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Abstract
Using Nevanlinna theory of the value distribution of meromorphic functions, the
growth of entire solutions and the form of transcendental meromorphic solutions of
some types of systems of higher-order complex difference equations are investigated.
Some new results are obtained. We also investigate the problem of the existence of
solutions of complex q-difference equations, and we obtain some new results, which
are different from analogue differential equations. Improvements and extensions of
some results in the literature are presented. Some examples show that our results are,
in a sense, the best possible.
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1 Introduction and notation
Throughout the paper, we use the standard notations of the Nevanlinna theory of mero-
morphic functions (see []).

Many authors, such as Weissenborn [], Toda [], Gao [, ] and Malmquist [] etc. have
investigated complex differential equation theory, they obtained many results, such as the
following.

Theorem A (Malmquist theorem) (see []) Let a(z), . . . , ap(z), b(z), . . . , bq(z) be rational
functions. If the differential equation

dw
dz

= R
(
z, w(z)

)
=

P(z, w(z))
Q(z, w(z))

=
a(z) + a(z)w(z) + · · · + ap(z)wp(z)
b(z) + b(z)w(z) + · · · + bq(z)wq(z)

,

where P(z, w(z)) and Q(z, w(z)) do not have any common factors in w(z), admits a transcen-
dental meromorphic solution, then we have

q = , p ≤ .

Theorem B (see []) When  ≤ p ≤ m – , the differential equation

[
�(z, w)

]m =
p∑

j=

aj(z)wj(z),
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where �(z, w) =
∑

(i) a(i)(z)wi (w′)i · · · (w(n))in ,  ≤ p ≤ m max{i + i + · · · + (n + )in},
ap(z) �= , has no admissible meromorphic solutions except of the following form:

[
�(z, w)

]m = ap(z)
(
w + b(z)

)p,

where b(z) = ap–(z)
pap(z) .

Recently, difference Nevanlinna theory has become a subject of great interest. Halburd
and Korhonen [] and Chiang and Feng [] etc. investigated complex difference equation
theory, they got a lot of good results, such as the following.

In , Laine et al. [] studied the following difference equations:

∑

{J}
αJ (z)

(∏

j∈J

w(z + cj)
)

=
P(z, w(z))
Q(z, w(z))

, (.)

where P(z, w(z)), Q(z, w(z)) are relatively prime polynomials in w(z) over the field of ra-
tional functions,the coefficient αJ (z) is a rational function for every J and q := degQ

w > ,
p := degP

w. They obtained the following result.

Theorem C (see []) Assume w(z) is a transcendental meromorphic solution of (.). If
w(z) has finitely many poles, then it must be of the following form:

w(z) = r(z)eg(z) + s(z),

where r(z) and s(z) are rational functions, and g(z) is a transcendental entire function sat-
isfying a difference equation of one of the following forms: either

∑

j∈J

g(z + cj) = (j – q)g(z) + d,

or

∑

j∈J

g(z + cj) =
∑

j∈I

g(z + cj) + d,

here I and J are non-empty disjoint subsets of {, , . . . , n}, j ∈ {, , . . . , p}, d ∈ C.

Gao etc. have studied solutions of some types of complex difference equations and solu-
tions of system of complex difference equations, they also got some results (see [, ]).

On the basis of them, we also did some work. In this paper, first of all, we will investigate
solutions of systems of the higher-order complex difference equations (.)-(.),

{
[w(z + c)]m =

∑p
i= ai(z)wi

, p ≤ m,
[w(z + c)]m =

∑q
j= bj(z)wj

, q ≤ m,
(.)

where c, c ∈ C \ {};

{
[�(z, w)]m =

∑p
i= ai(z)wi

,
[�(z, w)]m =

∑q
j= bj(z)wj

,
(.)
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where

�(z, w) =
k∑

i=

a(i)(z)wi

(
w(z + c)

)i · · · (w(z + cn)
)in ,

�(z, w) =
k∑

j=

b(j)(z)wj

(
w(z + c)

)j · · · (w(z + cn)
)jn ,

pq ≤ mm
∑k

i= λi
∑k

j= λj, k ≥ , k ≥ , ci, cj ∈ C \ {}, i = , , . . . , n, j = , , . . . , n, λi =
i + i + · · · + in, λj = j + j + · · · + jn, T(r, a(i)(z)) = o{T(r, w)}, T(r, b(j)(z)) = o{T(r, w)};

{∑
{I} aI(z)(

∏
i∈I w(z + ci)) = P(z,w(z))

Q(z,w(z)) ,
∑

{J} bJ (z)(
∏

j∈J w(z + cj)) = P(z,w(z))
Q(z,w(z)) ,

(.)

where {I}, {J} are two finite sets of multi-indices, ci, cj ∈ C (i ∈ I , j ∈ J), the coefficients
aI(z), bJ (z) are rational functions, P(z, w(z)), Q(z, w(z)) are relatively prime polynomials
in w. P(z, w(z)), Q(z, w(z)) are relatively prime polynomials in w. The coefficients of
P(z, w(z)), P(z, w(z)) are, respectively, rational functions, Q(z, w(z)), Q(z, w(z)) are
polynomials and their coefficients are, respectively, small functions of w, w. We have
q := degQ

w > , q := degQ
w > , p := degP

w , p := degP
w .

Second, we will investigate solutions of higher-order complex q-difference equations.
The standard logarithmic derivative lemma and Wiman-Valiron theory (see []) play

important roles in the study of growth and value distribution of meromorphic solutions
of differential equations. When talking about linear q-difference equations, Barnett et al.
[] and Bergweiler et al. [] give analogs of logarithmic derivative lemma and Wiman-
Valiron theory, respectively. Using the q-difference analog of the lemma on the logarith-
mic derivative, Zhang and Korhonen [] investigated the relation of the characteristic
function of zero order meromorphic function f and its shift. They also concluded that
T(r, f (qz)) ∼ T(r, f ), when q ∈ C \ {}. One of its applications to q-difference equations is
as follows.

Theorem D (see []) Let q, . . . , qn ∈ C \ {}, and let a(z), . . . , ap(z), b(z), . . . , bq(z) be
rational functions. If the q-difference equation

n∑

i=

w(qiz) = R
(
z, w(z)

)
=

P(z, w(z))
Q(z, w(z))

=
a(z) + a(z)w(z) + · · · + ap(z)wp(z)
b(z) + b(z)w(z) + · · · + bq(z)wq(z)

,

where P(z, w(z)) and Q(z, w(z)) do not have any common factors in w(z), admits a transcen-
dental meromorphic solution of zero order, then we have

max{p, q} ≤ n.

Let w be a non-constant meromorphic function of zero order, if meromorphic func-
tion g satisfies T(r, g) = o{T(r, w)} = S(r, w), outside an exceptional set of zero logarithmic
density, then g is called a small function of w.
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We also will investigate the complex q-difference equations (.)-(.),

�(z, w) =
a(z) + a(z)w(z) + · · · + ap(z)wp(z)
b(z) + b(z)w(z) + · · · + bq(z)wq(z)

, (.)

where �(z, w) =
∑k

i= a(i)(z)wi (w(qz))i · · · (w(qnz))in , q, . . . , qn ∈ C \ {}, the coefficients
{a(i)(z)} are small functions of w (outside an exceptional set of zero logarithmic den-
sity). a(z), . . . , ap(z), b(z), . . . , bq(z) are rational functions, and T(r, ai) = o{T(r, w)}, i =
, , . . . , p. T(r, bj) = o{T(r, w)}, j = , , . . . , q. We have

[
w(qz)

]m =
p∑

i=

ai(z)wi(z), q ∈ C\{},  ≤ p ≤ m, ap(z) �= ; (.)

[
�(z, w)

]m =
p∑

i=

ai(z)wi(z), k ≥ ,  ≤ p ≤ m
k∑

i=

λi, ap(z) �= , (.)

where �(z, w) =
∑k

i= a(i)(z)wi (w(qz))i · · · (w(qnz))in , qi ∈ C\{}, i = , . . . , n, λi = i + i +
· · · + in, and the coefficients {a(i)(z)} are small functions of w (outside an exceptional set of
zero logarithmic density).

The remainder of the paper is organized as follows. In Section , we study the existence
of admissible meromorphic solutions of systems of complex difference equation (.), the
problem of the order of entire solutions of systems of complex difference equation (.),
and the form of transcendental meromorphic solutions of systems of complex difference
equation (.), and obtain three theorems. In Section , we study the problem of the ex-
istence of solutions of complex q-difference equations (.), (.) and (.), and we obtain
three theorems, and then we give some remarks and some examples, which show that the
results obtained in Section  are, in a sense, the best possible. In Section , we give a series
of lemmas for the proofs of the theorems. In Section , we prove theorems for complex
difference equations by a lemma given in Section . In Section , we prove theorems for
complex q-difference equations by a lemma given in Section .

2 Results for systems of complex difference equations
Definition . Let (w(z), w(z)) be a set of meromorphic solutions of (.), S(r) means
the sum of characteristic functions of all coefficients in (.). If the meromorphic solutions
(w(z), w(z)) of (.) satisfy

S(r) = o
{

T(r, wi)
}

= S(r, wi), i = , ,

outside a possible exceptional set with finite logarithmic measure, then we say (w(z),
w(z)) is a set of admissible meromorphic solutions of (.).

We obtain the following results as regards complex difference equations.

Theorem . Let  ≤ p < m,  ≤ q < m, the system of higher-order complex difference
equations (.) has no admissible meromorphic solutions of finite order.

Theorem . Let  ≤ p < m,  ≤ q < m, k ≥ , k ≥ , the system of higher-order com-
plex difference equations (.) does not admit any entire solutions (w(z), w(z)) of order
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ρ(w, w) = max{ρ(w),ρ(w)} greater than ρ except the following form:

{
[�(z, w)]m = ap(z)(w(z) + c(z))p,
[�(z, w)]m = bq(z)(w(z) + d(z))q,

(.)

{
[�(z, w)]m =

∑p
i= ai(z)wi

,
[�(z, w)]m = bq(z)(w(z) + d(z))q,

(.)

{
[�(z, w)]m = ap(z)(w(z) + c(z))p,
[�(z, w)]m =

∑q
j= bj(z)wj

,
(.)

where c(z), d(z) are meromorphic functions of order at most ρ , ρ = max{ρ(ai), i = , , . . . , p,
ρ(a(i)),ρ(bj), j = , , . . . , q,ρ(b(j))}.

Theorem . Let (w(z), w(z)) be a set of transcendental meromorphic solutions of (.).
If w(z), w(z) have finitely many poles, they must be of the following form:

w(z) = r(z)eg(z) + s(z), w(z) = r(z)eg(z) + s(z),

where ri(z), si(z), i = ,  are rational functions and gi(z), i = , , are transcendental entire
functions satisfying the following cases:

(i) ∑

i∈I

g(z + ci) –
∑

i∈I

g(z + ci) = d,
∑

j∈J

g(z + cj) –
∑

j∈J

g(z + cj) = d,

(ii) ∑

i∈I

g(z + ci) + (q – j)g(z) = d,
∑

j∈J

g(z + cj) + (q – j)g(z) = d,

here I, I, I, J, J, J are non-empty subsets of {, , . . . , n}, I ∩ I = ∅, J ∩ J = ∅, j ∈
{, , . . . , p}, j ∈ {, , . . . , p}, q > , q > , di ∈ C, i = , .

Example . (w(z), w(z)) = ( 
z ecos z– + 

z+π
, 

z ecos z+ + 
z–π

) is a set of transcendental
meromorphic solution of the following system of higher-order complex difference equa-
tions:

{
w(z + π )w(z – π ) + w(z + π )w(z – π ) = P(z,w)

Q(z,w) ,
w(z + π )w(z – π ) + w(z + π )w(z – π ) = P(z,w)

Q(z,w) ,

where

P(z, w) = e–z(z + π )
(
z – π)(z + π )

(
w –


z – π

)

+ e–z
(
z – π)(z + π )

(
z + πz – π)

(
w –


z – π

)

+ e–(z – π)(z – π )
(
z + πz + π)

(
w –


z – π

)

+
e–

z + π

(
z – π)(z + π )

(
z + πz – π)

(
w –


z – π

)
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+

z
(
z – π)(z + π )(z + π ),

Q(z, w) = e–z
(
z – π)(z + π )

(
z – π)(z + π )

(
w –


z – π

)

,

P(z, w) = ez(z – π )
(
z – π)(z – π )

(
w –


z + π

)

+ ez
(
z – π)(z – π )

(
z – πz + π)

(
w –


z + π

)

+ e–(z – π)(z + π )
(
z – πz + π)

(
w –


z + π

)

+ e–(z – π)(z – π )
(z – πz – π)

z – π

(
w –


z + π

)

+

z
(
z – π)(z – π )(z – π ),

Q(z, w) = e–z
(
z – π)(z – π )

(
z – π)(z – π )

(
w –


z + π

)

.

Easily, we find that w(z), w(z) have finitely many poles, q = , q = , and

g(z) = cos z + , g(z) = cos z – 

are transcendental entire functions satisfying

g(z + π ) + g(z – π ) = – cos z +  = ( – )g(z) + ,

g(z + π ) + g(z – π ) = – cos z –  = ( – )g(z) + .

This example shows that Theorem . is not vacuous.

3 Results for complex q-difference equations
Definition . Let w(z) be an entire solution of (.) (or (.)), S(r) means the sum of
characteristic functions of all coefficients in (.) (or (.)). If the entire solution w(z) of
(.) (or (.)) satisfies

S(r) = o
{

T(r, w)
}

= S(r, w),

outside a possible exceptional set of zero logarithmic density, then we say w(z) is an ad-
missible entire solution of (.) (or (.)).

We obtain the following results as regards complex q-difference equations.

Theorem . Let qj ∈ C\{}, j = , . . . , n. If the q-difference equation (.) admits a tran-
scendental meromorphic solution of zero order, then we have

max{p, q} ≤
k∑

i=

λi,

where λi = i + i + · · · + in.
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Remark . The following Example . shows the upper bound in Theorem . can be
reached.

Example . The function f (z) =
∑∞

n=
zn



 n(n+)

is a transcendental entire function of order

zero and satisfies the q-difference equation f (z) = z + zf (z). Then w(z) = 
f (z)+ is a tran-

scendental meromorphic function of order zero and satisfies the following q-difference
equation:

w(z) + w(z) =
z(z + )w(z) + (z + )w(z)

z + z(z + )w(z) + (z + )w(z)
.

Easily we find that

p = q = , λ = λ = .

Thus

max{p, q} =  = λ + λ.

Remark . It is clear that Theorem B is a special case of Theorem ..

Remark . It is unlikely that most of the q-difference equations studied in this paper
have meromorphic solutions due to the properties of the q-difference operator. The reason
for this is the following. Consider as an example one of the simplest possible q-difference
equations,

f (qz) = f (z).

This equation has no meromorphic solutions unless |q| =  and the argument of q is a
rational number. Otherwise, we take any complex value a such that f (z) = a. Without loss
of generality we may assume that |q| ≤  (otherwise consider 

q instead of q). Now by the
equation above, f (qnz) = a for all n ∈ N. But this implies that a has a finite accumulation
point in the complex plane (at z =  if |q| < ), which is impossible. A similar phenomenon
can easily rule out the possibility of the existence of meromorphic solutions in most (but
not all) cases of q-difference equations.

Theorem . Let  ≤ p < m, the q-difference equation (.) has no admissible entire solu-
tions of zero order.

Remark . If p = m, from Theorem ., we know (.) admits a transcendental mero-
morphic solution of zero order, but it is uncertain whether the form of (.) (the excluded
q-difference equation as Theorem C),

[
w(qz)

]m = ap(z)
(
w(z) + b(z)

)p, where b(z) =
ap–(z)
pap(z)

,

has an admissible entire solution.
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Example . w(z) = z +  is an admissible entire solution of zero order of the following
q-difference equation:

w(z) = 
[

w(z) –



]
.

Clearly, we get

p = , m = .

Example . w(z) = z –  is a non-admissible entire solution of the complex q-difference
equation of the form

[
w(–

√
z)

] =
(


z –


z + 

)[
w(z) + 

].

In this case

p = , m = .

Theorem . Let  ≤ p < m, k ≥ , the q-difference equation (.) has no admissible entire
solutions of zero order except the following form:

[
�(z, w)

]m = ap(z)
(
w(z) + b(z)

)p,

where b(z) = ap–(z)
pap(z) .

Remark . It is uncertain whether the excluded q-difference equation has an admissible
solution.

Example . w(z) = z –  is an admissible entire solution of zero order of the following
q-difference equation:

[
w(z) +




w
(




z
)

– 



w
(

–



z
)

w(–z) + w(z)w
(




z
)]

= .

Clearly, we get

p = , m = .

Example . w(z) = z +  is a non-admissible entire solution of the complex q-difference
equation of the form

[
w

(
–




z
)

w(
√

z) – w(–z) – w
(√




z
)

– w(z) – w(z) + w(z)w(z)
]

=
[
w(z) –

(
z + 

)].

In this case

p = , m = .
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4 Lemmas for the proof of theorems
We need the following lemmas to prove theorems.

Lemma . (see []) Let

R
(
z, w(z)

)
=

a(z) + a(z)w(z) + · · · + ap(z)wp(z)
b(z) + b(z)w(z) + · · · + bq(z)wq(z)

be an irreducible rational function in w(z) with the meromorphic coefficients {ai(z)} and
{bj(z)}. If w(z) is a meromorphic function, then

T
(
r, R

(
z, w(z)

))
= max{p, q}T(

r, w(z)
)

+ O
{∑

T
(
r, ai(z)

)
+

∑
T

(
r, bj(z)

)}
.

Lemma . (see []) Let T : [, +∞) → [, +∞) be a non-decreasing continuous function,
δ ∈ (, ), s ∈ (, +∞). If T is of finite order, i.e.

lim
r→∞

log T(r)
log r

= ρ < ∞,

then

T(r + s) = T(r) + o
(

T(r)
rδ

)
,

outside an exceptional set of finite logarithmic measure.

Lemma . (see []) Let g(z) and g(z) be meromorphic functions in |z| < ∞ and linearly
independent over C, and put

g(z) + g(z) = �.

Then

T(r, g) ≤ T(r,�) + N(r,�) + N(r, g) + N(r, g) + N
(

r,

g

)
+ N

(
r,


g

)
+ S(r),

or

T(r, g) ≤ m(r,�) + N(r, g) + N(r, g) + N(r, g) + N
(

r,

g

)
+ N

(
r,


g

)
+ S(r),

where, when g, g are rational

S(r) = O(),

when g, g are of finite order,

S(r) = O(log r)

in the other cases,

S(r) = O
(
log+ T(r, g) + log+ T(r, g)

)
+ O(log r) (r → ∞, r /∈ E).
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Lemma . (see []) Let w(z) be a meromorphic function and let � be given by

� = wn + an–wn– + · · · + a,

T(r, aj) = S(r, w), j = , , . . . , n – .

Then either

� =
(

w +
an–

n

)n

,

or

T(r, w) ≤ N
(

r,

�

)
+ N(r, w) + S(r, w).

Lemma . (see []) Let a, a, . . . , an (n ≥ ) be rational functions and let g, g, . . . , gn be
entire functions such that gi – gj is not a constant for every pair i, j ∈ {, , . . . , n} such that
i �= j. If

n∑

j=

ajegj = ,

then

a = a = · · · = an = .

Lemma . (see []) Let w(z) be a transcendental meromorphic function of zero order
and q ∈ C \ {}. Then

N
(
r, w(qz)

)
=

(
 + o()

)
N

(
r, w(z)

)
,

T
(
r, w(qz)

)
=

(
 + o()

)
T

(
r, w(z)

)
,

for all r on a set of logarithmic density .

By Lemma ., we can easily obtain the following lemma.

Lemma . Let w(z) be meromorphic function of zero order, {a(i)(z)} be small function of
w(z),

�(z, w) =
k∑

i=

a(i)(z)wi
(
w(qz)

)i · · · (w(qnz)
)in .

If

λi = i + i + · · · + in,

then

T
(
r,�(z, w)

) ≤
k∑

i=

λiT(r, w) + S(r, w).
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5 Proof of Theorems 2.1-2.3

Proof of Theorem . Let (w(z), w(z)) be a set of admissible meromorphic solutions of the
system of complex difference equations (.). It follows from Lemma . and Lemma .
that

pT(r, w) + S(r, w) = mT(r, w) + S(r, w), (.)

qT(r, w) + S(r, w) = mT(r, w) + S(r, w). (.)

From (.) and (.), we obtain

p = m
T(r, w)
T(r, w)

+
S(r, w)
T(r, w)

, (.)

q = m
T(r, w)
T(r, w)

+
S(r, w)
T(r, w)

. (.)

By (.) and (.), we have

pq = mm.

This is a contradiction. Theorem . is proved. �

Proof of Theorem . Suppose that (.) does not have the form (.), (.), (.), and (.)
admits an entire solution (w(z), w(z)) of order greater than ρ . We rewrite (.) as follows:

{
[�(z, w)]m = ap(z)(w(z) + c(z))p +

∑t
l= al(z)wl

,  ≤ t ≤ p – ,
[�(z, w)]m = bq(z)(w(z) + d(z))q +

∑s
s= bs (z)ws

 ,  ≤ s ≤ q – ,
(.)

where c(z) = ap–
pap

, d(z) = bq–
qbq

, al(z) is a rational function, bs (z) is a rational function, there
is at least one l such that al(z) �= , and there is at least one s such that bs (z) �= .

Let

A = –ap(z)
(
w(z) + c(z)

)p, B =
[
�(z, w)

]m , � =
t∑

l=

al(z)wl
,

A = –bq(z)
(
w(z) + d(z)

)q, B =
[
�(z, w)

]m , � =
s∑

s=

bs (z)ws
 ,

then A + B = �, A + B = �. Noting that the orders of c(z) and al(z) are at most ρ , the
orders of d(z) and bs (z) are at most ρ , � �= , � �= . As the proof of Theorem  in [],
we can prove that A and B are linearly independent, A and B are linearly independent.

It follows from Lemma . that

T(r, A) ≤ m(r,�) + N(r, A) + N(r, A) + N(r, B)

+ N
(

r,


A

)
+ N

(
r,


B

)
+ S(r). (.)

Next we estimate each term of (.).
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By Lemma ., we obtain

T(r, A) ≥ pT(r, w) – pT
(
r, c(z)

)
– T

(
r, ap(z)

)
, (.)

m(r,�) ≤ tm(r, w) +
t∑

l=

m
(
r, al(z)

)
+ O()

≤ tT(r, w) +
t∑

l=

T
(
r, al(z)

)
+ O(). (.)

As w(z) is an entire function,

N(r, A) ≤ N(r, ap) + pN
(
r, c(z)

)
, (.)

N(r, A) ≤ N(r, ap) + N(r, ap–) + N
(

r,


ap

)
(.)

and (.), (.) show that the order of N(r, A), N(r, A), is at most ρ , respectively.
We have

N
(

r,


A

)
≤ N

(
r,


ap

)
+ N

(
r,


w(z) + c(z)

)

≤ T
(
r, w(z)

)
+ T

(
r, ap(z)

)
+ T

(
r, c(z)

)
+ O(), (.)

N
(

r,


B

)
≤ T

(
r,�(z, w)

)

≤ p
m

T(r, w) +


m

p∑

i=

T
(
r, ai(z)

)
. (.)

As w(z) is an entire function, then

N(r, B) = N
(
r,�(z, w)

) ≤ S(r, w). (.)

Equation (.) shows that the order of N(r, B) is at most ρ .
On the other hand

S(r) = O
(
log T(r, w)

)
+ O

( p∑

i=

log+ T(r, ai)

)

+ O(log r), r /∈ E.

From (.) to (.), we have

(
p – t –  –

p
m

– o()
)

T(r, w)

≤ N(r, A) + N(r, A) + N(r, B) + S(r, w)

+ K

p∑

i=

T(r, ai) + O

( p∑

i=

log+ T(r, ai)

)

+ O(log r). (.)
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Similarly to the case above, we get

(
q – s –  –

q
m

– o()
)

T(r, w)

≤ N(r, A) + N(r, A) + N(r, B) + S(r, w)

+ K

q∑

j=

T(r, bj) + O

( q∑

j=

log+ T(r, bj)

)

+ O(log r). (.)

Noting that the order of right-hand side of the inequality (.) and (.) is at most ρ ,
respectively, and p – t –  – p

m
– o() > , q – s –  – q

m
– o() > , therefore, the order of

w, w is at most ρ . That is a contradiction.
This completes the proof of Theorem .. �

Proof of Theorem . Note that Q(z, w), Q(z, w) are monic polynomials and their co-
efficients are, respectively, small functions of w, w. By Lemma ., we have

Q(z, w) =
(
w(z) – s(z)

)q , Q(z, w) =
(
w(z) – s(z)

)q

or

T(r, w) ≤ N
(

r,


Q(z, w)

)
+ N(r, w) + S(r, w), (.)

T(r, w) ≤ N
(

r,


Q(z, w)

)
+ N(r, w) + S(r, w). (.)

On the other hand, P(z, w) and Q(z, w), P(z, w), and Q(z, w) have only finitely many
common zeros. Therefore

N
(

r,


Q(z, w)

)
≤ N

(
r,

P(z, w)
Q(z, w)

)
+ O(log r)

≤ N
(

r,
∑

{I}
aI(z)

∏

i∈I

w(z + ci)
)

+ O(log r)

= O(log r), (.)

N
(

r,


Q(z, w)

)
≤ N

(
r,

P(z, w)
Q(z, w)

)
+ O(log r)

≤ N
(

r,
∑

{J}
bJ (z)

∏

j∈J

w(z + cj)
)

+ O(log r)

= O(log r). (.)

It follows from (.), (.), (.), and (.) that T(r, w) = S(r, w), T(r, w) = S(r, w).
This is a contradiction. Thus Q(z, w) = (w(z) – s(z))q , Q(z, w) = (w(z) – s(z))q .

Using (.) and (.), we see that Q(z, w) = (w(z)–s(z))q , Q(z, w) = (w(z)–s(z))q

have finitely many zeros. Since w(z), w(z) are transcendental meromorphic functions
with at most finitely many poles, Q(z, w) = (w(z) – s(z))q , Q(z, w) = (w(z) – s(z))q
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have at most finitely many poles, therefore, there are two rational functions h(z), h(z)
and non-constant entire functions g(z), g(z) such that

Q(z, w) =
(
w(z) – s(z)

)q = h(z)eg(z),

Q(z, w) =
(
w(z) – s(z)

)q = h(z)eg(z).

That is,

w(z) – s(z) = α
(
h(z)

) 
q e

g(z)
q , (.)

w(z) – s(z) = α
(
h(z)

) 
q e

g(z)
q , (.)

where αi, i = , , is the qith root of unity.
Let

g(z) =
g(z)

q
, g(z) =

g(z)
q

, (.)

r(z) = α
(
h(z)

) 
q , r(z) = α

(
h(z)

) 
q . (.)

Then g(z), g(z) are non-constant entire functions, r(z), r(z) are rational functions.
From (.) to (.), we have

w(z) = r(z)eg(z) + s(z), w(z) = r(z)eg(z) + s(z). (.)

Substituting (.) into the system of higher-order complex difference equations (.), we
get

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑
{I} aI(z)[

∏
i∈I(r(z + ci)eg(z+ci) + s(z + ci))](r(z)eg(z))q

=
∑p

j= pj (z)ejg(z),
∑

{J} bJ (z)[
∏

j∈J (r(z + cj)eg(z+cj) + s(z + cj))](r(z)eg(z))q

=
∑p

j= pj (z)ejg(z).

(.)

Further,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

rq
 (z)aM (z)

∏
i∈M

r(z + ci)e
∑

i∈M g(z+ci)+qg(z)

+ rq
 (z)

∑
I∈{I} HI(z)e

∑
i∈I g(z+ci)+qg(z) =

∑p
j= pj (z)ejg(z),

rq
 (z)bM (z)

∏
j∈M

r(z + cj)e
∑

j∈M g(z+cj)+qg(z)

+ rq
 (z)

∑
J∈{J} HJ (z)e

∑
j∈J g(z+cj)+qg(z) =

∑p
j= pj (z)ejg(z),

(.)

where the cardinality of the set M ∈ {I} is maximal among the sets in the collection {I},
the cardinality of the set M ∈ {J} is maximal among the sets in the collection {J}, {I ′} is
a collection of non-empty subsets of {I ′} = {, , . . . , n}, {J ′} is a collection of non-empty
subsets of {J ′} = {, , . . . , n}, and M /∈ {I ′}, M /∈ {J ′}, HI(z), HJ (z) are rational functions
for every I , J , pj (z) (j = , , . . . , p), pj (z) (j = , , . . . , p) are rational functions, and
pp (z) �= , pp (z) �= .
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By Lemma ., there must exist at least two exponents in every equation in (.) that
cancel each other up to a constant, i.e. there exist d, d ∈ C such that

∑

i∈M

g(z + ci) –
∑

i∈I

g(z + ci) = d, (.)

∑

j∈M

g(z + cj) –
∑

j∈J

g(z + cj) = d, (.)

or

∑

i∈I

g(z + ci) + (q – j)g(z) = d, (.)

∑

j∈J

g(z + cj) + (q – j)g(z) = d, (.)

where I ∈ {I ′}, J ∈ {J ′}, I ∈ {M} ∪ {I ′}, J ∈ {M} ∪ {J ′}.
Next, we prove that g(z), g(z) must be transcendental.
Suppose that g(z), g(z) are two non-constant polynomials. Then, for every i ∈ {I}, j ∈

{J}, we have

g(z + cj) = g(z) + gj(z), g(z + ci) = g(z) + gi(z), (.)

where degz
gj

< degz
g , degz

gi
< degz

g .
Case (i): Using (.), (.), (.), and the relationship among M, I, M, J, it is easy

to obtain a contradiction.
Case (ii): Substituting the expression w(z) = r(z)eg(z) + s(z), w(z) = r(z)eg(z) + s(z)

into the system of higher-order complex difference equations (.), we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑
{I} aI(z)[

∏
i∈I(r(z + ci)eg(z+ci) + s(z + ci))](r(z)eg(z))q

=
∑p

j= pj (z)(r(z)eg(z) + s(z))j ,
∑

{J} bJ (z)[
∏

j∈J (r(z + cj)eg(z+cj) + s(z + cj))](r(z)eg(z))q

=
∑p

j= pj (z)(r(z)eg(z) + s(z))j ,

(.)

where the rational functions pj (z), pj (z) are the coefficients of the polynomials P(z, w),
P(z, w) respectively.

By (.), we see that g(z) =
d–

∑
i∈I (g(z)+gi(z))

q–j
, substituting this expression into the first

equation of the system of higher-order complex difference equations (.), we have

∑

{I}
aI(z)

[∏

i∈I

(
r(z + ci)eg(z)+gi(z) + s(z + ci)

)]
rq

 (z)eq
d–

∑
i∈I (g(z)+gi(z))

q–j

=
p∑

j=

pj (z)
(
r(z)e

d–
∑

i∈I (g(z)+gi(z))
q–j + s(z)

)j .
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Since the polynomials P(z, w), Q(z, w) are relatively prime in w, there are no common
factors of positive degree in w for P(z, w), Q(z, w), and we find that

p∑

j=

pj (z)
(
s(z)

)j �= .

Therefore we have got above a non-trivial algebraic equation for eg(z) with coefficients
which are small relative to eg(z), this is a contradiction.

Similarly, by (.), we obtain g(z) =
d–

∑
j∈J (g(z)+gj(z))

q–j
, substituting this expression into

the second equation of the system of higher-order complex difference equations (.), we
also derive a contradiction.

This completes the proof of Theorem .. �

6 Proof of Theorems 3.1-3.3

Proof of Theorem . Let w(z) be a zero order transcendental meromorphic solution of
equation (.). It follows from Lemma . and Lemma . that

max{p, q}T(
r, w(z)

)
= T

(
r, R

(
z, w(z)

))
+ S(r, w)

= T
(
r,�(z, w)

)
+ S(r, w)

≤
k∑

i=

λiT(r, w) + S(r, w).

Thus

max{p, q} ≤
k∑

i=

λi.

Theorem . is proved. �

Proof of Theorem . Let w(z) be a zero order admissible entire solution of equation (.).
(i): We assume that (.) has the following form:

[
w(qz)

]m = ap(z)
(
w(z) + b(z)

)p,

where b(z) = ap–(z)
pap(z) . By Lemma . and Lemma ., we have

mT(r, w) + S(r, w) = pT(r, w) + S(r, w).

Further

(m – p)T(r, w) = S(r, w).

In other words

m – p = .

This is a contradiction.
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(ii): We assume that (.) does not have the following form:

[
w(qz)

]m = ap(z)
(
w(z) + b(z)

)p,

where b(z) = ap–(z)
pap(z) . In other words, (.) has the following form:

[
w(qz)

]m = ap(z)
(
w(z) + b(z)

)p +
p–∑

i=

bi(z)wi(z),  ≤ p < m, (.)

and there is at least one i such that bi(z) �= . Then (.) becomes

[
w(qz)

]m = ap(z)
(
w(z) + b(z)

)p +
t∑

i=

bi(z)wi(z), bt(z) �= ,  ≤ t ≤ p – .

Let A = –ap(z)(w(z) + b(z))p, B = [w(qz)]m, � =
∑t

i= bi(z)wi(z), then A + B = �.
Case (i): If A = , then w(z) = –b(z), we obtain

T(r, w) = T(r, b) ≤ T(r, ap) + T(r, ap–) + O().

Case (ii): If B = , then wp(z) = –a–
p (z)

∑p–
i= ai(z)wi(z), we have

pT(r, w) ≤ (p – )T(r, w) +
p∑

i=

T(r, ai) + O().

That is,

T(r, w) ≤
p∑

i=

T(r, ai) + O().

Case (iii): If � = , then wt(z) = –b–
t (z)

∑t–
i= bi(z)wi(z), we get

T(r, w) ≤
t∑

i=

T(r, bi) + O() ≤ K

p∑

i=

T(r, ai) + O(),

where K is a positive constant.
Case (iv): If A �= , B �= , � �= , A and B are linearly dependent, then there are constants

k and k (kk �= ) such that kA + kB = . From kA + k(� – A) = , we obtain
(

k

k
– 

)
ap(z)

(
w(z) + b(z)

)p =
t∑

i=

bi(z)wi(z).

But A �= , � �= , thus k
k

�= , and we get

T(r, w) ≤ 
p – t

[ t∑

i=

T
(
r, bi(z)

)
+ T

(
r, ap(z)

)
+ pT

(
r, b(z)

)
]

+ O()

≤ K

p∑

i=

T
(
r, ai(z)

)
+ O(),

where K is a positive constant.
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Case (v): If A �= , B �= , � �= , A and B are linearly independent, then, by Lemma .,
we have

T(r, A) ≤ T(r,�) + N(r,�) + N(r, A) + N(r, B) + N
(

r,

A

)
+ N

(
r,


B

)
+ S(r). (.)

Next we estimate each term of (.).
It follows from Lemma . that

T(r, A) = pT(r, w) – pT
(
r, b(z)

)
– T

(
r, ap(z)

)
, (.)

T(r,�) = tT(r, w) +
t∑

i=

T
(
r, bi(z)

)
+ O(), (.)

mT
(
r, w(qz)

)
= T(r, B) = T(r,� – A) = pT(r, w) +

p∑

i=

T
(
r, ai(z)

)
,

i.e.

T
(
r, w(qz)

)
=

p
m

T(r, w) +

m

p∑

i=

T
(
r, ai(z)

)
. (.)

Obviously,

N(r,�) ≤ N(r, w) +
t∑

i=

N
(
r, bi(z)

)
, (.)

N(r, A) ≤ N(r, w) + N(r, ap) + N(r, ap–) + N
(

r,


ap

)
. (.)

It follows from Lemma . that

N(r, B) = N
(
r, w(qz)

)
= N

(
r, w(z)

)
+ S(r, w), (.)

N
(

r,

A

)
≤ N

(
r,


ap(z)

)
+ N

(
r,


w(z) + b(z)

)

≤ T
(
r, w(z)

)
+ T

(
r, ap(z)

)
+ T

(
r, b(z)

)
+ O(), (.)

N
(

r,

B

)
≤ N

(
r,


w(qz)

)
≤ T

(
r, w(qz)

)
+ O()

=
p
m

T(r, w) +

m

p∑

i=

T
(
r, ai(z)

)
. (.)

From (.) to (.), we obtain

(
p – t –  –

p
m

)
T(r, w) ≤ N(r, w) + K

p∑

i=

T(r, ai)

≤ N(r, w) + K

p∑

i=

T(r, ai), (.)

where K is a positive constant.
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Note that w(z) is an entire solution of (.), thus

N
(
r, w(z)

)
= . (.)

From (.), (.), and p – t – p
m –  > , we obtain

T
(
r, w(z)

) ≤ K

p∑

i=

T(r, ai) + S(r, w), (.)

where K is a positive constant.
From case (i) to case (v), and w(z) being admissible, we obtain

T
(
r, w(z)

) ≤ K
p∑

i=

T(r, ai) + S(r, w) = S(r, w) = o
{

T
(
r, w(z)

)}
,

where K is a positive constant. That is a contradiction.
This completes the proof of Theorem .. �

Proof of Theorem . Let w(z) be a zero order admissible entire solution of equation (.).
We assume that (.) does not have the following form:

[
�(z, w)

]m = ap(z)
(
w(z) + b(z)

)p,

where b(z) = ap–(z)
pap(z) . In other words, (.) has the following form:

[
�(z, w)

]m = ap(z)
(
w(z) + b(z)

)p +
p–∑

i=

bi(z)wi(z),  ≤ p < m, (.)

and there is at least one i such that bi(z) �= . Then (.) becomes

[
�(z, w)

]m = ap(z)
(
w(z) + b(z)

)p +
t∑

i=

bi(z)wi(z), bt(z) �= ,  ≤ t ≤ p – .

Let A = –ap(z)(w(z) + b(z))p, B = [�(z, w)]m, � =
∑t

i= bi(z)wi(z), then A + B = �.
Case (i): As the proof of Theorem ., if A =  or B =  or � =  or A �= , B �= ,

� �= , and A and B are linearly dependent, we obtain

T
(
r, w(z)

) ≤ K

p∑

i=

T(r, ai) + S(r, w),

where K is a positive constant.
Case (ii): If A �= , B �= , � �= , A and B are linearly independent, then by Lemma .,

we have

T(r, A) ≤ T(r,�) + N(r,�) + N(r, A) + N(r, B)

+ N
(

r,


A

)
+ N

(
r,


B

)
+ S(r). (.)
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Next we estimate each term of (.).
It follows from Lemma . that

T(r, A) = pT(r, w) – pT
(
r, b(z)

)
– T

(
r, ap(z)

)
, (.)

T(r,�) = tT(r, w) +
t∑

i=

T
(
r, bi(z)

)
+ O(), (.)

mT
(
r,�(z, w)

)
= T(r, B) = T(r,� – A) = pT(r, w) +

p∑

i=

T
(
r, ai(z)

)
,

i.e.

T
(
r,�(z, w)

)
=

p
m

T(r, w) +

m

p∑

i=

T
(
r, ai(z)

)
. (.)

Obviously,

N(r,�) ≤ N(r, w) +
t∑

i=

N
(
r, bi(z)

)
, (.)

N(r, A) ≤ N(r, w) + N(r, ap) + N(r, ap–) + N
(

r,


ap

)
. (.)

It follows from Lemma . that

N(r, B) = N
(
r,�(z, w)

)

= N

(

r,
k∑

i=

a(i)(z)wi
(
w(qz)

)i · · · (w(qnz)
)in

)

≤
k∑

i=

N
(
r, a(i)(z)wi

(
w(qz)

)i · · · (w(qnz)
)in)

≤
k∑

i=

[
N

(
r, a(i)(z)

)
+ N

(
r, w(z)

)
+ · · · + N

(
r, w(qnz)

)]

=
k∑

i=

[
(n + )N(r, w)

]
+ S(r, w)

= k(n + )N(r, w) + S(r, w), (.)

N
(

r,


A

)
≤ N

(
r,


ap(z)

)
+ N

(
r,


w(z) + b(z)

)

≤ T
(
r, w(z)

)
+ T

(
r, ap(z)

)
+ T

(
r, b(z)

)
+ O(), (.)

N
(

r,


B

)
≤ N

(
r,


�(z, w)

)

≤ T
(
r,�(z, w)

)
+ O()

=
p
m

T(r, w) +

m

p∑

i=

T
(
r, ai(z)

)
. (.)
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From (.) to (.), we obtain

(
p – t –  –

p
m

)
T(r, w) ≤ [

 + k(n + )
]
N(r, w) + K

p∑

i=

T(r, ai)

≤ [
 + k(n + )

]
N(r, w) + K

p∑

i=

T(r, ai), (.)

where K is a positive constant.
Note that w(z) is an entire solution of (.), thus

N(r, w) = . (.)

From (.), (.), and p – t – p
m –  > , we obtain

T
(
r, w(z)

) ≤ K

p∑

i=

T(r, ai) + S(r, w), (.)

where K is a positive constant.
By case (i) and case (ii), and w(z) being admissible, we have

T
(
r, w(z)

) ≤ K

p∑

i=

T(r, ai) + S(r, w) = S(r, w) = o
{

T
(
r, w(z)

)}
,

where K is a positive constant. This is a contradiction.
This completes the proof of Theorem .. �
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