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Abstract
In this paper, we investigate the growth of meromorphic solutions of the differential
equations

f (k) + Ak–1(z)f (k–1) + · · · + A1(z)f ′ + A0(z)f = 0

and

f (k) + Ak–1(z)f (k–1) + · · · + A1(z)f ′ + A0(z)f = F(z),

where A0(z) �≡ 0,A1(z), . . . ,Ak–1(z) and F(z) �≡ 0 are meromorphic functions. A precise
estimation of the hyper-order of meromorphic solutions of the above equations is
given provided that there exists one dominant coefficient, which improves and
extends previous results given by Belaïdi, Chen, etc.
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1 Introduction and main results
For a meromorphic function f in the complex plane C, the order of growth and the lower
order of growth are defined as

ρ(f ) = lim sup
r→∞

log+ T(r, f )
log r

, μ(f ) = lim inf
r→∞

log+ T(r, f )
log r

,

respectively. The exponent of convergence of the poles sequence of f is defined as

λ

(

f

)
= lim sup

r→∞
log+ N(r, f )

log r
.

For fast-growing meromorphic functions the growth is typically measured in terms of the
hyper-order, defined as

ρ(f ) = lim sup
r→∞

log+ log+ T(r, f )
log r

.
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Nevanlinna theory of meromorphic functions is a powerful tool in the field of complex
differential equations. For an introduction to the theory of differential equations in the
complex plane by using Nevanlinna theory; see, for example [–]. Active research in this
field was started by Wittich [] and his students in the s and s. The order of
growth of solutions of the equation

f (k) + Ak–(z)f (k–) + · · · + A(z)f ′ + A(z)f =  (.)

is one of the aims in studying complex differential equations, where A(z) �≡ , A(z), . . . ,
Ak(z) are entire functions. For the case k = , from [–], we know that every nontrivial
solution of the equation

f ′′ + A(z)f ′ + B(z)f =  (.)

is of infinite order provided that (i) ρ(A) < ρ(B); or (ii) ρ(B) < ρ(A) ≤ 
 ; or (iii) A(z) is

polynomial and B(z) is transcendental with ρ(B) = . Motivated by the result above, it is
obvious that every nontrivial solution of (.) is of infinite order provided that the coeffi-
cient A(z) is dominant over others. For example, if max{ρ(Aj), j = , , . . . , k – } < ρ(A),
then every nontrivial solution of (.) is of infinite order. Another generalized condition is
found by Hellerstein et al. in [].

Theorem . ([]) Let A(z), A(z), . . . , Ak–(z), F(z) be entire functions. Suppose there ex-
ists an integer s,  ≤ s ≤ k – , such that

max
{
ρ(F), max

≤j≤k–
j �=s

ρ(Aj)
}

< ρ(As) ≤ 


.

Then every solution of

f (k) + Ak–(z)f (k–) + · · · + A(z)f ′ + A(z)f = F(z) (.)

is either a polynomial or an entire function of infinite order.

In , Chen and Yang studied the hyper-order of solutions of (.).

Theorem . ([]) Let A(z), A(z), . . . , Ak–(z) be entire function satisfying

max
{
ρ(Aj), j = , , . . . , k – 

}
< ρ(A) < ∞.

Then every nontrivial solution f of (.) satisfies ρ(f ) = ρ(A).

In Theorems . and ., the authors consider all coefficients are entire functions. When
the coefficients A(z), A(z), . . . , Ak–(z) and F(z) are meromorphic functions, many au-
thors investigated the value distribution of solutions of (.) and (.); see, for example,
[–]. Especially, we mention the following result given by Chen [], in which a precise
estimation of hyper-order of solutions of (.) is obtained.
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Theorem . ([], Theorem ) Let A(z), A(z), . . . , Ak–(z) be meromorphic functions.
Suppose there exists an integer s,  ≤ s ≤ k – , satisfying

max

{
ρ(Aj), j �= s,λ

(


As

)}
< μ(As) ≤ ρ(As) <




.

If equation (.) has a meromorphic solution, then every transcendental meromorphic so-
lution f of (.) satisfies ρ(f ) = ρ(As).

In , Xiao and Chen considered the non-homogeneous equation (.), the following
result is proved.

Theorem . ([]) Let A(z), A(z), . . . , Ak–(z), F(z) be meromorphic functions. Suppose
there exists an integer s,  ≤ s ≤ k – , satisfying

max

{
ρ(Aj), j �= s,λ

(


As

)
,ρ(F)

}
< μ(As) ≤ ρ(As) <




.

If equation (.) has a meromorphic solution, then every transcendental meromorphic so-
lution f of (.) satisfies ρ(f ) = ρ(As).

Belaïdi studied equation (.), a precise estimation of hyper-order of solutions of (.)
is also obtained by using different conditions from those mentioned above, in which the
growths of the coefficients are limited in a set having positive densities.

Theorem . ([]) Let E be a set of complex numbers satisfying dens({|z| : z ∈ E}) > ,
and let Aj(z), j = , , . . . , k – , be entire functions such that

max
{
ρ(Aj), j = , . . . , k – 

} ≤ ρ(A) = ρ < ∞;

and for some constants  ≤ β < α, we have, for all ε >  sufficiently small,

∣∣A(z)
∣∣ ≥ exp

(
α|z|ρ–ε

)
,

∣∣Aj(z)
∣∣ ≤ exp

(
β|z|ρ–ε

)
, j = , , . . . , k – ,

as z → ∞ for z ∈ E. Then every nontrivial solution f of (.) satisfies ρ(f ) = ρ(A).

Theorem . and the remaining theorems involve the logarithmic measure and densities
of set, which will be recalled in Section . In this paper, we study the growth of solutions
of (.) and (.), and one of the goals is to extend Theorems . and . in which the
condition ρ(As) < 

 is deleted. On the other hand, we consider the case of a meromorphic
coefficient in Theorem .. The following results are proved by combining the methods of
Theorems ., ., and ..

Theorem . Let E be a set of complex numbers satisfying ml({|z| : z ∈ E}) = ∞, and let
Aj(z), j = , , . . . , k – , be meromorphic functions. Suppose there exists an integer s,  ≤ s ≤
k – , satisfying

max

{
ρ(Aj), j �= s,λ

(


As

)}
< μ(As) ≤ ρ(As) = ρ < ∞;
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and for some constants  ≤ β < α, we have, for all ε >  sufficiently small,

∣∣Aj(z)
∣∣ ≤ exp

(
β|z|ρ–ε

)
, j �= s, (.)

∣∣As(z)
∣∣ ≥ exp

(
α|z|ρ–ε

)
, (.)

as z → ∞ for z ∈ E. Then every nontrivial meromorphic solution f whose poles are of uni-
formly bounded multiplicities of equation (.) satisfies ρ(f ) = ρ(As).

For the case of non-homogeneous equation, we get the following result.

Theorem . Let E and Aj(z), j = , , . . . , k –  be defined as Theorem ., and let F(z) �≡ 
be meromorphic function. Suppose there exists an integer s,  ≤ s ≤ k – , satisfying

max

{
ρ(Aj), j �= s,λ

(


As

)
,ρ(F)

}
< μ(As) ≤ ρ(As) = ρ < ∞;

and for some constants  ≤ β < α, we have, for all ε >  sufficiently small, equations (.)
and (.) hold as z → ∞ for z ∈ E. Then every nontrivial meromorphic solution f whose
poles are of uniformly bounded multiplicities of equation (.) satisfies ρ(f ) = ρ(As).

Remark . From [], Remark ., we know that the condition that the multiplicity of
poles of the meromorphic solution f is uniformly bounded is necessary. Hence the condi-
tion was missing in Theorems . and .. Of course, the condition could also be changed
by δ(∞, f ) > .

2 Auxiliary results
The Lebesgue linear measure of a set E ⊂ [,∞) is m(E) =

∫
E dt, and the logarithmic mea-

sure of a set F ⊂ [,∞) is ml(F) =
∫

F
dt
t . The upper and lower densities of E ⊂ [,∞) are

given by

dens(E) = lim sup
r→∞

m(E ∩ [, r])
r

and

dens(E) = lim inf
r→∞

m(E ∩ [, r])
r

,

respectively.
A lemma on logarithmic derivatives due to Gundersen [] plays an important role in

proving our results.

Lemma . Let f be a transcendental meromorphic function, and let α >  be a given real
constant. Let k and j be two integers such that k > j ≥ . Then there exists a set E ⊂ (,∞)
with ml(E) < ∞, and a constant B >  depending only on α and j, k, such that, for all z
satisfying |z| /∈ (E ∪ [, ]), we have

∣∣∣∣ f (k)(z)
f (j)(z)

∣∣∣∣ ≤ B
(

T(αr, f )
r

logα r log T(αr, f )
)k–j

.
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The following result was proved originally in []; see also [], Lemma .

Lemma . Let f be a meromorphic function of order ρ(f ) = β < ∞. Then, for any given
ε > , there exists a set E ⊂ (,∞) with ml(E) < ∞ and m(E) < ∞, such that, for all z satis-
fying |z| = r /∈ ([, ] ∪ E),

∣∣f (z)
∣∣ ≤ exp

(
rβ+ε

)
.

The next lemma is related to the central index.

Lemma . ([], Lemma ) Let f (z) = g(z)
d(z) be a meromorphic function, where g(z) and

d(z) are entire functions satisfying

μ(g) = μ(f ) = μ ≤ ρ(g) = ρ(f ) ≤ ∞, λ(d) = ρ(d) = λ

(

f

)
= β < μ.

Then there exists a set E ⊂ (,∞) with ml(E) < ∞, such that, for all z satisfying |z| = r /∈
([, ] ∪ E) and |g(z)| = M(r, g), M(r, g) = max|z|=r |g(z)|, we have

f (n)(z)
f (z)

=
(

νg(r)
z

)n(
 + o()

)
, n ≥ ,

where νg(r) denotes the central index of g(z).

Lemma . Let f (z) = g(z)
d(z) be a meromorphic function, where g(z) and d(z) are entire

functions. If  ≤ ρ(d) < μ(f ), then μ(g) = μ(f ), ρ(g) = ρ(f ). Moreover, if ρ(f ) = ∞, then
ρ(f ) = ρ(g).

Proof We divide the proof into the following three cases.
Case . ρ(f ) < ∞. Since T(r, f ) ≤ T(r, g) + T(r, d) + O(), for any given ε ∈ (, ρ(f )–ρ(d)

 ),
there exists an increasing sequence (rn) with rn → ∞ as n → ∞, such that

rρ(f )–ε
n ≤ T(rn, f ), T(rn, d) ≤ rρ(d)+ε

n

hold for all sufficiently large n. This implies that, for all sufficiently large n,

rρ(f )–ε
n ≤ T(rn, g) + rρ(d)+ε

n + O().

Thus, for all sufficiently large n,

rρ(f )–ε
n

(
 – o()

) ≤ T(rn, g) + O().

Hence, ρ(f ) ≤ ρ(g). On the other hand, since T(r, g) ≤ T(r, f ) + T(r, d), and ρ(d) < ρ(f ), we
get

ρ(g) ≤ ρ(f ).

Therefore, we get ρ(g) = ρ(f ).
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In a similar way to above and the definition of the lower order of growth, we can prove

μ(g) = μ(f ).

Case . μ(f ) = ∞. Suppose on the contrary to the assertion that μ(g) < μ(f ). We aim
for a contradiction. By the definition of the lower order of growth, there exist a constant
M >  and an increasing sequence (rn) with rn → ∞ as n → ∞, such that

T(rn, g) < rM
n , T(rn, d) ≤ rM

n

hold for all sufficiently large n. Then, for all sufficiently large n,

T(rn, f ) ≤ rM
n + O().

Therefore, μ(f ) ≤ M. This is a contradiction with our assumption.
Case . μ(f ) < ∞ and ρ(f ) = ∞. In a similar way to proving cases  and , we can prove

case .
Finally, we will prove ρ(f ) = ρ(g). Suppose that ρ(f ) = ∞. Then there exists an increas-

ing sequence (rn) with rn → ∞ as n → ∞, such that

ρ(f ) = lim
n→∞

log log T(rn, f )
log rn

.

Combining ρ(d) < μ(f ) and the definitions of the order and the lower order, we get

lim
n→∞

T(rn, d)
T(rn, f )

= .

Then there exists a positive integer N , such that, for n > N ,

T(rn, f ) ≤ T(rn, g) + O().

Hence, ρ(f ) ≤ ρ(g). In a similar way to proving case , we get ρ(f ) ≥ ρ(g). Therefore,
ρ(f ) = ρ(g). �

Lemma . ([], Lemma ) Let f be an entire function of infinite order, with the hyper-
order ρ(f ) < ∞, and let ν(r) be the central index of f . Then

lim sup
r→∞

log+ log+ ν(r)
log r

= ρ(f ).

Lemma . ([], Lemma ) Let g : [,∞) → R and h : [,∞) → R be monotonically non-
decreasing functions such that g(r) ≤ h(r) outside of an exceptional set E with ml(E) < ∞.
Then, for any α > , there exists an r >  such that g(r) ≤ h(αr) for all r > r.

Lemma . Let f be a meromorphic solution of equation (.), where A(z), A(z), . . . ,
Ak–(z) are meromorphic functions. If there exists an integer number s ∈ {, , , . . . , k – }
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that satisfies

max
{
ρ(Aj), j �= s

}
< μ(As),

then ρ(f ) ≥ ρ(As), μ(f ) ≥ μ(As).

Proof By equation (.),

–As =
f (k)

f (s) + Ak–
f (k–)

f (s) + · · · + As+
f (s+)

f (s) + As–
f (s–)

f (s) + · · · + A
f

f (s) .

Combining the formula above and the first main theory in Nevanlinna theory, we get

T(r, As) ≤
k∑

j �=s

T
(
r, f (j)) +

k–∑
j �=s

T(r, Aj) + kT
(
r, f (s)) + O().

In a similar way to proving T(r, f ′) ≤ T(r, f ) + m(r, f ′
f ), see [], p., for every integer

j ∈ [, k],

T
(
r, f (j)) ≤ m

(
r,

f (j)

f (j–)

)
+ m

(
r,

f (j–)

f (j–)

)
+ · · · + j–m

(
r,

f ′

f

)
+ jT(r, f ).

Combining the two inequalities above,

T(r, As) ≤
k–∑
j �=s

T(r, Aj) + cT(r, f ) + c

k∑
j=

m
(

r,
f (j)

f (j–)

)
+ O(), (.)

where c, c are positive constant.
It follows from ρ(Aj) < ρ(As), j �= s, and the lemma on the logarithmic derivative that

ρ(As) ≤ ρ(f ).

Set b = max{ρ(Aj), j �= s}. Then for any given ε ∈ (, μ(As)–b
 ), there exists a constant R > ,

such that, for all r > R,

T(r, As) ≥ rμ(As)–ε , T(r, Aj) ≤ rb+ε , j �= s.

Combining the two inequalities above and (.), we get

rμ(As)–ε ≤ cT(r, f ) + c

k∑
j=

m
(

r,
f (j)

f (j–)

)
+ (k – )rb+ε + O().

By using the lemma on logarithmic derivative again, we get μ(f ) ≥ μ(As). �

Lemma . Let f be a meromorphic solution of equation (.), where A(z), A(z), . . . ,
Ak–(z), F(z) �≡  are meromorphic functions. If there exists an integer number s ∈ {, , ,
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. . . , k – } that satisfies

max
{
ρ(F),ρ(Aj), j �= s

}
< μ(As),

then ρ(f ) ≥ ρ(As), μ(f ) ≥ μ(As).

Proof In a similar way to proving Lemma ., we can get the proof of Lemma ., here we
omit the details. �

Lemma . Let A(z), A(z), . . . , Ak–(z) be meromorphic functions of finite order. Suppose
there exists an integer number s ∈ {, , , . . . , k – }, such that

max

{
ρ(Aj), j �= s,λ

(


As

)}
< μ(As).

Then every infinite order meromorphic solution f whose poles are of uniformly bounded
multiplicities of equation (.) satisfies ρ(f ) ≤ ρ(As).

Proof By equation (.),

–
f (k)

f
= Ak–

f (k–)

f
+ · · · + As

f (s)

f
+ · · · + A

f ′

f
+ A. (.)

By Lemma ., for any given ε > , there exists a set E ⊂ (,∞) with ml(E) < ∞, such
that, for all z satisfying |z| = r /∈ ([, ] ∪ E),

∣∣Aj(z)
∣∣ ≤ exp

(
rρ(As)+ε

)
, j = , , . . . , k – . (.)

Since the poles of f come from the poles of Aj(z), j = , , . . . , k – , and the multiplicities of
poles of f are uniformly bounded, we have λ( 

f ) < μ(As). Set f (z) = g(z)
d(z) , where g(z) is an en-

tire function, d(z) is the classic product of poles sequence of f . It follows from Lemmas .
and . that

λ(d) = ρ(d) = λ

(

f

)
< μ(As) ≤ μ(f ) = μ(g) ≤ ρ(g) = ρ(f ).

By Lemma ., there exists a set E ⊂ (,∞) with ml(E) < ∞, such that, for all z satisfy-
ing |z| = r /∈ ([, ] ∪ E), |g(z)| = M(r, g),

f (j)(z)
f (z)

=
(

νg(r)
z

)j(
 + o()

)
, j = , . . . , k – . (.)

It follows from (.), (.) and (.) that there exists a constant R > , such that, for all z
satisfying |z| = r /∈ ([, R] ∪ E ∪ E), |g(z)| = M(r, g), and νg(r) > ,

∣∣∣∣
(

νg(r)
z

)k(
 + o()

)∣∣∣∣ ≤
{∣∣∣∣

(
νg(r)

z

)k–(
 + o()

)∣∣∣∣ + · · · +
∣∣∣∣
(

νg(r)
z

)(
 + o()

)∣∣∣∣ + 
}

× exp
(
rρ(As)+ε

)
.
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Then

νk
g (r)

∣∣ + o()
∣∣ ≤ k exp

(
rρ(As)+ε

)|z|kνk–
g (r)

∣∣ + o()
∣∣.

By Lemmas . and ., we get

ρ(g) ≤ ρ(As).

Combining Lemma . and the inequality above, we have

ρ(f ) ≤ ρ(As).

This completes the proof. �

Lemma . Let A(z), A(z), . . . , Ak–(z) and F(z) �≡  be meromorphic functions of finite
order. Suppose there exists an integer number s ∈ {, , , . . . , k – }, such that

max

{
ρ(Aj), j �= s,λ

(


As

)
,ρ(F)

}
< μ(As).

Then every infinite order meromorphic solution f whose poles are of uniformly bounded
multiplicities of equation (.) satisfies ρ(f ) ≤ ρ(As).

Proof By equation (.),

–
f (k)

f
= Ak–

f (k–)

f
+ · · · + As

f (s)

f
+ · · · + A

f ′

f
+ A –

F
f

. (.)

By Lemma ., for any given ε > , there exists a set E ⊂ (,∞) with ml(E) < ∞, such
that, for all z satisfying |z| = r /∈ ([, ] ∪ E), we have (.) and

∣∣F(z)
∣∣ ≤ exp

(
rρ(As)+ε

)
. (.)

Since the poles of f come from the poles of Aj(z), j = , , . . . , k – , F(z), and the multi-
plicities of poles of f are uniformly bounded, we have λ( 

f ) < μ(As). Set f (z) = g(z)
d(z) , where

g(z) is an entire function, d(z) is a classic product of poles sequence of f . It follows from
Lemmas ., . and . that there exists a set E ⊂ (,∞) with ml(E) < ∞, such that, for
all z satisfying |z| = r /∈ ([, ] ∪ E), |g(z)| = M(r, g), equation (.) holds.

It follows from (.), (.), and (.) that there exists a constant R > , such that, for all z
satisfying |z| = r /∈ ([, R] ∪ E ∪ E), |g(z)| = M(r, g),

∣∣∣∣
(

νg(r)
z

)k(
 + o()

)∣∣∣∣ ≤
{∣∣∣∣

(
νg(r)

z

)k–(
 + o()

)∣∣∣∣ + · · · +
∣∣∣∣
(

νg(r)
z

)(
 + o()

)∣∣∣∣ + 
}

× exp
(
rρ(As)+ε

)
+

∣∣∣∣F(z)
f (z)

∣∣∣∣. (.)

Since ρ(d) < ρ(As), for all r > R,

∣∣d(z)
∣∣ ≤ exp

(
rρ(As)+ε

)
. (.)
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It follows from (.) and (.) that
∣∣∣∣F

f

∣∣∣∣ =
∣∣∣∣F

g
d
∣∣∣∣ =

∣∣∣∣ F
M(r, g)

d
∣∣∣∣ ≤ exp

(
rρ(As)+ε

)
.

Combining (.) and the inequality above, we get

(
νg(r)

)k∣∣ + o()
∣∣ ≤ (k + ) exp

(
rρ(As)+ε

)|z|k(νg(r)
)k–∣∣ + o()

∣∣.
Combining Lemmas ., ., and the inequality above, we get

ρ(g) ≤ ρ(As).

Combining Lemma . and the inequality above, we have

ρ(f ) ≤ ρ(As).

This completes the proof. �

3 Proof of Theorems 1.6 and 1.7

Proof of Theorem . By Lemma ., it is easy to see that equation (.) cannot have any
nonzero rational solution. By (.),

–As =
f (k)

f (s) + Ak–
f (k–)

f (s) + · · · + As+
f (s+)

f (s)

+
f

f (s)

(
As–

f (s–)

f
+ · · · + A

f ′

f
+ A

)
. (.)

By Lemma ., for α = , there exists a set E ⊂ (,∞) with ml(E) < ∞ and constant B > ,
such that, for all z satisfying |z| = r /∈ ([, R] ∪ E), where R >  is a constant,

∣∣∣∣ f (j)(z)
f (s)(z)

∣∣∣∣ ≤ Br
(
T(r, f )

)j–s+, j = s + , s + , . . . , k, (.)

and
∣∣∣∣ f (j)(z)

f (z)

∣∣∣∣ ≤ Br
(
T(r, f )

)j+, j = , , . . . , s – . (.)

By Lemma ., there exists a set E ⊂ (,∞) with ml(E) < ∞, such that, for all z satisfying
|z| = r /∈ ([, ] ∪ E) and |g(z)| = M(r, g),

f (s)(z)
f (z)

=
(

νg(r)
z

)s(
 + o()

)
. (.)

Considering the equation above, there exists a constant R (> R), such that, for all z sat-
isfying |z| = r > R, νg(r) > , | + o()| > 

 , and |g(z)| = M(r, g), M(r, g) > ,

∣∣∣∣ f (z)
f (s)(z)

∣∣∣∣ ≤ rs. (.)
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Set H = {|z| : z ∈ E}\([, R] ∪ E ∪ E). Then ml(H) = ∞. It follows from (.), (.),
(.), (.) and conditions (.), (.) that, for all z satisfying |z| = r ∈ H and |g(z)| = M(r, g),

exp
(
α|z|ρ–ε

) ≤ kBrs+(T(r, f )
)k+

exp
(
β|z|ρ–ε

)
.

Therefore, we get

ρ(f ) ≥ ρ = ρ(As).

It follows from the inequality above and Lemma . that

ρ(f ) = ρ(As).

This completes the proof. �

Proof of Theorem . By Lemma ., we know that if equation (.) has solutions, then the
solution must be transcendental. By equation (.),

–As =
F
f

· f
f (s) –

{
f (k)

f (s) + Ak–
f (k–)

f (s) + · · · + As+
f (s+)

f (s)

+
f

f (s)

(
As–

f (s–)

f
+ · · · + A

f ′

f
+ A

)}
. (.)

By Lemma ., for α = , there exists a set E ⊂ (,∞) with ml(E) < ∞ and constant B > ,
such that, for all z satisfying |z| = r /∈ ([, R] ∪ E), where R >  is a constant, equations
(.) and (.) hold.

Set f (z) = g(z)
d(z) , where g(z) is an entire function, d(z) is a classic product of a poles se-

quence of f . Since the poles of f come from the poles of Aj(z), j = , , . . . , k – , F(z), and
the multiplicities of the poles of f are uniformly bounded, we have λ( 

f ) = λ(d) = ρ(d) ≤ b,
where

b = max

{
ρ(Aj), j �= s,λ

(


As

)
,ρ(F)

}
.

Let η be constant satisfying b < η < μ(As). By Lemma ., there exists a set E ⊂ (,∞)
with ml(E) < ∞, such that, for all z satisfying |z| = r /∈ ([, ] ∪ E),

∣∣F(z)d(z)
∣∣ ≤ exp

(
rη

)
. (.)

By Lemma ., there exists a set E ⊂ (,∞) with ml(E) < ∞, such that, for all z satisfying
|z| = r /∈ ([, ] ∪ E) and |g(z)| = M(r, g), equation (.) holds. Therefore, there exists a
constant R (> R), such that, for all z satisfying |z| = r > R, νg(r) > , | + o()| > 

 , and
|g(z)| = M(r, g), M(r, g) > , equation (.) holds.

Set H = {|z| : z ∈ E}\([, R]∪E ∪E ∪E). Then ml(H) = ∞. It follows from (.) that,
for all z satisfying |z| = r ∈ H, r > R, and |g(z)| = M(r, g),

∣∣∣∣F(z)
f (z)

∣∣∣∣ =
∣∣∣∣F(z)

g(z)
d(z)

∣∣∣∣ =
∣∣∣∣ F(z)
M(r, g)

∣∣∣∣ · ∣∣d(z)
∣∣ ≤ exp

(
rη

)
. (.)



Long and Zhu Advances in Difference Equations  (2016) 2016:107 Page 12 of 13

It follows from (.), (.), (.), (.), (.), and conditions (.), (.) that, for all z satis-
fying |z| = r ∈ H and |g(z)| = M(r, g),

exp
(
αrρ–ε

) ≤ (k + )Brs+(T(r, f )
)k+

exp
(
βrρ–ε

)
exp

(
rη

)
.

By η < μ(As) ≤ ρ and for any given ε ∈ (, μ(As)–η

 ), we get

ρ(f ) ≥ ρ = ρ(As).

It follows from the inequality above and Lemma . that

ρ(f ) = ρ(As).

This completes the proof. �
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