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1 Introduction and main results
Consider the second-order discrete Hamiltonian system

�u(n – ) = ∇F
(
n, u(n)

)
, (.)

where �u(n) = �(�u(n)) and ∇F(n, x) denotes the gradient of F with respect to the sec-
ond variable. F satisfies the following assumption:

(A) F(n, x) ∈ C(RN ,R) for any n ∈ Z, F(n + T , x) = F(n, x) for (n, x) ∈ Z×R
N , T is a

positive integer.
Since Guo and Yu developed a new method to study the existence and multiplicity of

periodic solutions of difference equations by using critical point theory (see [–]), the ex-
istence and multiplicity of periodic solutions for system (.) have been extensively studied
and lots of interesting results have been worked out; see [–] and the references therein.
System (.) is a discrete form of classical second-order Hamiltonian systems, which has
been paid much attention to by many mathematicians in the past  years; see [–] for
example.

In particular, when the nonlinearity ∇F(n, x) is bounded, Guo and Yu [] obtained one
periodic solution to system (.). When the gradient of the potential energy does not ex-
ceed sublinear growth, i.e. there exist M > , M > , and α ∈ [, ), such that

∣∣∇F(n, x)
∣∣ ≤ M|x|α + M, ∀(n, x) ∈ Z[, T] ×R

N , (.)

where Z[a, b] := Z ∩ [a, b] for every a, b ∈ Z with a ≤ b, Xue and Tang [, ] considered
the periodic solutions of system (.), which completed and extended the results in []
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under the condition where

lim|x|→∞ |x|–α

T∑

n=

F(n, x) = +∞, (.)

or

lim|x|→∞ |x|–α

T∑

n=

F(n, x) = –∞. (.)

Under weaker conditions on ∇F(n, x), i.e.,

lim|x|→∞ |x|–α

T∑

n=

F(n, x) < +∞, (.)

or

lim|x|→∞ |x|–α

T∑

n=

F(n, x) > –∞, (.)

Tang and Zhang [] considered the periodic solutions of system (.), which completed
and extended the results in [, ].

In this paper, we will further investigate periodic solutions to the system (.) under the
conditions of (.) or (.). Our main results are the following theorems.

Theorem . Suppose that F(n, x) = F(n, x) + F(x), where F and F satisfy (A) and the
following conditions:

() there exist f , g : Z[, T] →R
+ and α ∈ [, ) such that

∣
∣∇F(n, x)

∣
∣ ≤ f (n)|x|α + g(n), for all (n, x) ∈ Z[, T] ×R

N ;

() there exist constants r >  and γ ∈ [, ) such that

(∇F(x) – ∇F(y), x – y
) ≥ –r|x – y|γ , for all x, y ∈R

N ;

()

lim inf|x|→+∞|x|–α

T∑

n=

F(n, x) >


 sin π
T

T∑

n=

f (n).

Then system (.) has at least one T-periodic solution.

Theorem . Suppose that F(n, x) = F(n, x) + F(x), where F and F satisfy (A), (), (),
and the following conditions:

() there exist δ ∈ [, ) and C >  such that

(∇F(x) – ∇F(y), x – y
) ≤ C|x – y|δ , for all x, y ∈R

N ;
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()

lim sup
|x|→+∞

|x|–α

T∑

n=

F(n, x) < –


 sin π
T

T∑

n=

f (n).

Then system (.) has at least one T-periodic solution.

Theorem . Suppose that F(n, x) = F(n, x) + F(x), where F and F satisfy (A), (), and
the following conditions:

() there exists a constant  < r < 
T– , such that

(∇F(x) – ∇F(y), x – y
) ≥ –r|x – y|, for all x, y ∈R

N ;

()

lim inf|x|→+∞|x|–α

T∑

n=

F(n, x) >


( – (T – )r) sin π
T

T∑

n=

f (n).

Then system (.) has at least one T-periodic solution.

Theorem . Suppose that F = F + F, where F and F satisfy (A), (), and the following
conditions:

() there exist h : Z[, T] →R
+ and (λ, u)-subconvex potential G : RN →R with λ >/

and / < μ < λ, such that

(∇F(n, x), y
) ≥ –h(n)G(x – y), for all x, y ∈R

N and n ∈ Z[, T];

()

lim sup
|x|→+∞

|x|–α

T∑

n=

F(n, x) < –


 sin π
T

T∑

n=

f (n),

lim sup
|x|→+∞

|x|–β

T∑

n=

F(n, x) < –μmax
|s|≤

G(s)
T∑

n=

h(n),

where β = logλ(μ).
Then system (.) has at least one T-periodic solution.

Remark . Theorems .-. extend some existing results. On the one hand, we decom-
posed the potential F into F and F. On the other hand, if F = , the theorems in [],
Theorems  and , are special cases of Theorem . and Theorem ., respectively. Some
examples of F are given in Section , which are not covered in the references. Moreover,
our Theorem . is a new result.

2 Some important lemmas
HT can be equipped with the inner product

〈u, v〉 =
T∑

n=

[(
�u(n),�v(n)

)
+

(
u(n), v(n)

)]
, ∀u, v ∈ HT ,
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by which the norm ‖ · ‖ can be induced by

‖u‖ =

( T∑

n=

[∣∣�u(n)
∣∣ +

∣∣u(n)
∣∣]

) 


, ∀u ∈ HT .

Define

	(u) =



T∑

t=

∣∣�u(t)
∣∣ –

T∑

t=

F
(
t, u(t)

)

and

〈
	′(u), v

〉
=

T∑

t=

(
�u(t),�v(t)

)
–

T∑

t=

(∇F
(
t, u(t)

)
, v(t)

)
,

for u, v ∈ HT .
By (A), it is easy to see that 	 is continuously differentiable, and the critical points of 	

are the T-periodic solutions of system (.).
The following lemma is a discrete form of Wirtinger’s inequality and Sobolev’s inequality

(see []).

Lemma . [] If u ∈ HT and
∑T

t= u(t) = , then

T∑

t=

∣∣u(t)
∣∣ ≤ 

 sin π
T

T∑

t=

∣∣�u(t)
∣∣,

‖u‖
∞ :=

(
max

t∈Z[,T]

∣
∣u(t)

∣
∣
) ≤ T – 

T

T∑

t=

∣
∣�u(t)

∣
∣.

Lemma . [] Let E = V ⊕ X, where E is a real Banach space and V �= {} and is finite
dimensional. Suppose I ∈ C(E,R), it satisfies (PS), and

(i) there is a constant α and a bounded neighborhood D of  in V such that I |∂D≤ γ ,
and

(ii) there is a constant β > γ such that I |X≥ β .
Then I possesses a critical value c ≥ β . Moreover, c can be characterized as

c = inf
h∈�

max
s∈D

I
(
h(s)

)
,

where

� =
{

h ∈ C(D, E) | h(s) = s, s ∈ ∂D
}

.

3 Proof of theorems
For convenience, we denote

R =

( T∑

n=

f (n)

)/

, R =
T∑

n=

f (n), and R =
T∑

n=

g(n).
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Proof of Theorem . According to (), there exists a > 
 sin π

T
satisfying

lim inf
x−→+∞ |x|–α

T∑

n=

F(n, x) >
a


R

 .

From () and Lemma ., for any u ∈ HT , one has

∣
∣∣
∣∣

T∑

n=

[
F

(
n, u(n)

)
– F(n, ū)

]
∣
∣∣
∣∣

=

∣
∣∣
∣∣

T∑

n=

∫ 



(∇F
(
n, ū + sũ(n)

)
, ũ(n)

)
ds

∣
∣∣
∣∣

≤
T∑

n=

∫ 


f (n)

∣
∣ū + sũ(n)

∣
∣α

∣
∣ũ(n)

∣
∣ds +

T∑

n=

∫ 


g(n)

∣
∣ũ(n)

∣
∣ds

≤
T∑

n=

f (n)
(|ū| +

∣∣ũ(n)
∣∣)α∣∣ũ(n)

∣∣ +
T∑

n=

g(n)
∣∣ũ(n)

∣∣

≤
T∑

n=

f (n)|ū|α∣∣ũ(n)
∣∣ +

T∑

n=

f (n)
∣∣ũ(n)

∣∣α+ +
T∑

n=

g(n)
∣∣ũ(n)

∣∣

≤ |ū|α
( T∑

n=

f (n)

)/( T∑

n=

∣∣ũ(n)
∣∣

)/

+ ‖ũ‖α+
∞

T∑

n=

f (n) + ‖ũ‖∞
T∑

n=

g(n)

≤ 
a

T∑

n=

∣
∣ũ(n)

∣
∣ +

a


R

 |ū|α + R‖ũ‖α+
∞ + R‖ũ‖∞

≤ 
a sin π

T

T∑

n=

∣∣�u(n)
∣∣ +

a


R

 |ū|α +
(

T – 
T

)(α+)/

R

( T∑

n=

∣∣�u(n)
∣∣

)(α+)/

+
(

T – 
T

)/

R

( T∑

n=

∣
∣�u(n)

∣
∣

)/

. (.)

From () and Lemma ., for any u ∈ HT , we have

T∑

n=

[
F

(
u(n)

)
– F(ū)

]

=
T∑

n=

∫ 




s
(∇F

(
ū + sũ(n)

)
– ∇F(ū), sũ(n)

)
ds

≥ –
T∑

n=

∫ 


rsγ –∣∣ũ(n)

∣∣γ ds

≥ –
rT
γ

‖ũ‖γ
∞

≥ –
rT
γ

(
T – 

T

)γ /
( T∑

n=

∣
∣�u(n)

∣
∣

)γ /

. (.)
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Combining (.) with (.), for all u ∈ H
T one has

ϕ(u) =



T∑

n=

∣
∣�u(n)

∣
∣ +

T∑

n=

[
F

(
n, u(n)

)
– F(n, ū)

]

+
T∑

n=

[
F

(
u(n)

)
– F(ū)

]
+

T∑

n=

F(n, ū)

≥
(




–


a sin π
T

) T∑

n=

∣
∣�u(n)

∣
∣ –

(
T – 

T

)(α+)/

R

( T∑

n=

∣
∣�u(n)

∣
∣

)(α+)/

–
(

T – 
T

)/

R

( T∑

n=

∣∣�u(n)
∣∣

)/

–
rT
γ

(
T – 

T

)γ /
( T∑

n=

∣∣�u(n)
∣∣

)γ /

+ |ū|α

(

|ū|–α

T∑

n=

F(n, ū) –
a


R



)

.

Hence, ϕ(u) → ∞ as ‖u‖ → ∞. From this result, if {uk} ⊂ HT is a minimizing sequence
for ϕ, i.e., ϕ(uk) → infϕ, k → ∞, then {uk} is bounded. Since HT is finite dimensional,
going if necessary to a subsequence, we can assume that {uk} converges to some u ∈ HT .
Because of ϕ is continuously differentiable on HT , one has

ϕ(u) = infϕ and ϕ′(u).

Obviously, u ∈ HT is a T-periodic solution of system (.). �

Proof of Theorem . Step . To prove ϕ satisfies the (PS) condition. Suppose that uk is a
(PS) sequence, that is, ϕ′(uk) →  as k → ∞ and ϕ(uk) is bounded. According to (), there
exists a > 

 sin π
T

satisfying

lim sup
x→+∞

|x|–α

T∑

n=

F(n, x) < –
(

a +


 sin π
T

)
R

 .

In the same way as (.), for any u ∈ HT , one has

∣∣
∣∣
∣

T∑

n=

(∇F
(
n, uk(n)

)
, ũk(n)

)
∣∣
∣∣
∣
≤ 

a sin π
T

T∑

n=

∣∣�uk(n)
∣∣ +

a


R

 |ūk|α

+
(

T – 
T

)(α+)/

R

( T∑

n=

∣
∣�uk(n)

∣
∣

)(α+)/

+
(

T – 
T

)/

R

( T∑

n=

∣∣�uk(n)
∣∣

)/

(.)

and

T∑

n=

(∇F
(
uk(n)

)
, ũk(n)

) ≥ –
rT
γ

(
T – 

T

)γ /
( T∑

n=

∣∣�uk(n)
∣∣

)γ /

.
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Hence, we have

‖ũk‖ ≥ 〈
ϕ′(uk), ũk

〉

=
T∑

n=

∣∣�uk(n)
∣∣ +

T∑

n=

(∇F
(
n, uk(n)

)
, ũk(n)

)

≥
(

 –


a sin π
T

) T∑

n=

∣∣�uk(n)
∣∣ –

(
T – 

T

)(α+)/

R

( T∑

n=

∣∣�uk(n)
∣∣

)(α+)/

+
(

T – 
T

)/

R

( T∑

n=

∣∣�uk(n)
∣∣

)/

–
a


R

 |ūk|α

–
rT
γ

(
T – 

T

)γ /
( T∑

n=

∣
∣�uk(n)

∣
∣

)γ /

(.)

for all large k.
By Lemma ., one has

‖ũk‖ ≤ ( sin π
T + )/

 sin π
T

( T∑

n=

∣
∣�uk(n)

∣
∣

)/

. (.)

By (.) and (.), for all u ∈ H
T one has

a


R

 |ūk|α ≥
(

 –


a sin π
T

) T∑

n=

∣
∣�uk(n)

∣
∣

–
(

T – 
T

)(α+)/

R

( T∑

n=

∣
∣�uk(n)

∣
∣

)(α+)/

–
[ ( sin π

T + )/

 sin π
T

+
(

T – 
T

)/

R

]( T∑

n=

∣
∣�uk(n)

∣
∣

)/

–
rT
γ

(
T – 

T

)γ /
( T∑

n=

∣∣�uk(n)
∣∣

)γ /

≥ 


T∑

n=

∣∣�uk(n)
∣∣ + C, (.)

where

C = min
s∈[,+∞)

{a sin π
T – 

a sin π
T

s –
(

T – 
T

)(α+)/

Rsα+ –
rT
γ

(
T – 

T

)γ /

sγ

–
[ ( sin π

T + )/

 sin π
T

+
(

T – 
T

)/

R

]
s
}

.
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By the choice of a > 
 sin π

T
, –∞ < C < . Hence

T∑

n=

∣
∣�uk(n)

∣
∣ ≤ aR

 |ūk|α – C, (.)

and then

( T∑

n=

∣
∣�uk(n)

∣
∣

)/

≤ √
aR|ūk|α + C, (.)

where  < C < +∞.
From Theorem ., one has

∣
∣∣
∣∣

T∑

n=

[
F

(
n, uk(n)

)
– F(n, ūk)

]
∣
∣∣
∣∣
≤ 

a sin π
T

T∑

n=

∣∣�uk(n)
∣∣ +

a


R

 |ūk|α

+
(

T – 
T

)(α+)/

R

( T∑

n=

∣∣�uk(n)
∣∣

)(α+)/

+
(

T – 
T

)/

R

( T∑

n=

∣
∣�uk(n)

∣
∣

)/

. (.)

By (), we obtain

T∑

n=

[
F

(
uk(n)

)
– F(ūk)

]

=
T∑

n=

∫ 




s
(∇F

(
ūk + sũk(n)

)
– ∇F(ūk), sũk(n)

)
ds

≤
T∑

n=

∫ 


Csδ–∣∣ũk(t)

∣∣δ ds ≤ CT
δ

‖ũk‖δ
∞

≤ CT
δ

(
T – 

T

)δ/
( T∑

=

∣
∣�uk(n)

∣
∣

)δ/

.

Combining the boundedness of {ϕ(uk)} and (.)-(.), one has

C ≤ ϕ(uk)

=



T∑

n=

∣∣�uk(n)
∣∣ +

T∑

n=

[
F

(
n, uk(n)

)
– F(n, ūk)

]

+
T∑

n=

[
F

(
uk(n)

)
– F(ūk)

]
+

T∑

n=

F(n, ūk)

≤
(




+


a sin π
T

) T∑

n=

∣∣�uk(n)
∣∣ +

(
T – 

T

)(α+)/

R

( T∑

n=

∣∣�uk(n)
∣∣

)(α+)/
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+
(

T – 
T

)/

R

( T∑

n=

∣
∣�uk(n)

∣
∣

)/

+
a


R

 |ūk|α

+
CT
δ

(
T – 

T

)δ/
( T∑

n=

∣∣�uk(n)
∣∣

)δ/

+
T∑

n=

F(n, ūk)

≤
(




+


a sin π
T

)
(
aR

 |ūk|α – C
)

+
a


R

 |ūk|α +
T∑

n=

F(n, ūk)

+
(

T – 
T

)(α+)/

R
(√

aR|ūk|α + C
)α+

+
CT
δ

(
T – 

T

)δ/(√
aR|ūk|α + C

)δ

+
(

T – 
T

)/

R
(√

aR|ūk|α + C
)

≤ |ūk|α

[

|ūk|–α

T∑

n=

F(n, ūk) +
(

a +


 sin π
T

)
R



]

+ C|ūk|α(α+) + C|ūk|α + C|ūk|αδ + C

for large k. By the choice of a, {ūk} is bounded. From (.), {uk} is bounded. In view of
HT is finite dimensional Hilbert space, ϕ satisfies the (PS) condition.

Step . Let H̃T = {u ∈ HT : ū = }. We show that, for u ∈ H̃T ,

ϕ(u) → +∞, ‖u‖ → ∞. (.)

From () and Lemma ., one has

∣∣
∣∣
∣

T∑

n=

[
F

(
n, u(n)

)
– F(n, )

]
∣∣
∣∣
∣

=

∣∣
∣∣
∣

T∑

n=

∫ 



(∇F
(
n, su(n)

)
, u(n)

)
ds

∣∣
∣∣
∣

≤
T∑

n=

f (n)
∣∣u(n)

∣∣α+ +
T∑

n=

g(n)
∣∣u(n)

∣∣

≤ R‖u‖α+
∞ + R‖u‖∞

≤
(

T – 
T

)(α+)/

R

( T∑

n=

∣
∣�u(n)

∣
∣

)(α+)/

+
(

T – 
T

)/

R

( T∑

n=

∣
∣�u(n)

∣
∣

)/

for all u ∈ H̃T . It follows from () that

T∑

n=

[
F

(
u(n)

)
– F()

]

=
T∑

n=

∫ 



(∇F
(
su(n)

)
– ∇F(), u(n)

)
ds
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≥ –
T∑

n=

∫ 


rsγ –∣∣u(n)

∣
∣γ ds ≥ –

rT
γ

‖u‖γ
∞

≥ –
rT
γ

(
T – 

T

)γ /
( T∑

n=

∣∣�u(n)
∣∣

)γ /

.

Hence, we have

ϕ(u) =



T∑

n=

∣
∣�u(n)

∣
∣ +

T∑

n=

[
F
(
n, u(n)

)
– F(n, )

]
+

T∑

n=

F(n, )

≥ 


T∑

n=

∣
∣�u(n)

∣
∣ –

(
T – 

T

)(α+)/

R

( T∑

n=

∣
∣�u(n)

∣
∣

)(α+)/

–
(

T – 
T

)/

R

( T∑

n=

∣
∣�u(n)

∣
∣

)/

+
T∑

n=

F(n, )

–
rT
γ

(
T – 

T

)γ /
( T∑

n=

∣∣�u(n)
∣∣

)γ /

.

In view of Lemma ., ‖u‖ → +∞ in H̃T if and only if (
∑T

n= |�u(n)|)/ → ∞. Hence
(.) is satisfied.

Step . By (), for all u ∈ (H̃T )⊥ = R
N , one has

ϕ(u) = –
T∑

n=

F
(
n, u(n)

) → –∞, ‖u‖ → ∞.

Above all, all conditions of Lemma . are satisfied. So, by Lemma ., system (.) has
at least one T-periodic solution. �

Proof of Theorem . By (), there exists a > 
(–(T–)r) sin π

T
satisfying

lim inf|x|−→+∞|x|–α

T∑

n=

F(n, x) >
a


R

 .

Similar to (.), we have

T∑

n=

[
F

(
n, u(n)

)
– F(n, ū)

]

≥ –


a sin π
T

T∑

n=

∣
∣�u(n)

∣
∣ –

a


R

 |ū|α –
(

T – 
T

)(α+)/

R

( T∑

n=

∣
∣�u(n)

∣
∣

)(α+)/

–
(

T – 
T

)/

R

( T∑

n=

∣
∣�u(n)

∣
∣

)/

.
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By () and Lemma ., one has

T∑

n=

[
F

(
u(n)

)
– F(ū)

]
=

T∑

n=

∫ 




s
(∇F

(
ū + sũ(n)

)
– ∇F(ū), sũ(n)

)
ds

≥ –
T∑

n=

∫ 


rs

∣
∣ũ(n)

∣
∣ ds ≥ –

(T – )r


T∑

n=

∣
∣�u(n)

∣
∣.

So, for any u ∈ HT , we have

ϕ(u) =



T∑

n=

∣∣�u(n)
∣∣ +

T∑

n=

[
F
(
n, u(n)

)
– F(n, ū)

]
+

T∑

n=

F(n, ū)

≥
(




–


a sin π
T

–
(T – )r



) T∑

n=

∣∣�u(n)
∣∣

–
(

T – 
T

)(α+)/

R

( T∑

n=

∣∣�u(n)
∣∣

)(α+)/

–
(

T – 
T

)/

R

( T∑

n=

∣∣�u(n)
∣∣

)/

+ |ū|α

(

|ū|–α

T∑

n=

F(n, ū) –
a


R



)

.

Therefore, ϕ(u) → +∞ as ‖u‖ → +∞ due to the choice of a and r < 
T– . The rest is

similar to the proof of Theorem .. �

Proof of Theorem . First, we prove that ϕ satisfies the (PS) condition. Suppose that
{uk} ⊂ HT is a (PS) sequence of ϕ, that is, ϕ′(uk) →  as k → ∞ and {ϕ(uk)} is bounded.
By (), there exists a > 

 sin π
T

satisfying

lim sup
|x|→+∞

|x|–α

T∑

n=

F(n, x) < –
(

a +


 sin π
T

)
R

 . (.)

By the (λ,μ)-subconvexity of G(x), we have

G(x) ≤ (
μ|x|β + 

)
G (.)

for all x ∈R
N , where G = max|s|≤ G(s), β = logλ(μ) < .

Then

T∑

n=

(∇F
(
n, uk(n)

)
, ũk(n)

) ≥ –
T∑

n=

h(n)G(ūk)

≥ –
T∑

n=

h(n)
(
μ|ūk|β + 

)
G

= –μR|ūk|β – R, (.)
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where R = G
∑T

n= h(n). For large k, according to (.) and (.) we have

‖ũk‖ ≥ 〈
ϕ′(uk), ũk

〉

=
T∑

n=

∣∣�uk(n)
∣∣ +

T∑

n=

(∇F
(
n, uk(n)

)
, ũk(n)

)

≥
(

 –


a sin π
T

) T∑

n=

∣
∣�uk(n)

∣
∣ –

a


R

 |ūk|α

–
(

T – 
T

)(α+)/

R

( T∑

n=

∣∣�uk(n)
∣∣

)(α+)/

–
(

T – 
T

)/

R

( T∑

n=

∣
∣�uk(n)

∣
∣

)/

– μR|ūk|β – R. (.)

By (.) and (.), one has

a


R

 |ūk|α + μR|ūk|β

≥
(

 –


a sin π
T

) T∑

n=

∣
∣�uk(n)

∣
∣

–
(

T – 
T

)(α+)/

R

( T∑

n=

∣∣�uk(n)
∣∣

)(α+)/

– R

–
[ ( sin π

T + )/

 sin π
T

+
(

T – 
T

)/

R

]( T∑

n=

∣
∣�uk(n)

∣
∣

)/

≥ 


T∑

n=

∣
∣�uk(n)

∣
∣ + C, (.)

where

C = min
s∈[,+∞)

{(



–


a sin π
T

)
s –

(
T – 

T

)(α+)/

Rsα+

– R –
[ ( sin π

T + )/

 sin π
T

+
(

T – 
T

)/

R

]
s
}

.

By the choice of a, –∞ < C < . By (.), we have

T∑

n=

∣
∣�uk(n)

∣
∣ ≤ aR

 |ūk|α + μR|ūk|β – C, (.)

and then

( T∑

n=

∣∣�uk(n)
∣∣

)/

≤ √
aR|ūk|α + 

√
μR|ūk|β/ + C, (.)
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where C > . By () and (.), for any u ∈ HT , we get

T∑

n=

[
F

(
n, u(n)

)
– F(n, ū)

]

= –
T∑

n=

∫ 



(∇F
(
n, ūk + sũk(n)

)
, ũk(n)

)
ds

≤
T∑

n=

∫ 


h(n)G

(
ūk + (s + )ũk(n)

)
ds

≤
T∑

n=

∫ 


h(n)

(
μ

∣
∣ūk + (s + )ũk(n)

∣
∣β + 

)
G ds

≤ μ

T∑

n=

h(n)
(|ūk|β + β

∣
∣ũk(n)

∣
∣β)

G + R

≤ β+μR‖ũk‖β
∞ + μR|ūk|β + R

≤
(

T – 
T

)β/

β+μR

( T∑

n=

∣
∣�uk(n)

∣
∣

)β/

+ μR|ūk|β + R. (.)

Combining the boundedness of {ϕ(uk)} and (.)-(.), one has

C ≤ ϕ(uk)

=



T∑

n=

∣∣�uk(n)
∣∣ +

T∑

n=

[
F
(
n, uk(n)

)
– F(n, ūk)

]
+

T∑

n=

F(n, ūk)

≤
(




+


a sin π
T

) T∑

n=

∣∣�uk(n)
∣∣ +

a


R

 |ūk|

+
(

T – 
T

)(α+)/

R

( T∑

n=

∣∣�uk(n)
∣∣

)(α+)/

+
(

T – 
T

)/

R

( T∑

n=

∣∣�uk(n)
∣∣

)/

+
(

T – 
T

)β/

β+μR

( T∑

n=

∣
∣�uk(n)

∣
∣

)β/

+ μR|ūk|β + R +
T∑

n=

F(n, ūk)

≤
(




+


a sin π
T

)(
aR

 |ūk|α + μR|ūk|β – C
)

+
a


R

 |ūk|α

+
(

T – 
T

)(α+)/

R
(√

aR|ūk|α + 
√

μR|ūk|β/ + C
)α+

+
(

T – 
T

)/

R
(√

aR|ūk|α + 
√

μR|ūk|β/ + C
)

+
(

T – 
T

)β/

β+μR
(√

aR|ūk|α + 
√

μR|ūk|β/ + C
)β + μR|ūk|β
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+ R +
T∑

n=

F(n, ūk)

≤
(

 +


a sin π
T

)
aR

 |ūk|α +
(

 +


a sin π
T

)
μR|ūk|β

–
(

 +


a sin π
T

)
C

+
(

T – 
T

)(α+)/

R
(
αa

α+


 Rα+
 |ūk|α(α+) + α+μ

α+
 R

α+


 |ūk| β(α+)
 + αCα+


)

+
(

T – 
T

)/

R
(√

aR|ūk|α + 
√

μR|ūk|β/ + C
)

+
(

T – 
T

)β/

β+μR
(
β–a

β

 Rβ

 |ūk|αβ + β–μ
β
 R

β

 |ūk| β

 + (β–)Cβ

)

+ R +
T∑

n=

F(n, ūk)

= |ūk|α

[

|ūk|–α

T∑

n=

F(n, ūk) +
(

a +


 sin π
T

)
R

 +
(

T – 
T

)/√
aRR|ūk|–α

+
(

T – 
T

)(α+)/

αa
α+


 Rα+

 |ūk|α(α–) +
(

T – 
T

)β/

β+μa
β

 Rβ

 R|ūk|α(β–)

]

+ |ūk|β
[

|ūk|–β

T∑

n=

F(n, ūk) +
(

 +


a sin π
T

)
μR

+
(

T – 
T

)β/

βμ
β+

 R
β+


 |ūk| 

 β–β

+
(

T – 
T

)(α+)/

α+μ
α+

 RR
α+


 |ūk| β(α–)

 +
(

T – 
T

)/

R
√

μR|ūk|–β/

]

–
(

 +


a sin π
T

)
C +

(
T – 

T

)(α+)/

αRCα+
 +

(
T – 

T

)/

RC

+
(

T – 
T

)β/

βμRCβ
 + R.

Combining (.) and the above inequality, we see that {|ū|} is bounded. By (.), {uk}
is bounded. Since HT is a finite dimensional Hilbert space, ϕ satisfies the (PS) condition.

Similar to the proof of Theorem ., all conditions of Lemma . are satisfied. So, the
proof of Theorem . is completed. �

4 Examples
In this section, we give some examples to illustrate our results.

Example . Let F = F + F, with

F(n, x) =
(

T + 


– n
)

|x|/ + (T – n)|x|/ +
(
k(n), x

)
,
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F(x) = C(x) –
r


|x|/,

where k : Z[, T] −→ R and k(n + T) = k(n), for all n ∈ Z, r > , C(x) = r
 (|x|/ + |x|/ +

· · · + |xN |/). It is easy to see that

∣∣∇F(n, x)
∣∣ ≤ 


|T +  – n||x|/ +



|T – n||x|/ +

∣∣k(n)
∣∣

≤ 

(|T +  – n| + ε

)|x|/ +
T

ε +
∣∣k(n)

∣∣.

For all (n, x) ∈ Z[, T] ×R
N , where ε > ,

(∇F(x) – ∇F(y), x – y
) ≥ –r|x – y|/.

Thus, (), () hold with α = /, γ = /, and

f (n) =


(|T +  – n| + ε

)
, g(n) =

T

ε +
∣
∣k(n)

∣
∣.

So, we have

|x|–α

T∑

n=

F(n, x)

= |x|–/
T∑

n=

[(
T + 


– n

)
|x|/ + (T – n)|x|/ + C(x) –

r


|x|/ +
(
k(n), x

)
]

=
T(T – )


+

T(C(x) – r
 |x|/)

|x|/ +

( T∑

n=

k(n), |x|–/x

)

.

On the other hand, one has


 sin π

T

T∑

n=

f (n) =


 sin π
T

T∑

n=

[


(|T +  – n| + ε

)]

≤ [T(T –  + εT + ε)]
, sin π

T
.

If T ∈ {, , , , , }, we can choose ε >  such that

lim inf|x|−→+∞|x|–α

T∑

n=

F(n, x) =
T(T – )


>


 sin π

T

T∑

n=

f (n).

So, () holds. By Theorem ., system (.) has at least one T-periodic solution.

Example . Let F = F + F, with

F(n, x) =
(

T + 


– n
)

|x|/ – (T – n)|x|/ +
(
k(n), x

)
,

F(x) = –
r


|x|/,

where k : Z[, T] −→R
N and k(n + T) = k(n) for all n ∈ Z, r > .
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In a way similar to Example ., it is easy to see that condition () and () are satisfied
with α = /. So,

|x|–α

T∑

n=

F(n, x)

= |x|–/
T∑

n=

[(
T + 


– n

)
|x|/ – (T – n)|x|/ –

r


|x|/ +
(
k(n), x

)]

= –
T(T – )


–

r


|x|–/ +

( T∑

n=

k(n), |x|–/x

)

.

If T ∈ {, , , }, we can choose ε >  small enough such that

lim sup
|x|−→+∞

|x|–α

T∑

n=

F(n, x) = –
T(T – )


< –


 sin π

T

T∑

n=

f (n),

which implies that () holds. By Theorem ., system (.) has at least one T-periodic
solution.

Example . Let F = F + F, with

F(n, x) =
(

T + 


– n
)

|x|/ –
(

T – n


)
|x|/ +

(
k(n), x

)
,

F(x) = C(x) –
r

|x|,

where k : Z[, T] −→ R and k(n + T) = k(n) for all n ∈ Z, r > , C(x) = r
 (|x| + |x| + · · · +

|xN |),  < r < 
T– .

In a way similar to Example ., it is easy to see that conditions () and () are satisfied
with α = /. So

|x|–α

T∑

n=

F(n, x)

= |x|–/
T∑

n=

[(
T + 


– n

)
|x|/ –

(
T – n



)
|x|/ + C(x) –

r

|x| +

(
k(n), x

)]

=
T(T + )


+

T(C(x) – r
 |x|)

|x|/ +

( T∑

n=

k(n), |x|–/x

)

=
T(T + )


+

rT(|x| – |x| )
|x|/ +

( T∑

n=

k(n), |x|–/x

)

.

If T ∈ {, }, we choose ε > , such that

lim inf|x|−→+∞|x|–α

T∑

n=

F(n, x) =
T(T + )


>


( – (T – )r) sin π

T

T∑

n=

f (n),
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which implies that () holds. By Theorem ., system (.) has at least one T-periodic
solution.
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