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Abstract
An SEIRS worm propagation model with two delays and vertical transmission in the
network is investigated. It is proved that the positive equilibrium is locally
asymptotically stable and the Hopf bifurcation can occur when the certain conditions
are satisfied by regarding different combination of the two delays as bifurcation
parameter. Then the properties of the Hopf bifurcation, such as direction and stability,
are studied by using the normal form theory and the center manifold theorem.
Finally, some numerical simulations are presented to verify the obtained results and to
demonstrate the dynamics of the model.
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1 Introduction
In recent years, many mathematical models such as SIR model [–], SEIR model [, ],
SEIRS model [] and some other models [–] have been proposed to predict propaga-
tion of computer viruses. All the computer virus models above neglect delays in the virus
spreading process. As is well known, delays have an important effect on dynamical models
and they can cause the occurrence of the Hopf bifurcation. Therefore, it is reasonable to
investigate dynamics of the dynamical systems with time delay. In [], Zhang and Yang
studied the following SEIRS worm propagation model with time delay:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS(t)
dt = b – βI(t)S(t) – pbE(t) – qbI(t) – dS(t) + ζR(t – τ ),

dE(t)
dt = βI(t)S(t) + pbE(t) + qbI(t) – εE(t) – dE(t),

dI(t)
dt = εE(t) – γ I(t – τ ) – dI(t) – ηI(t),

dR(t)
dt = γ I(t – τ ) – dR(t) – ζR(t – τ ),

()

where S(t), E(t), I(t), and R(t) denote numbers of nodes at time t in states susceptible,
exposed, infectious, and recovered, respectively. For the specific meanings of b, d, p, q, β ,
ε, γ , ζ , and η, one can refer to []. τ is the period to clean the worms in one node for the
antivirus software and the temporary immunity period of the recovered nodes. It should
be pointed out that Zhang and Yang assumed that the period to clean the worms in one
node for the antivirus software and the temporary immunity period of the recovered nodes

© 2016 Wang and Chai. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13662-016-0793-7
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-016-0793-7&domain=pdf
mailto:jiezixia@163.com


Wang and Chai Advances in Difference Equations  (2016) 2016:100 Page 2 of 19

are the same [] for convenience of analysis. In addition, Zhang and Yang neglected the
latent period of worms. Based on this and motivated by the work about dynamics of the
dynamical system with two or multiple delays in [–], we incorporate the time delay
due to the latent period of worms in system () and obtain the following system with two
delays:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS(t)
dt = b – βI(t)S(t) – pbE(t) – qbI(t) – dS(t) + ζR(t – τ),

dE(t)
dt = βI(t)S(t) + pbE(t) + qbI(t) – εE(t – τ) – dE(t),

dI(t)
dt = εE(t – τ) – γ I(t – τ) – dI(t) – ηI(t),

dR(t)
dt = γ I(t – τ) – dR(t) – ζR(t – τ),

()

where τ has the same meaning as that of τ in system () and τ is the time delay due to
the latent period of worms.

The structure of this paper is as follows. Local stability of the positive equilibrium and
existence of the Hopf bifurcation are analyzed in Section . The direction and the stability
of the Hopf bifurcation when τ ∈ (, τ) and τ >  are determined by means of the nor-
mal form theory and center manifold theorem in Section . Some numerical simulations
are carried out in order to demonstrate the theoretical analysis in Section . Conclusions
and discussions are also included in the last section.

2 Local stability and local Hopf bifurcation
According to the analysis in [], we know that if

R =
bβε + bdqε + bdp(d + γ + η)

d(d + ε)(d + γ + η)
> 

and

(d + ε)(d + γ + η) > pb(d + γ + η) + qbε

system () has a unique positive equilibrium D∗(S∗, E∗, I∗, R∗), with

S∗ =
(d + ε)(d + γ + η) – pb(d + γ + η) – qbε

βε
,

I∗ =
(d + ζ )[bβε + d(pb(d + γ + η) + qbε – (d + ε)(d + γ + η))]

β(d + ε)(d + ζ )(d + γ + η) – βγ εζ
,

E∗ =
d + γ + η

ε
I∗, R∗ =

γ

d + ζ
I∗.

The Jacobian matrix of system () at D∗ is

J(D∗) =

⎛

⎜
⎜
⎜
⎝

λ – α –α –α –βe–λτ

–α λ – α – γe–λτ –α 
 –γe–λτ λ – α – βe–λτ 
  –βe–λτ λ – α – βe–λτ

⎞

⎟
⎟
⎟
⎠

,
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where

α = –(d + βI∗), α = –pb, α = –(qb + βS∗), α = βI∗,

α = pb – d, α = qb + βS∗, α = –(d + η), α = –d,

β = ζ , β = –γ , β = γ , β = –ζ , γ = –ε, γ = ε.

Then we can obtain the characteristic equation of system ()

λ + Aλ
 + Aλ

 + Aλ + A

+
(
Bλ

 + Bλ
 + Bλ + B

)
e–λτ

+
(
Cλ

 + Cλ + C
)
e–λτ

+
(
Dλ

 + Dλ
 + Dλ + D

)
e–λ(τ+τ)

+
(
Eλ

 + Eλ + E
)
e–λτ + (Fλ + F)e–λτ+τ = , ()

where

A = αα(αα – αα) + αα(αα – αα),

A = (α + α)(αα – αα) + αα(α + α)

– αα(α + α) – ααα,

A = (α + α)(α + α) + αα + αα – αα – αα,

A = –(α + α + α + α),

B = (αα – αα)(αβ + αβ) + (αα – αα)αβ,

B = (β + β)(αα – αα) + ααβ

– (α + α)(αβ + αβ),

B = (α + α)(β + β) + αβ + αβ,

B = –(β + β), C = ααββ – ααββ,

C = –ββ(α + α), C = ββ,

D = ααγ(α + β) + α(αβγ – αβγ),

D = αβγ – βγ(α + α) – βγ(α + α)

– α(α + α) – αα,

D = (α + α + α + α)γ, D = –γ,

E = αγ(αα – αα), E = αγ(α + α) – ααγ,

E = –αγ, F = αββγ – αββγ, F = –ββγ.

Case  τ = τ = . Equation () becomes

λ + Aλ
 + Aλ

 + Aλ + A = , ()
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where

A = A + B + C + D + E + F, A = A + B + C + D + E + F,

A = A + B + C + D + E, A = A + B + D.

According to Routh-Hurwitz criterion, if the condition (H) equations ()-() hold, D∗
is locally asymptotically stable when τ = τ = . We have

D = A > , ()

D = det

(
A 
A A

)

> , ()

D = det

⎛

⎜
⎝

A  
A A A

 A A

⎞

⎟
⎠ > , ()

D = det

⎛

⎜
⎜
⎜
⎝

A   
A A A 
 A A A

   A

⎞

⎟
⎟
⎟
⎠

> . ()

Case  τ > , τ = . Equation () becomes

λ + Aλ
 + Aλ

 + Aλ + A

+
(
Bλ

 + Bλ
 + Bλ + B

)
e–λτ

+
(
Cλ

 + Cλ + C
)
e–λτ = , ()

where

A = A + E, A = A + E, A = A + E, A = A,

B = B + D, B = B + D, B = B + D, B = B + D,

C = C + F, C = C + F, C = C.

Multiplying by eλτ , equation () becomes

Bλ
 + Bλ

 + Bλ + B

+
(
λ + Aλ

 + Aλ
 + Aλ + A

)
eλτ

+
(
Cλ

 + Cλ + C
)
e–λτ = . ()

Let λ = iω (ω > ) be a root of equation (). Then we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(ω
 – (A + C)ω

 + A + C) cos τω – ((A – C)ω – Aω

 ) sin τω

= Bω

 – B,

(ω
 – (A – C)ω

 + A – C) sin τω + ((A + C)ω – Aω

 ) cos τω

= Bω

 – Bω.



Wang and Chai Advances in Difference Equations  (2016) 2016:100 Page 5 of 19

Then we can get

sin τω =
gω


 + gω


 + gω


 + gω

ω
 + hω


 + hω


 + hω


 + h

,

cos τω =
gω


 + gω


 + gω


 + g

ω
 + hω


 + hω


 + hω


 + h

,

where

g = B(C – A), g = (A + C)B – (A + C)B,

g = (A – C)B + (A – C)B + (C – A)B,

g = (A + C)B – (A + C)B + (A + C)B – AB,

g = (A – C)B – (A – C)B + AB – B,

g = AB – B – (A + C)B, g = B – AB, g = B,

h = A
 – C

, h = A
 – C

 – AA + CC,

h = A
 – C

 + A – AA, h = A
 – A.

Then one can obtain

ω
 + eω


 + eω


 + eω


 + eω


 + eω


 + eω


 + eω


 + e = , ()

where

e = h
 – g

, e = hh – gg – g
 ,

e = h
 + hh – g

 – gg – gg,

e = hh + hh – g
 – gg – gg – gg,

e = h
 – g

 + h + hh – gg – gg – gg,

e = h + hh – g
 – gg – gg,

e = h
 – g

 + h – gg, e = h – g
 .

Let ω
 = v, then equation () becomes

v
 + ev

 + ev
 + ev

 + ev
 + ev

 + ev
 + ev + e = . ()

Next, we make the following assumption.

(H) Equation () has at least one positive root.

If the condition (H) holds, there exists a positive root v >  of equation () such that
equation () has a pair of purely imaginary roots ±iω = ±i√v. Then we can get the
corresponding critical value of τ at which a Hopf bifurcation occurs:

τ =


ω
arccos

gω

 + gω


 + gω


 + g

ω
 + hω


 + hω


 + hω


 + h

.
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Differentiating the two sides of equation () with respect to τ, we get

[
dλ

dτ

]–

=
Bλ

 + Bλ + B + (Cλ + C)e–λτ + (λ + Aλ
 + Aλ + A)eλτ

(Cλ + Cλ + Cλ)e–λτ – (λ + Aλ + Aλ + Aλ + Aλ)eλτ

–
τ

λ
.

Define

Re

[
dλ

dτ

]–

τ=τ

=
PRQR + PIQI

Q
R + Q

I
.

Obviously, if the condition (H) PRQR +PIQI �=  holds, then Re[ dλ
dτ

]–
τ=τ �= . There-

fore, according to the analysis above and the Hopf bifurcation theorem in [], we have the
following.

Theorem  Suppose that the conditions (H)-(H) hold. The positive equilibrium
D∗(S∗, E∗, I∗, R∗) is locally asymptotically stable for τ ∈ [, τ) and system () undergoes a
Hopf bifurcation at the positive equilibrium D∗(S∗, E∗, I∗, R∗) when τ = τ.

Case  τ = , τ > . Equation () becomes

λ + Aλ
 + Aλ

 + Aλ + A +
(
Dλ

 + Dλ
 + Dλ + D

)
e–λτ = , ()

where

A = A + B + C, A = A + B + C, A = A + B + C,

A = A + B,

D = D + E + F, D = D + E + F, D = D + E, D = D.

Let λ = iω (ω > ) be a root of equation (). Then we get

⎧
⎨

⎩

(Dω – Dω

) sin τω + (D – Dω


) cos τω = Aω


 – ω

 – A,

(Dω – Dω

) cos τω – (D – Dω


) sin τω = Aω


 – Aω,

which leads to

ω
 + eω


 + eω


 + eω


 + e = , ()

where

e = A
 – D

, e = A
 – D

 – AA + DD,

e = A
 – D

 – AA + A + DD, e = A
 – D

 – A.
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The discussion of the distribution of the roots of equation () is similar to that in [].
Thus, we make the following assumption.

(H) Equation () has at least one positive root.

If the condition (H) holds, then there exists ω >  such that equation () has a pair
of purely imaginary roots ±iω. For ω, we have

τ =


ω
arccos

(((
Dω – Dω




) × (
Aω


 – Aω

)
+

(
D – Dω




)

× (
Aω


 – ω

 – A
))

/
((

Dω – Dω



) +
(
D – Dω




))).

Differentiating the two sides of equation () with respect to τ, we get

[
dλ

dτ

]–

= –
λ + Aλ

 + Aλ + A

λ(λ + Aλ + Aλ + Aλ + A)

+
Dλ

 + Dλ + D

λ(Dλ + Dλ + Dλ + D)
–

τ

λ
.

Further, we get

Re

[
dλ

dτ

]–

τ=τ

=
f ′
(v∗)

(Dω – Dω

) + (D – Dω


) ,

where f(v) = v
 + ev

 + ev
 + ev + e and v = ω, v∗ = ω

.
Obviously, if the condition (H) f ′

(v∗) �=  holds, then Re[ dλ
dτ

]–
τ=τ �= . Therefore, we

have the following.

Theorem  Suppose that the conditions (H)-(H) hold. The positive equilibrium
D∗(S∗, E∗, I∗, R∗) is locally asymptotically stable for τ ∈ [, τ) and system () undergoes a
Hopf bifurcation at the positive equilibrium D∗(S∗, E∗, I∗, R∗) when τ = τ.

Case  τ = τ = τ > . Equation () becomes

λ + Aλ
 + Aλ

 + Aλ + A

+
(
Bλ

 + Bλ
 + Bλ + B

)
e–λτ

+
(
Cλ

 + Cλ
 + Cλ + C

)
e–λτ + (Fλ + F)e–λτ = , ()

where

A = A, A = A, A = A, A = A,

B = B + E, B = B + E, B = B + E,

B = B, C = C + D, C = C + D,

C = C + D, C = D, F = F, F = F.
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Multiplying by eλτ , equation () becomes

Bλ
 + Bλ

 + Bλ + B

+
(
λ + Aλ

 + Aλ
 + Aλ + A

)
eλτ

+
(
Cλ

 + Cλ
 + Cλ + C

)
e–λτ

+ (Fλ + F)e–λτ = . ()

Let λ = iω (ω > ) be the root of equation (), then
⎧
⎨

⎩

G(ω) cos τω – G(ω) sin τω + G(ω) = Fω sin τω + F cos τω,

G(ω) sin τω + G(ω) cos τω + G(ω) = Fω cos τω – F sin τω,

where

G(ω) = ω – (A + C)ω + A + C,

G(ω) = (A – C)ω – (A – C)ω,

G(ω) = B – Bω
,

G(ω) = ω – (A – C)ω + A – C,

G(ω) = (A + C)ω – (A + C)ω,

G(ω) = Bω – Bω
.

Thus, we have

(
G(ω) cos τω – G(ω) sin τω + G(ω)

)

+
(
G(ω) sin τω + G(ω) cos τω + G(ω)

) = F
 ω + F

 . ()

Similar to the analysis in [], we can obtain the expression of cos τω from equation ()
when sin τω =

√
 – cos τω and we denote f(ω) = cos τω and f(ω) = sin τω. Thus, we

have the following equation with respect to ω:

f 
(ω) + f 

(ω) = . ()

Next, we assume the following.

(H) Equation () has at least one positive root.

If the condition (H) holds, then equation () has one root ω∗ >  such that equation
() has a pair of purely imaginary roots ±iω∗. For ω∗ > , we have

τ∗ =


ω∗
arccos f(ω∗).

Similarly, we can obtain the expression of cos τω from equation () when sin τω =
–
√

 – cos τω and we denote f(ω) = cos τω and f(ω) = sin τω. Thus, we have the equa-
tion with respect to ω:
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f 
(ω) + f 

(ω) = . ()

If equation () has one positive root ω′
 such that equation () has a pair of purely

imaginary roots ±iω′
, then we can obtain the corresponding critical value of the delay

τ ′
 =


ω′


arccos f

(
ω′


)
.

Let τ = min{τ∗, τ ′
} and let equation () have a pair of purely imaginary roots ±iω

when τ = τ. Taking the derivative with respect to τ on both sides of equation (), we get

[
dλ

dτ

]–

= –
P(λ)
Q(λ)

–
τ

λ
,

where

P(λ) = Bλ
 + Bλ + B +

(
λ + Aλ

 + Aλ + A
)
eλτ

+ (Cλ + Cλ + C)e–λτ + Fe–λτ ,

Q(λ) = λ
(
Cλ

 + Cλ
 + Cλ + C

)
e–λτ + λ(Fλ + F)

– λ
(
λ + Aλ

 + Aλ
 + Aλ + A

)
eλτ .

Define

Re

[
dλ

dτ

]–

τ=τ

=
PRQR + PIQI

Q
R + Q

I
.

Obviously, if the condition (H) PRQR + PIQI �=  holds, then Re[ dλ
dτ

]–
τ=τ �= . There-

fore, we have the following results according to the Hopf bifurcation theorem in [].

Theorem  Suppose that the conditions (H)-(H) hold. The positive equilibrium
D∗(S∗, E∗, I∗, R∗) is locally asymptotically stable for τ ∈ [, τ) and system () undergoes
a Hopf bifurcation at the positive equilibrium D∗(S∗, E∗, I∗, R∗) when τ = τ.

Case  τ ∈ (, τ), τ > . In this case, we choose τ as a bifurcation parameter with
τ ∈ (, τ). Let λ = iω∗ be the root of equation (), then

⎧
⎨

⎩

G(ω∗) sin τ∗ω∗ + G(ω∗) cos τ∗ω∗ = H(ω∗),

G(ω∗) cos τ∗ω∗ – G(ω∗) sin τ∗ω∗ = H(ω∗),

where

G(ω∗) = Eω∗ +
(
Dω∗ – Dω


∗

)
cos τω∗ –

(
D – Dω


∗

)
sin τω∗

+ Fω∗ cos τω∗ – F sin τω∗,

G(ω∗) = E – Eω

∗ +

(
Dω∗ – Dω


∗

)
sin τω∗ +

(
D – Dω


∗

)
cos τω∗

+ Fω∗ sin τω∗ + F cos τω∗,
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H(ω∗) = Aω

∗ – ω

∗ – A –
(
Bω∗ – Bω


∗

)
sin τω∗ –

(
B – Bω


∗

)
cos τω∗

– Cω∗ sin τω∗ –
(
C – Cω


∗

)
cos τω∗,

H(ω∗) = A
 – Aω∗ –

(
Bω∗ – Bω


∗

)
cos τω∗ +

(
B – Bω


∗

)
sin τω∗

– Cω∗ cos τω∗ +
(
C – Cω


∗

)
sin τω∗.

Thus, we can obtain the following equation with respect to ω:

G
(ω∗) + G

(ω∗) = H
(ω∗) + H

(ω∗). ()

Similar to the discussion above, we make the following assumption.

(H) Equation () has at least one positive root.

If the condition (H) holds, then there exists ω∗
 >  satisfying equation () and equa-

tion () has a pair of purely imaginary roots ±iω∗
. For ω∗

 , we have

τ ∗
 =


ω∗


arccos

G(ω∗
) × H(ω∗

) + G(ω∗
) × H(ω∗

)
G

(ω∗
) + G

(ω∗
)

.

Differentiating the two sides of equation () with respect to τ, we have

[
dλ

dτ

]–

=
P(λ)
Q(λ)

–
τ

λ
,

where

P(λ) = λ + Aλ
 + Aλ + A –

(
Bτλ



– (τB – B)λ – (τB – B)λ + τB – B
)
e–λτ

+
(
(C – τC)λ + C – τC – τCλ

)e–λτ

+
(
(D – τD)λ + (D – τD)λ – τDλ

)e–λ(τ+τ)

+ (Eλ + E)e–λτ + (F – τF – τF)e–λ(τ+τ),

Q(λ) =
(
Dλ

 + Dλ
 + Dλ + D

)
e–λ(τ+τ)

+
(
Eλ

 + Eλ + E
)
e–λτ + (Fλ + F)e–λ(τ+τ).

Define

Re

[
dλ

dτ

]–

τ=τ∗


=
PRQR + PIQI

Q
R + Q

I
.

Obviously, if the condition (H) PRQR + PIQI �=  holds, then Re[ dλ
dτ

]–
τ=τ∗


�= . Ac-

cording to the discussion above, we have the following.

Theorem  Suppose that the conditions (H)-(H) hold. The positive equilibrium
D∗(S∗, E∗, I∗, R∗) is locally asymptotically stable for τ ∈ [, τ ∗

) and system () undergoes a
Hopf bifurcation at the positive equilibrium D∗(S∗, E∗, I∗, R∗) when τ = τ ∗

.
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3 Direction and stability of the Hopf bifurcation
In this section, we shall derive the formulas determining direction and stability of the Hopf
bifurcation under the case τ ∈ (, τ) and τ >  by using the normal form theory and the
center manifold theorem.

Let u(t) = S(t) – S∗, u(t) = E(t) – E∗, u(t) = I(t) – I∗, u(t) = R(t) – R∗, τ = τ ∗
 + μ,

μ ∈ R, and normalize the delay by t → (t/τ). Throughout this section, we assume that
τ ∗

 ∈ (, τ) < τ ∗
. Then system () becomes

u̇(t) = Lμut + F(μ, ut), ()

where ut = (u(t), u(t), u(t), u(t))T ∈ C = C([–, ], R) and Lμ : C → R, F : R × C → R

are given, respectively, by

Lμφ =
(
τ ∗

 + μ
)
(

αmtxφ() + βmtxφ

(

–
τ ∗


τ ∗



)

+ γmtxφ(–)
)

and

F(μ,φ) = (τ + μ)

⎛

⎜
⎜
⎜
⎝

–βφ()φ()
βφ()φ()




⎞

⎟
⎟
⎟
⎠

.

Here

αmtx =

⎛

⎜
⎜
⎜
⎝

α α α 
α α α 
  α 
   α

⎞

⎟
⎟
⎟
⎠

, βmtx =

⎛

⎜
⎜
⎜
⎝

   β

   
  β 
  β β

⎞

⎟
⎟
⎟
⎠

,

γmtx =

⎛

⎜
⎜
⎜
⎝

   
 γ  
 γ  
   

⎞

⎟
⎟
⎟
⎠

.

Thus, there exists a matrix function η(θ ,μ) : [–, ] → R such that

Lμφ =
∫ 

–
dη(θ ,μ)φ(θ ), φ ∈ C.

For φ ∈ C([–, ], R), we define

A(μ)φ =

⎧
⎨

⎩

dφ(θ )
dθ

, – ≤ θ < ,
∫ 

– dη(θ ,μ)φ(θ ), θ = ,

and

R(μ)φ =

⎧
⎨

⎩

, – ≤ θ < ,

F(μ,φ), θ = .
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Then system () becomes

u̇(t) = A(μ)ut + R(μ)ut .

Define the adjoint operator A∗ of A() as follows:

A∗(ϕ) =

⎧
⎨

⎩

– dϕ(s)
ds ,  < s ≤ ,

∫ 
– dηT (s, )ϕ(–s), s = ,

and a bilinear form is defined by

〈
ϕ(s),φ(θ )

〉
= ϕ̄()φ() –

∫ 

θ=–

∫ θ

ξ=
ϕ̄(ξ – θ ) dη(θ )φ(ξ ) dξ , ()

where η(θ ) = η(θ , ).
Let ρ(θ ) = (,ρ,ρ,ρ)T eiω∗

τ∗
θ be the eigenvector of A corresponding to iωτ and

ρ∗(s) = D(,ρ∗
 ,ρ∗

 ,ρ∗
)eiω∗

τ∗
s be the eigenvector of A∗ corresponding to –iωτ. According

to the definition of A() and A∗(), we can get

ρ =
iω∗

 – α – βe–iτ∗
ω∗



γe–iτ∗
ω∗


ρ,

ρ =
(
iω∗

 – α
) ×

[

α +
iω∗

 – α – βe–iτ∗
ω∗



γe–iτ∗
ω∗


+

ββe–iτ∗
ω∗



iω∗
 – α – βe–iτ∗

ω∗


]–

,

ρ =
βe–iτ∗

ω∗


iω∗
 – α – βe–iτ∗

ω∗

ρ,

ρ∗
 = –

iω∗
 + α

α
,

ρ∗
 =

(iω∗
 + α)(iω∗

 + α + γeiτ∗
ω∗

 )
αγeiτ∗

ω∗


–
α

γeiτ∗
ω∗


,

ρ∗
 = –

(iω∗
 + α + βeiτ∗

ω∗
 )ρ∗



βeiτ∗
ω∗


–

α + αρ
∗


βeiτ∗
ω∗


.

()

From equation (), we have

〈
ρ∗,ρ

〉
= D̄

[
 + ρρ̄

∗
 + ρρ̄

∗
 + ρρ̄

∗
 + τ ∗

e–iτ∗
ω∗

 ρ
(
bρ̄

∗
 + bρ̄

∗

)

+ τ ∗
e–iτ∗

ω∗
 ρ

(
cρ̄

∗
 + cρ̄

∗

)]

.

Then we choose

D̄ =
[
 +ρρ̄

∗
 +ρρ̄

∗
 +ρρ̄

∗
 +τ ∗

e–iτ∗
ω∗

 ρ
(
bρ̄

∗
 + bρ̄

∗

)

+τ ∗
e–iτ∗

ω∗
 ρ

(
cρ̄

∗
 + cρ̄

∗

)]–,

such that 〈ρ∗,ρ〉 = , 〈ρ∗, ρ̄〉 = .
Next, we can obtain the coefficients by using the algorithms in [] and using the com-

putation process used in []:

g = βτ ∗
D̄ρ

(
ρ̄∗

 – 
)
,
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g = βτ ∗
D̄ρ̄

(
ρ̄∗

 – 
)
,

g = βτ ∗
D̄(ρ + ρ̄)

(
ρ̄∗

 – 
)
,

g = βτ ∗
D̄

(
ρ̄∗

 – 
)
(

W ()
 ()ρ +




W ()
 ()ρ̄ + W ()

 () +



W ()
 ()

)

,

with

W(θ ) =
igρ()
τ ∗

ω
∗


eiτ∗
ω∗

θ +
iḡρ̄()
τ ∗

ω
∗


e–iτ∗
ω∗

θ + Eeiτ∗
ω∗

θ ,

W(θ ) = –
igρ()
τ ∗

ω
∗


eiτ∗
ω∗

θ +
iḡρ̄()
τ ∗

ω
∗


e–iτ∗
ω∗

θ + E,

where E and E can be computed by the following equations, respectively:

E = 

⎛

⎜
⎜
⎜
⎜
⎝

α′
 –α –α –βe–iω∗

τ∗


–α α′
 –α 

 –γe–iω∗
τ∗

 α′
 

  –βe–iω∗
τ∗

 α′


⎞

⎟
⎟
⎟
⎟
⎠

– ⎛

⎜
⎜
⎜
⎜
⎝

E()


E()





⎞

⎟
⎟
⎟
⎟
⎠

,

E = –

⎛

⎜
⎜
⎜
⎝

α α α β

α α + γ α 
 γ α + β 
  β α + β

⎞

⎟
⎟
⎟
⎠

– ⎛

⎜
⎜
⎜
⎜
⎝

E()


E()





⎞

⎟
⎟
⎟
⎟
⎠

,

with

α′
 = iω∗

 – α,

α′
 = iω∗

 – α – γe–iω∗
τ∗

 ,

α′
 = iω∗

 – α – βe–iω∗
τ∗

 ,

α′
 = iω∗

 – α – βe–iω∗
τ∗



E()
 = –βρ, E()

 = βρ,

E()
 = –β(ρ + ρ̄), E()

 = β(ρ + ρ̄).

Therefore, we can obtain the following values:

C() =
i

τ ∗
ω

∗


(

gg – |g| –
|g|



)

+
g


,

μ = –
Re{C()}
Re{λ′(τ ∗

)} ,

β = Re
{

C()
}

,

T = –
Im{C()} + μ Im{λ′(τ ∗

)}
τ ∗

ω
∗


.

()

Therefore we have the following result.
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Figure 1 The track of the states S, E, I, R for τ1 = 10.055 < 13.6109 = τ10.

Figure 2 The track of the states S, E, I, R for τ1 = 14.965 > 13.6109 = τ10.

Theorem  For system (), if μ >  (μ < ), the Hopf bifurcation is supercritical (sub-
critical). If β <  (β > ) the bifurcating periodic solutions are stable (unstable). If T > 
(T < ), the period of the bifurcating periodic solutions increases (decreases).

4 Numerical simulations
In order to verify the obtained results above, we present a numerical example in this sec-
tion. We choose the same values of the parameters in []. That is, b = ., d = .,
p = ., q = ., β = ., ε = ., γ = ., η = ., ζ = .. We obtain the following
case of system ():
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Figure 3 The track of the states S, E, I, R for τ2 = 11.068 < 11.9776 = τ20.

Figure 4 The track of the states S, E, I, R for τ2 = 13.076 > 11.9776 = τ20.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS(t)
dt = . – .I(t)S(t) – .E(t) – .I(t) – .S(t) + .R(t – τ),

dE(t)
dt = .I(t)S(t) + .E(t) + .I(t) – .E(t – τ) – .E(t),

dI(t)
dt = .E(t – τ) – .I(t – τ) – .I(t) – .I(t),

dR(t)
dt = .I(t – τ) – .R(t) – .R(t – τ).

()

According to the analysis in [], we know that system () has a unique positive equi-
librium D∗(., ., ., .) and system () is locally asymptotically stable
when τ = τ = .

For τ > , τ = . We have ω = ., τ = ., and λ′(τ) = . + .i.
Thus, according to Theorem , D∗ is asymptotically stable when τ ∈ [, .) and un-
stable when τ > . and a Hopf bifurcation occurs when τ = τ = .. This



Wang and Chai Advances in Difference Equations  (2016) 2016:100 Page 16 of 19

Figure 5 The track of the states S, E, I, R for τ = 7.862 < 8.8645 = τ0.

Figure 6 The track of the states S, E, I, R for τ = 9.667 > 8.8645 = τ0.

property can be illustrated by the numerical simulations in Figures -. Similarly, we have
ω = ., τ = .. The corresponding waveforms are shown in Figures -.

For τ = τ = τ > . We can obtain ω = . and τ = . by some complex com-
putations. That is, when τ increases from zero to τ, D∗ is asymptotically stable when
τ ∈ [, .). However, when τ > τ = ., D∗ will lose its stability and a Hopf bifur-
cation occurs, which can be verified by the numerical simulations in Figures -.

Finally, we have ω∗
 = . and τ ∗

 = . for the case when τ = . ∈ (, τ), τ > .
From Theorem , we can conclude that D∗ is asymptotically stable when τ ∈ [, .) and
it will become unstable once τ pass through the critical value τ ∗

. This can be illustrated
by Figures -. Furthermore, we obtain C() = –. – .i, μ = . > , β =
–. < , T = . > . Therefore, by Theorem , we know that the Hopf bifurcation
is supercritical. The bifurcating periodic solutions are stable and the period of the periodic
solutions increases.
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Figure 7 The track of the states S, E, I, R for τ2 = 7.650 < 7.855 = τ ∗
20 and τ1 = 10.25 ∈ (0,τ10).

Figure 8 The track of the states S, E, I, R for τ2 = 9.352 > 7.855 = τ ∗
20 and τ1 = 10.25 ∈ (0,τ10).

5 Conclusions
In the present paper, we devote our attention to the stability and Hopf bifurcation of an
SEIRS epidemic model which describes the transmission of worms in the network through
vertical transmission with two delays based on the work in the literature []. By regarding
the different combinations of the two delays as the Hopf bifurcation parameter, the cor-
responding critical value of the delay is obtained. When the value of the delay is smaller
than the corresponding critical value, the positive equilibrium is asymptotically stable and
the propagation of the worms in the network can be predicted and controlled easily in this
case. However, a local Hopf bifurcation occurs and a branch of periodic solutions bifurcate
from the positive equilibrium when the value of the delay is bigger than the corresponding
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critical value. Thus, the propagation of the worms becomes unstable and out of control.
Therefore, we should take some measures to postpone the onset of the Hopf bifurcation.

It should be noted that the model investigated in this paper assumes that the latent com-
puters have no infection ability. This is not consistent with reality. Therefore, it is more
realistic to investigate the dynamics of the following worm propagation model with graded
rates:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS(t)
dt = b – βI(t)S(t) – βE(t)S(t) – pbE(t) – qbI(t) – dS(t) + ζR(t – τ),

dE(t)
dt = βI(t)S(t) + βE(t)S(t) + pbE(t) + qbI(t) – εE(t – τ) – dE(t),

dI(t)
dt = εE(t – τ) – γ I(t – τ) – dI(t) – ηI(t),

dR(t)
dt = γ I(t – τ) – dR(t) – ζR(t – τ),

()

where β and β are the transmission rates of the infective computers and the latent com-
puters, respectively. We leave this as our future work.
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