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Abstract
This paper investigates the stabilizing and synchronization problems of a
memristor-based Chua chaotic system in a finite time. A lemma concerning the
finite-time stability for an impulsive system is proposed by extending the finite-time
stability theory. Then some finite-time stabilizing and synchronization criterion are
presented which guarantee the finite-time stabilization and synchronization for the
model considered. Finally, the efficiency of the control scheme is further
demonstrated by the simulation examples.
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1 Introduction
In , the memristor which is considered to be the missing fourth passive circuit ele-
ment was postulated []. However, this important postulation has not caused attention in
almost  years. Until in , Hewlett-Packard Labs announced the development of a
memristor based on nanotechnology []. As we know, the memristor takes its place along
with the other three existing elements: the resistor, the capacitor, and the inductor. In-
creasing focus was put on the memristor for its potential applications in programmable
logic, signal processing, neural networks, and so on [].

Moreover, as the novel element, the circuit based on the memristor shares many in-
teresting phenomenon. Recently, the research memristor chaotic circuits have become
a focal topic [–]. In [], the author presented a novel fourth-order memristor-based
Chua oscillator by replacing Chua’s diode with an active two-terminal circuit. The stabi-
lization problem of a memristor-based chaotic system was investigated in []. As the most
important phenomenon, the synchronization was also discussed []. In [], the adaptive
synchronization problem of memristor-based Chua circuits was investigated.

As time goes on, more and more researchers began to realize the important role of
the synchronization time. To attain a high convergence speed, many effective methods
have been introduced and finite-time control is one of them. Finite-time synchroniza-
tion means the optimality in convergence time. Much research work has been done on
chaos synchronization based on finite time (see for instance [–] and the references
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Figure 1 Chua’s memristor-based chaotic circuits
with a flux-controlled memristor.

therein). However, the finite-time synchronization problem has not been fully investi-
gated in the literature, and it still remains open. Motivated by the above discussion, we
investigate the finite-time synchronization problem for a memristor-based Chua circuit.
Based on the finite-time stability theory, a novel lemma which guarantees the impulsive
system is finite-time stable is presented. Then the impulsive [–] adaptive control law
is proposed to realize finite-time synchronization of the model considered. Numerical
simulations demonstrate the effectiveness and correctness of this results.

The paper is organized as follows. Some preliminaries are presented in the next section.
Section  proposes the main results of this paper. In Section , the numerical simulations
are presented, which is followed by the conclusion in Section .

2 Preliminaries
In [], the author proposed a novel nonlinear circuits, with a flux-controlled memristor
which replaces the Chua diode. Figure  shows a memristor-based Chua oscillator with a
flux-controlled memristor.

Applying a Kirchhoff voltage, the current law, and the volt-ampère relationship of the
components, the state equation of a Chua memristor-based chaotic system can be de-
scribed as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u̇ = 
C

(u – u + Gu – W (φ)u),
u̇ = 

C
(u – u) + Ri,

i̇ = – 
L u + r

L i,
φ̇ = u.

()

For convenience, letting x = u, x = u, x = i, x = φ, α = /C, β = /L, γ = r/L, ξ = G,
C = , and R = , then the model can be rewritten as the following equation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ = α(x – x + ξx – W (x)x),
ẋ = x – x + x,
ẋ = –βx + γ x,
ẋ = x.

()

If we set α = , β = /, γ = ., ξ = /, a = / and b = /, and the initial values are
(–, , , –.), then system () is a chaotic system and the chaotic attractor is shown
in Figure .

In order to compute simply, letting x = [x, x, x, x]T , then system () can be described
as follows:

ẋ = Ax + φ(x), ()
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Figure 2 The chaotic attractor of the
memristor-based Chua circuit.

where

A =

⎡

⎢
⎢
⎢
⎣

α(ξ – ) α  
 –  
 –β γ 
   

⎤

⎥
⎥
⎥
⎦

, φ(x) =

⎡

⎢
⎢
⎢
⎣

–αW (x)x





⎤

⎥
⎥
⎥
⎦

,

and W (x) = a + bx
, a, b, γ , ξ , α, and β are positive constants.

Similar to [], the nonlinear functions q(φ), W (φ) are given by

q(φ) = aφ + bφ, ()

W (φ) =
dq(φ)

dφ
= a + bφ. ()

Throughout this paper, the following assumption and lemma are necessary for our main
results.

Assumption  System () is a chaotic system, namely, the state is bound, we assume that
the following assumptions hold:

|x| ≤ M, |x| ≤ M,

where M, M are real constants.

Lemma  Suppose the function is continuous and non-negative when t ∈ [,∞) and sat-
isfies the following conditions:

{
V̇ (t) ≤ –ρV η(t), t �= tk ,
V (t+

k ) ≤ δV (tk), k = , , . . . ,
()

where ρ > ,  < η < ,  < δ < , k = {, , . . . , m}, is a finite natural number set and m is a
positive integer, then the following inequality holds:

V –η(t) ≤ V –η(t) – ρ( – η)(t – t), t ≤ t ≤ T , ()

where T is a constant which represents the setting time.
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Proof Without loss of generality, let t = . In order to prove () holds, the following func-
tion H(t) is constructed:

H(t) = V –η(t) – V –η() + ρ( – η)t. ()

Clearly, if the function H(t) satisfies H(t) ≤ , then the equality () holds.
One can easily observe that

H() = V –η() – V –η() ≤ . ()

Next, we will prove that H(t) ≤  holds for t ∈ [t, t]. Otherwise, there exists t∗ such that

H(t) > , t ∈ (
t∗, t

)
, H(t) < , t ∈ (

t, t∗), ()

H
(
t∗) = , Ḣ

(
t∗) > . ()

Combing () with (), one has

Ḣ
(
t∗) = ( – η)V –η

(
t∗)V̇

(
t∗) + ρ( – η)

= ( – η)V –η
(
t∗)(–ρV –η

(
t∗)) + ρ( – η)

=  ()

which contradicts (). Namely, H(t) ≤  holds for t ∈ [t, t).
When t = t, we get

H(t) – H
(
t–

)

= H
(
t+

)

– H
(
t–

)

= V –η
(
t+

)

– V –η
(
t–

)

=
(
β–η – 

)
V –η

(
t–

)

≤ . ()

It yields

H(t) ≤ H
(
t–

) ≤ . ()

Then we suppose that H(t) ≤  holds for t ∈ [tk–, tk]. For t ∈ [tk , tk+], we have

H(tk+) = V –η(tk+) – V –η() + α( – η)tk+

= β–ηV –η
(
t–
k+

)
– V –η()α( – η)t–

k+

=
[
β–η – 

]
V –η

(
t–
k+

)
– H

(
t–
k+

)

≤ [
β–η – 

]
V –η

(
t–
k+

)
– H

(
t+
k
)

≤ . ()

From ()-(), we know that H(t) ≤  holds. This completes the proof. �
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3 Main results
In this section, the finite-time control and synchronization problems via an impulsive
adaptive strategy are investigated, respectively. Taking the impulsive adaptive strategy into
account in (), one obtains

{
ẋ(t) = Ax(t) + φ(x(t)) + u(t), t �= tk ,

x(tk) = Ik(x(tk)) = –Bx(tk), t = tk , k ∈ �,

()

where 
x(tk) = x(t+
k ) – x(t–

k ), x(t+
k ) = limt→t+

k
x(t), x(t–

k ) = limt→t–
k

x(t), � = {, , . . . , n, n, . . . ,
nk}, is a finite natural number set. For simplicity, it is assumed that x(t–

k ) = x(tk), which
means that x(tk) is left continuous. Letting u(t) = –kx(t) – k sign(x(t))|x(t)|γ , we have the
following theorem.

Theorem  Suppose Assumption  holds. There exists a positive constant γ satisfying  <
γ <  such that the memristor-based chaotic system is finite-time stable if the following
conditions hold:

(i) q = λmax[AT + A – (k + )I] < ;
(ii) d = λmax(I + B)T (I + B) < .

Proof Construct the following Lyapunov candidate function:

V (t, x) = xT x. ()

Calculating the derivative along the trajectory of () we have

D+V (t, x) = ẋT x + xT ẋ

=
(
Ax + φ(x) + u(t)

)T x + xT(
Ax + φ(x) + u(t)

)

= xT(
A + AT – kI

)
x + xTφ(t, x) – kxT sign

(
x(t)

)∣
∣x(t)

∣
∣γ . ()

From Assumption , one has

xTφ(x) ≤ xT x + φT (x)φ(x)

≤ xT x +
[(

a + bx

)
x

]

≤ xT x + x

[
a + bM


] ≤ (I + J)xT x, ()

where J = [[a + bM
], , , ]T .

From () and (), one obtains

D+V (t, x) ≤ xT[
AT + A – (k + )I

]
x – kxT sign

(
x(t)

)∣
∣x(t)

∣
∣γ

≤ qV (t) – k

∑

i=

|xi|γ +, ()

where q = λmax[AT + A – (k + )I]. From the fact that  < γ < , one obtains

( ∑

i=

|xi|γ +

) 
γ +

≥
( ∑

i=

|xi|
) 



. ()
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Also

n∑

i=

|xi|γ + ≥
( n∑

i=

|xi|
) γ +



=
(
xT x

) γ +
 . ()

Then, from condition () of Theorem , we have for t �= tk

D+V (t, x) ≤ –kV (x)
γ +

 . ()

When t = tk , one obtains

V
(
t+
k
)

= (x + Bx)T (x + Bx)

= x
(
I + BT)

(I + B)x

≤ dV (tk). ()

Through condition in Theorem  and Lemma , we can easily see that the system () is
finite-time stable, which complete the proof. �

Next, we investigate the problem of finite-synchronization for a memristor-based
chaotic system. Based on the drive-response synchronization concept, letting system ()
be the drive system, the response system with control input u is as follows:

ẏ = Ay + φ(y) + u. ()

Taking the impulsive adaptive effects into account, the response system () is as follows:

⎧
⎪⎨

⎪⎩

ẏ = Ay + φ(y) + u(t), t �= tk ,

y = Ik(y) = –Be, t = tk ,
y(t+

 ) = y, t ≥ ,
()

where e = [x – y]T = [x – y, x – y, x – y, x – y]T , tk are the impulsive instants which
satisfy t < t < · · · < tk– < tk and limk→∞ tk = ∞. Letting

u = –ke(t) – k sign
(
e(t)

)∣
∣e(t)

∣
∣γ , ()

where the constants k, k are the control strength coefficients to be designed, the real
number γ satisfies  ≤ γ < .

Combing () with (), the error system can be described as follows:

{
ė = Ae + φ(e) + u(t), t �= tk ,

e = Be, t = tk , k = , , . . . ,

()

where φ(e) = [αW (y)y – αW (x)x, , , ]T . Hence, we have the following theorem.
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Theorem  Suppose Assumption  holds. There exists a positive constant γ satisfying  <
γ <  such that the memristor-based Chua systems () and () can be synchronized under
the impulsive adaptive strategy if the following conditions hold:

(i) AT + A – kI – abMMI < ;
(ii) d = λmax(I + B)T (I + B) < .

Proof Construct the following Lyapunov candidate function

V (e) = eT e. ()

For t ∈ [tk , tk+), the derivative of V (t) along the trajectory of () is

D+V (e) = eT ė = eT (A – kI)e(t) + eTφ(e) – keT sign
(
e(t)

)∣
∣e(t)

∣
∣α . ()

From Assumption , we have

eTφ(e) = α
[(

a + by

)
y –

(
a + bx


)
x

]
e

= –αe
 + ab

(
y

y – y
x + y

x – x
x

)

≤ abMMeT e. ()

Combing () with (), we have

D+V (e) ≤ eT(
AT + A – kI – abMMI

)
e – k

∑

i=

|ei|γ +. ()

From the fact that  < γ < , one obtains

( ∑

i=

|ei|γ +

) 
γ +

≥
( ∑

i=

|ei|
) 



. ()

Also

n∑

i=

|ei|γ + ≥
( n∑

i=

|ei|
) γ +



=
(
eT e

) γ +
 . ()

Thus, based on the condition (i) in Theorem , we have for t �= tk

D+V (e) ≤ –kV (e)
γ +

 . ()

When t = tk , one obtains

V
(
t+
k
)

= (e + Be)T (e + Be)

= e
(
I + BT)

(I + B)e

≤ dV (tk). ()
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Figure 3 Memristor-based chaotic system under
an adaptive impulsive strategy.

Through Theorem  and Lemma , we can easily see that the system () is finite-time
stable. This implies that the response system () is synchronized with the drive system
() in a finite time. �

4 Simulation results
The numerical simulations are carried out using the fourth-order Runge-Kutta method.
The initial states of the drive and response systems are (–, , , ) and (, , , ). The
parameters of the drive systems are α = , β = /, γ = ., ξ = /, a = /, and b =
/. Solving the inequality in Theorem , and choosing B = diag(–., –., –., –.),
k = ., k = ., γ = ., the response system synchronizes with the drive system as
shown in Figure . It is easily shown that the state response curve of the error system is
stable.

5 Conclusion
In this paper, the finite-time control and synchronization problems of memristor-based
chaotic systems have been investigated. Some novel impulsive adaptive control laws which
guarantee the memristor-based Chua circuits is stabilized and synchronized in finite time
have been proposed. Moreover, simulation results were given to verify the effectiveness
and feasibility of the method. Our future research topics mainly consider the time delay
effects on the finite-time stability of the memristor-based nonlinear system.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors drafted the manuscript, and they read and approved the submitted version.

Author details
1College of Computer, Chongqing College of Electronic Engineering, Chongqing, 401331, P.R. China. 2Department of
Computer Science, Chongqing University of Education, Chongqing, 400067, P.R. China.

Acknowledgements
The work described in this paper was partially supported by the National Natural Science Foundation of China (Grant
No. 61403050) and the Scientific and Technological Research Program of Chongqing Municipal Education Commission
(KJ1501412, KJ1501409, KJ1501301), and the Foundation of CQUE (KY201519B, KY201520B).

Received: 8 November 2015 Accepted: 22 February 2016

References
1. Chua, LO: Memristor - the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507-511 (1971)
2. Strukov, DB, Snider, GS, Stewart, DR, Williams, RS: The Missing Memristor Found. Nature 453, 80-83 (2008)



Xiong and Huang Advances in Difference Equations  (2016) 2016:101 Page 9 of 9

3. Bayat, FM, Shouraki, SB: Programming of memristor crossbars by using genetic algorithm. Proc. Comput. Sci. 3,
232-237 (2011)

4. Itoh, M, Chua, LO: Memristor oscillators. Int. J. Bifurc. Chaos 18, 3183-3206 (2008)
5. Pakkiyappan, R, Sivasamy, R, Li, XD: Synchronization of identical and nonidentical memristor-based chaotic systems

via active back stepping control technique. Circuits Syst. Signal Process. 34(3), 763-778 (2015)
6. Wu, HG, Chen, SY, Bao, BC: Impulsive synchronization and initial value effect for a memristor-based chaotic system.

Acta Phys. Sin. 64(3), 030501 (2015)
7. Wang, X, Li, CD, Huang, TW, Duan, SK: Predicting chaos in memristive oscillators via harmonic balance method. Chaos

22(4), 043119 (2012)
8. Bao, HB, Cao, JD: Projective synchronization of fractional-order memristor-based neural networks. Neural Netw. 63,

1-9 (2015)
9. Wen, SP, Zeng, ZG, Huang, TW: Adaptive synchronization of memristor-based Chua’s circuits. Phys. Lett. A 376,

2275-2780 (2012)
10. Huang, JJ, Li, CD, He, X: Stabilization of a memristor-based chaotic system by intermittent and fuzzy processing. Int.

J. Control. Autom. Syst. 11(3), 643-647 (2013)
11. Amato, F, Ariola, M, Abdallah, CT: Finite-time control for uncertain linear systems with disturbance inputs. In: IEEE

Proceedings of the 1999 American Control Conference, vol. 3, pp. 1776-1780 (1999)
12. Amato, F, Arioila, M, Dorato, P: Finite-time control of linear systems subject to parametric uncertainties and

disturbances. Automatica 37(9), 1459-1463 (2001)
13. Amato, F, Arioila, M, Cosentino, C: Finite-time stability of linear time-varying systems: analysis and controller design.

IEEE Trans. Autom. Control 55(4), 1003-1008 (2009)
14. Sanjay, PB, Dennis, SB: Finite time of continuous autonomous systems. SIAM J. Control Optim. 3(3), 751-766 (2000)
15. Liu, YG: Global finite time stabilization via time varying feedback uncertain nonlinear systems. SIAM J. Control Optim.

52(3), 1886-1913 (2014)
16. Li, X, Bohner, M, Wang, CK: Impulsive differential equations: periodic solutions and applications. Automatica 52,

173-178 (2015)
17. Li, X, Song, S: Impulsive control for existence, uniqueness and global stability of periodic solutions of recurrent neural

networks with discrete and continuously distributed delays. IEEE Trans. Neural Netw. 24, 868-877 (2013)
18. Wen, SP, Huang, TW, Yu, XH, Chen, MZQ, Zeng, ZG: Aperiodic sampled-data sliding-mode control of fuzzy systems

with communication delays via the event-triggered method. IEEE Trans. Fuzzy Syst. (2015).
doi:10.1109/TFUZZ.2015.2501412

19. Wen, SP, Yu, XH, Zeng, ZG, Wang, JJ: Event-triggering load frequency control for multi-area power systems with
communication delay. IEEE Trans. Ind. Electron. 63(2), 1308-1317 (2015)

20. Song, QK, Huang, TW: Stabilization and synchronization of chaotic systems with mixed time-varying delays via
intermittent control with non-fixed both control period and control width. Neurocomputing 154, 61-69 (2015)

21. Song, QK, Zhao, ZJ: Stability criterion of complex-valued neural networks with both leakage delay and time-varying
delays on time scales. Neurocomputing 171, 179-184 (2016)

22. Cao, JD, Song, QK: Stability in Cohen-Grossberg-type bidirectional associative memory neural networks with
time-varying delays. Nonlinearity 19(7), 1601 (2006)

http://dx.doi.org/10.1109/TFUZZ.2015.2501412

	Finite-time control and synchronization for memristor-based chaotic system via impulsive adaptive strategy
	Abstract
	Keywords

	Introduction
	Preliminaries
	Main results
	Simulation results
	Conclusion
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


