berger, MS, Schechter, M: On the solvability of semilinear gradient operator equations. Adv. Math. 25, 97-132 (1977)
- Long, YM: Nonlinear oscillations for classical Hamiltonian systems with bi-even subquadratic potentials. Nonlinear Anal. 24, 1665-1671 (1995)
- 19. Mawhin, J, Willem, M: Critical Point Theory and Hamiltonian Systems. Springer, New York (1989)
- 20. Rabinowitz, PH: On subharmonic solutions of Hamiltonian systems. Commun. Pure Appl. Math. 33, 609-633 (1980)
- 21. Schechter, M: Periodic non-autonomous second-order dynamical systems. J. Differ. Equ. 223, 290-302 (2006)
- Tang, CL: Periodic solutions of nonautonomous second order systems with sublinear nonlinearity. Proc. Am. Math. Soc. 126, 3263-3270 (1998)
- 23. Zhang, SQ: Periodic solutions for some second order Hamiltonian systems. Nonlinearity 22, 2141-2150 (2009)
- 24. Zou, WM, Li, SJ: Infinitely many solutions for Hamiltonian systems. J. Differ. Equ. 186, 141-164 (2002)
- Rabinowitz, PH: Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Regional Conference Series in Mathematics, vol. 65. Am. Math. Soc., Providence (1986)