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In this paper, we establish sufficient conditions for the existence and uniqueness of
solutions for boundary value problems of Hadamard-type fractional functional
differential equations and inclusions involving both retarded and advanced
arguments. We make use of the standard tools of fixed point theory to obtain the
main results.

MSC: 34A08; 34K05

Keywords: functional differential equation; fractional derivative; retarded argument;
advanced argument; existence

1 Introduction
Differential equations of fractional order play a very important role in describing many real
world phenomena. The tools of fractional calculus are effectively employed in improving
mathematical modeling of several problems in physics, mechanics and other fields. The
theory of differential equations of fractional order has recently received great attention and
now constitutes a significant branch of mathematical analysis. For details and examples,
we refer the reader to a series of papers and monographs; for instance, see [–].

Functional differential equations arise in a variety of areas of biological, physical, and
engineering applications, see, for example, the books of Kolmanovskii and Myshkis []
and Hale and Verduyn Lunel [], and the references cited therein. Recently, in [], the
authors studied the existence and uniqueness of solutions for fractional order Hadamard-
type functional and neutral functional differential equations.

In this paper, motivated by [], we study boundary value problems of Hadamard-type
fractional functional differential equations and inclusions involving both retarded and ad-
vanced arguments. As a first problem, we consider

Dαx(t) = f
(
t, xt),  ≤ t ≤ e,  < α < , ()

x(t) = χ (t),  – r ≤ t ≤ , ()

x(t) = ψ(t), e ≤ t ≤ e + h, ()
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where Dα is the Hadamard fractional derivative. Here, f : [, e] × C([–r, h],R) → R is a
given function, χ ∈ C([ – r, ],R) with χ () =  and ψ ∈ C([e, e + h],R) with ψ(e) = . For
any function x defined on [ – r, e + h] and any  ≤ t ≤ e, we denote by xt the element of
C([–r, h],R) defined by xt(θ ) = x(t + θ ) for –r ≤ θ ≤ h, where r, h ≥  are constants.

In the second problem, we extend our study to the multi-valued case given by

Dαx(t) ∈ F
(
t, xt),  ≤ t ≤ e,  < α < , ()

x(t) = χ (t),  – r ≤ t ≤ , ()

x(t) = ψ(t), e ≤ t ≤ e + h, ()

where F : [, e] × C([–r, h],R) → P(R) is a multi-valued map (P(R) is the family of all
nonempty subjects of R).

The paper is organized as follows. In Section  we recall some preliminary concepts.
We obtain existence and uniqueness results for the problem ()-() in Section . These
results are based on a nonlinear alternative of Leray-Schauder type and the Banach con-
traction mapping principle. In Section , we present the existence results for convex and
nonconvex multi-valued maps involved in the problem ()-() which, respectively, rely on
the nonlinear alternative of Leray-Schauder type and a fixed point theorem for contractive
multi-valued maps due to Covitz and Nadler.

2 Auxiliary facts and results
This section is devoted to some definitions and results which will be needed throughout
this paper.

By C := C([–r, h],R) we denote the Banach space of all continuous functions from [–r, h]
into R equipped with the norm

‖χ‖[–r,h] = sup
{∣∣χ (θ )

∣∣ : –r ≤ θ ≤ h
}

and C([, e],R) is the Banach space endowed with the norm ‖x‖ = sup{|x(t)| :  ≤ t ≤ e}.
Also, let E = C([ – r, e + h],R), E = C([ – r, ],R), and E = C([e, e + h],R) be, respectively,
endowed with the norms ‖x‖[–r,e+h] = sup{|x(t)| :  – r ≤ t ≤ e + h}, ‖x‖[–r,] = sup{|x(t)| :
 – r ≤ t ≤ }, and ‖x‖[e,e+h] = sup{|x(t)| : e ≤ t ≤ e + h}.

Definition . [] The Hadamard derivative of fractional order q for a function g :
[,∞) →R is defined as

Dqg(t) =


�(n – q)

(
t

d
dt

)n ∫ t



(
log

t
s

)n–q– g(s)
s

ds, n –  < q < n, n = [q] + ,

where [q] denotes the integer part of the real number q and log(·) = loge(·).

Definition . [] The Hadamard fractional integral of order q for a function g is defined
as

Iqg(t) =


�(q)

∫ t



(
log

t
s

)q– g(s)
s

ds, q > ,

provided the integral exists.
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Lemma . Given g ∈ AC([, e],R) and  < α ≤ , the solution u ∈ C([, e],R) of the prob-
lem

Dαu(t) = g(t),  < t < , ()

u() = u(e) = , ()

is equivalent to the integral equation

u(t) = –
∫ e


G(t, s)

g(s)
s

ds, ()

where

G(t, s) =


�(α)

⎧
⎨

⎩
(log t)α–( – log s)α– – (log t – log s)α–,  ≤ s ≤ t ≤ e,

(log t)α–( – log s)α–,  ≤ t ≤ s ≤ e.
()

Proof As argued in [], the solution of the Hadamard differential equation () can be writ-
ten as

x(t) =


�(α)

∫ t



(
log

t
s

)α– g(s)
s

ds + c(log t)α– + c(log t)α–. ()

Using the given boundary conditions, we find that c =  and

c = –


�(α)

∫ e



(
log

e
s

)α– g(s)
s

ds.

Substituting the values of c and c in (), we obtain

u(t) =


�(α)

∫ t



(
log

t
s

)α– g(s)
s

ds – (log t)α– 
�(α)

∫ e



(
log

e
s

)α– g(s)
s

ds

=


�(α)

∫ t



(
log

t
s

)α– g(s)
s

ds – (log t)α– 
�(α)

∫ t



(
log

e
s

)α– g(s)
s

ds

– (log t)α– 
�(α)

∫ e

t

(
log

e
s

)α– g(s)
s

ds

= –


�(α)

∫ t



[
(log t)α–( – log s)α– – (log t – log s)α–]g(s)

s
ds

–
∫ e

t


�(α)

(log t)α–( – log s)α– g(s)
s

ds

= –
∫ e


G(t, s)

g(s)
s

ds,

where G(t, s) is given by (). The converse of the theorem follows by direct computation.
This completes the proof. �

Now we recall some facts from multi-valued analysis. Let (X,‖ · ‖) be a Banach
space. Let P(X) = {Y ⊂ X : Y 	= ∅}, Pb(X) = {Y ∈ P(X) : Y bounded}, Pcl(X) = {Y ∈



Agarwal et al. Advances in Difference Equations  (2016) 2016:92 Page 4 of 15

P(X) : Y closed}, Pb,cl(X) = {Y ∈ P(X) : Y bounded and closed}, Pcp(X) = {Y ∈ P(X) :
Y compact}, Pcp,c(X) = {Y ∈P(X) : Y compact and convex}.

A multi-valued map G : X → P(X) has convex (closed) values if G(x) is convex (closed)
for all x ∈ X. We say that G is bounded on bounded sets if G(B) is bounded in X for each
bounded set B of X, i.e., supx∈B{sup{‖y‖ : y ∈ G(x)}} < ∞. The map G is called upper semi-
continuous (u.s.c.) on X if for each x ∈ X the set G(x) is a nonempty, closed subset of X,
and if for each open set N of X containing G(x), there exists an open neighborhood M
of x such that G(M) ⊆ N . Also, G is said to be completely continuous if G(B) is relatively
compact for every bounded subset B ⊆ X. If the multi-valued map G is completely con-
tinuous with nonempty compact values, then G is u.s.c. if and only if G has a closed graph
(i.e., xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗)). Finally, we say that G has a fixed point
if there exists x ∈ X such that x ∈ G(x).

A multi-valued map G : J → Pcl(X) is said to be measurable if, for each x ∈ E, the func-
tion Y : J → X defined by

Y (t) = dist
(
x, G(t)

)
= inf

{‖x – z‖ : z ∈ G(t)
}

is Lebesgue measurable.

Definition . A multi-valued map F : J × C([–r, h],R) → Pcp,c(R) is said to be L-
Carathéodory if

(i) t → F(t, x) is measurable, for each x ∈ C([–r, h],R),
(ii) x → F(t, x) is upper semicontinuous for almost all t ∈ J , and

(iii) for each real number ρ > , there exists a function hρ ∈ L(J ,R+) such that

∥∥F(t, u)
∥∥ := sup

{|v| : v ∈ F(t, u)
} ≤ hρ(t), a.e. t ∈ J

for all u ∈ C([–r, h],R) with ‖u‖ ≤ ρ .

Let (X, d) be a metric space induced from the normed space (X,‖ · ‖). Consider Hd :
P(X) ×P(X) −→R+ ∪ {∞}, given by

Hd(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(A, b)
}

,

where d(A, b) = infa∈A d(a, b), d(a,B) = infb∈B d(a, b). Then (Pb,cl(X), Hd) is a metric space
and (Pcl(X), Hd) is a generalized (complete) metric space.

Definition . A multi-valued operator G : X →Pcl(X) is called
(a) γ -Lipschitz if there exists γ >  such that

Hd
(
G(x), G(y)

) ≤ γ d(x, y), for each x, y ∈ X,

(b) a contraction if it is γ -Lipschitz with γ < .

For more details on multi-valued maps we refer to the books of Deimling [],
Górniewicz [], Hu and Papageorgiou [], and Tolstonogov [].
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3 Existence results for the problem (1)-(3)
By a solution of ()-() we mean a function x ∈ C([–r, e+h],R) that satisfies the equation
Dαx(t) = f (t, xt) on [, e] and the conditions x(t) = χ (t), χ () =  on [ – r, ] and x(t) = ψ(t),
ψ(e) =  on [e, e + h].

Our existence result for the boundary value problem ()-() is based on the following
fixed point theorem.

Lemma . (Nonlinear alternative for single-valued maps ([])) Let E be a Banach space,
C a closed, convex subset of E, U an open subset of C and  ∈ U . Suppose that F : U → C is
a continuous, compact (that is, F(U) is a relatively compact subset of C) map. Then either

(i) F has a fixed point in U , or
(ii) there is a u ∈ ∂U (the boundary of U in C) and λ ∈ (, ) with u = λF(u).

Theorem . Let f : [, e] × C([–r, h],R) → R be a continuous function. Assume the fol-
lowing assumptions hold:

(H) there exist p ∈ C(J ,R) and � : [,∞) → (,∞) continuous and nondecreasing such
that

∣∣f (t, u)
∣∣ ≤ p(t)�

(‖u‖[–r,h]
)

for all t ∈ J and all u ∈ C([–r, h],R);
(H) there exists a number K >  such that

K
‖p‖
�(α+)�(K + max{‖x‖[–r,],‖x‖[e,e+h]})

> .

Then the boundary value problem ()-() has at least one solution on the interval [ – r,
e + h].

Proof To transform the problem ()-() into a fixed point problem, we consider an oper-
ator Q : C([ – r, e + h],R) → C([ – r, e + h],R) defined by

(Qx)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

χ (t), if t ∈ [ – r, ],
∫ e

 G(t, s) f (s,xs)
s ds, if t ∈ [, e],

ψ(t), if t ∈ [e, e + h].

()

Let u : [ – r, e + h] →R be a function defined by

u(t) =

⎧
⎪⎪⎨

⎪⎪⎩

χ (t), if t ∈ [ – r, ],

, if t ∈ [, e],

ψ(t), if t ∈ [e, e + h].

For each y ∈ C([, e],R) with y() =  we denote by z the function defined by

z(t) =

⎧
⎪⎪⎨

⎪⎪⎩

, if t ∈ [ – r, ],

y(t), if t ∈ [, e],

, if t ∈ [e, e + h].
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Let us set x(t) = y(t) + u(t) such that xt = yt + ut for every  ≤ t ≤ e, where

x(t) =
∫ e


G(t, s)

f (s, xs)
s

ds,

y(t) =
∫ e


G(t, s)

f (s, ys + us)
s

ds.

Next, we define B = {y ∈ C([ – r, e + h],R) : y() = } and let S : B → B be an operator
given by

(Sy)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

,  – r ≤ t ≤ ,
∫ e

 G(t, s) f (s,ys+us)
s ds,  ≤ t ≤ e,

, e ≤ t ≤ e + h.

()

Then it is enough to show that the operator S has a fixed point which will imply that
the operator Q has a fixed point and in consequence, this fixed point will correspond to
a solution of the problem ()-(). In the following three steps, it will be shown that the
operator S is continuous and completely continuous.

Step : S is continuous.
Let (yn) be a sequence such that yn → y in B. Then we have

∣∣(Syn)(t) – (Sy)(t)
∣∣ ≤

∫ e


G(t, s)

∣∣f
(
s, yns + us) – f

(
s, ys + us)∣∣ds

s

≤ ∥∥f
(·, yn(·) + u(·)) – f

(·, y(·) + u(·))∥∥


∫ e


G(t, s)

ds
s

.

Since the function f is continuous, we have

‖Syn –Sy‖[–r,e+h] ≤ ∥∥f
(·, yn(·) + u(·)) – f

(·, y(·) + u(·))∥∥


∫ e


G(t, s)

ds
s

→  as n → ∞.

Step : S maps bounded sets into bounded sets in B.
For any k > , it is enough to show that there exists a positive constant L̂ such that, for

each y ∈ Uk := {y ∈ B : ‖y‖[–r,e+h] ≤ k}, we have ‖Sy‖[–r,e+h] ≤ L̂. For y ∈ B and s ∈ J we
have

∥∥ys∥∥
[–r,h] = max

θ∈[–r,h]

∣∣y(s + θ )
∣∣ ≤ max

t∈[–r,e+h]

∣∣y(t)
∣∣ = ‖y‖[–r,e+h]

and

∥∥ys + us∥∥ ≤ ∥∥ys∥∥
[–r,h] +

∥∥us∥∥
[–r,h] ≤ ‖y‖[–r,h] + max

{‖x‖[–r,],‖x‖[e,e+h]
}

.

Let y ∈ Uk . Since f is continuous, therefore, for t ∈ [, e], we have

∣
∣(Sy)(t)

∣
∣ ≤

∣∣
∣∣


�(α)

∫ t



(
log

t
s

)α– f (s, ys + us)
s

ds

– (log t)α– 
�(α)

∫ e



(
log

e
s

)α– f (s, ys + us)
s

ds
∣∣
∣∣
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≤ 
�(α)

∫ t



(
log

t
s

)α– p(s)�(‖ys + us‖[–r,h])
s

ds

+ (log t)α– 
�(α)

∫ e



(
log

e
s

)α– p(s)�(‖ys + us‖[–r,h])
s

ds

≤ ‖p‖�(k + max{‖x‖[–r,],‖x‖[e,e+h]})
�(α)

∫ e



(
log

t
s

)α– 
s

ds

≤ ‖p‖�(k + max{‖x‖[–r,],‖x‖[e,e+h]})
�(α + )

,

and so

‖Sy‖[–r,e+h] ≤ ‖p‖�(k + max{‖x‖[–r,],‖x‖[e,e+h]})
�(α + )

:= L̂.

Consequently, S maps bounded sets into bounded sets in B.
Step : S maps bounded sets into equicontinuous sets of B.
Let t, t ∈ [, e] with t < t and Uk be a bounded set of B as in Step . Let y ∈ Uk , then

we have

∣∣(Sy)(t) – (Sy)(t)
∣∣

≤
∫ e



∣∣G(t, s) – G(t, s)
∣∣ |f (s, ys + us)|

s
ds

≤ ‖p‖�
(
k + max

{‖x‖[–r,],‖x‖[e,e+h]
})∫ e



∣∣G(t, s) – G(t, s)
∣∣ds

s
.

As t → t the right-hand side of the last inequality tends to zero. The equicontinuity for
the cases t < t ≤  and t ≤  ≤ t is obvious.

In view of Steps  to , it follows by the Arzelá-Ascoli theorem that the operator S is
continuous and completely continuous.

Step : A priori bounds.
We will show that there exists an open set U ⊂ B with y 	= λSy for  < λ <  and y ∈ ∂U .

Let y ∈ B and y = λSy for some  < λ < . Thus, for each t ∈ [, e], we have

y(t) = λ

∫ e


G(t, s)f

(
s, ys + us)ds

s
.

This implies by our assumptions that, for each t ∈ J , we get

∣∣y(t)
∣∣ ≤ 

�(α)

∫ t



(
log

t
s

)α– p(s)�(‖ys + us‖[–r,h])
s

ds

+ (log t)α– 
�(α)

∫ e



(
log

e
s

)α– p(s)�(‖ys + us‖[–r,h])
s

ds

≤ ‖p‖�(‖y‖[–r,h] + max{‖x‖[–r,],‖x‖[e,e+h]})
�(α)

∫ e



(
log

e
s

)α– 
s

ds

≤ ‖p‖

�(α + )
�

(‖y‖[–r,h] + max
{‖x‖[–r,],‖x‖[e,e+h]

})
.



Agarwal et al. Advances in Difference Equations  (2016) 2016:92 Page 8 of 15

Then

‖y‖[–r,e+h]
‖p‖
�(α+)�(‖y‖[–r,h] + max{‖x‖[–r,],‖x‖[e,e+h]})

≤ .

By (H), there exists K such that ‖y‖[–r,e+h] 	= K. Set

U =
{

y ∈ B : ‖y‖[–r,e+h] < K + 
}

.

By our choice of U , there is no y ∈ ∂U such that y = λSy for some  < λ < . As a conse-
quence of the nonlinear alternative of Leray-Schauder type (Lemma .), we deduce thatS
has a fixed point y ∈ Ū which is a solution to problem ()-(). This completes the proof. �

The next result, concerning the existence of a unique solution of problem ()-(), is based
on the Banach fixed point theorem.

Theorem . Let f : [, e] × C([–r, h],R) →R. Assume that there exists L >  such that

∣
∣f

(
t, u(t)

)
– f

(
t, v(t)

)∣∣ ≤ L‖u – v‖[–r,h]

for t ∈ [, e] and every u, v ∈ C([–r, h],R).
If

L
�(α + )

< ,

then the BVP ()-() has a unique solution on the interval [ – r, e + h].

Proof As argued in the proof of the preceding theorem, it will be shown that the operator
S : B → B defined by () is a contraction, where B = {y ∈ C([ – r, e + h],R) : y() = }. For
that, let y, y ∈ B. Then, for t ∈ [, e], we obtain

∣
∣(Sy)(t) – (Sy)(t)

∣
∣ ≤

∫ e


G(t, s)

∣
∣f

(
s, ys

 + us) – f
(
s, ys

 + us)∣∣ds
s

≤ L
∫ e


G(t, s)

∥
∥ys

 – ys

∥
∥

[–r,h]
ds
s

≤ L
�(α)

‖y – y‖[–r,h]

∫ e



(
log

e
s

)α– 
s

ds

≤ L
�(α + )

‖y – y‖[–r,e+h].

Consequently, we get

‖Sy – Sy‖[–r,e+h] ≤ L
�(α + )

‖y – y‖[–r,e+h],

which implies that S is a contraction by the given assumption, and hence S has a unique
fixed point by means of the Banach contraction mapping principle. This, in turn, implies
that the problem ()-() has a unique solution on the interval [ – r, e + h]. �
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4 Existence results for the problem (4)-(6)
For the forthcoming analysis, we need the following lemmas.

Lemma . (Nonlinear alternative for Kakutani maps ([])) Let E be a Banach space, C a
closed convex subset of E, U an open subset of C and  ∈ U . Suppose that F : U →Pcp,c(C)
is a upper semicontinuous compact map. Then either

(i) F has a fixed point in U , or
(ii) there is a u ∈ ∂U and λ ∈ (, ) with u ∈ λF(u).

Lemma . ([]) Let X be a Banach space. Let F : [, ] × X → Pcp,c(X) be an
L-Carathéodory multi-valued map and let � be a linear continuous mapping from
L([, ], X) to C([, ], X). Then the operator

� ◦ SF : C
(
[, ], X

) →Pcp,c
(
C

(
[, ], X

))
, x → (� ◦ SF )(x) = �(SF ,x),

is a closed graph operator in C([, ], X) × C([, ], X).

The next fixed point theorem is the well-known Covitz and Nadler fixed point theorem
for multi-valued contractions [] (see also Deimling, [] Theorem .).

Lemma . (Covitz and Nadler ([])) Let (X, d) be a complete metric space. If G : X →
Pcl(X) is a contraction, then FixG 	= ∅.

Theorem . Assume that (H) holds. In addition, we suppose that the following condi-
tions hold:

(A) F : [, e] × C([–r, h],R) →Pcp,c(R) is an L-Carathéodory multi-valued map;
(A) there exist p ∈ C([, e],R) and � : [,∞) → (,∞) continuous and nondecreasing such

that

∥∥F(t, u)
∥∥ := sup

{|v| : v ∈ F(t, u)
} ≤ p(t)�

(‖u‖[–r,h]
)

for almost all t ∈ [, e] and all u ∈ C([–r, h],R).

Then the problem ()-() has at least one solution on the interval [ – r, e + h].

Proof We transform the problem ()-() into a fixed point problem. A solution to ()-()
is a fixed point of the operator N : C([ – r, e + h],R) −→P(C([ – r, e + h],R)) defined by

N (x) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

h ∈ C([ – r, e + h],R) :

h(t) =

⎧
⎪⎪⎨

⎪⎪⎩

χ (t), if t ∈ [ – r, ],
∫ t

 G(t, s)v(s) ds
s , if t ∈ [, e],

ψ(t), if t ∈ [e, e + h],

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

where

v ∈ SF ,y =
{

v ∈ L([, e],R
)

: v(t) ∈ F
(
t, yt) for a.e. t ∈ J

}
.
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As in the proof of Theorem ., let B = {y ∈ C([ – r, e + h],R) : y() = } and let T : B →
P(B) be defined by

T(y) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

h ∈ C([ – r, E + h],R) :

h(t) =

⎧
⎪⎪⎨

⎪⎪⎩

, if t ∈ [ – r, ],
∫ t

 G(t, s)v(s) ds
s , if t ∈ [, e],

, if t ∈ [e, e + h].

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

Now we show that the operator T has a fixed point which is equivalent to proving that the
operator N has a fixed point. This, in turn, will imply that there exists a solution of the
problem ()-(). We do it in several steps.

Claim  T(y) is convex for each y ∈ C([ – r, e + h],R).

This claim is obvious, since F has convex values.

Claim  T maps bounded sets into bounded sets in C([ – r, e + h],R).

As is Step  of the proof of Theorem ., let Uk = {y ∈ B : ‖y‖[–r,e+h] ≤ k}.
Let y ∈ Uk . Then, for each h ∈ T(y), there exists v ∈ SF ,y such that

h(t) =
∫ e


G(t, s)v(s)

ds
s

, t ∈ [, e],

and that

∣∣h(t)
∣∣ ≤

∣
∣∣
∣


�(α)

∫ t



(
log

t
s

)α– v(s)
s

ds – (log t)α– 
�(α)

∫ e



(
log

e
s

)α– v(s)
s

ds
∣
∣∣
∣

≤ 
�(α)

∫ t



(
log

t
s

)α– p(s)�(‖ys + us‖[–r,h])
s

ds

+ (log t)α– 
�(α)

∫ e



(
log

e
s

)α– p(s)�(‖ys + us‖[–r,h])
s

ds

≤ ‖p‖�(k + max{‖x‖[–r,],‖x‖[e,e+h]})
�(α + )

.

Thus

‖h‖[–r,e+h] ≤ ‖p‖�(k + max{‖x‖[–r,],‖x‖[e,e+h]})
�(α + )

:= L̂.

This shows that T maps bounded sets into bounded sets in B.

Claim  T maps bounded sets in C([ – r, e + h],R) into equicontinuous sets.

We consider Bk as in Claim  and let h ∈ T(y) for y ∈ Bk , k > . Now let t, t ∈ [, e] with
t > t. Then we have

∣
∣h(t) – h(t)

∣
∣ ≤

∫ e



∣
∣G(t, s) – G(t, s)

∣
∣
∣
∣f

(
s, ys + us)∣∣ds

s

≤ ‖p‖�
(
k + max

{‖x‖[–r,],‖x‖[e,e+h]
})∫ e



∣
∣G(t, s) – G(t, s)

∣
∣ds

s
.
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Clearly the right-hand side of the last inequality tends to zero as t → t. In view of Claims
, , and the Arzelá-Ascoli theorem, we can conclude that T : B −→ P(B) is completely
continuous.

In our next step, we show that T is upper semicontinuous. It is well known [], Propo-
sition ., that T will be upper semicontinuous if we prove that it has a closed graph, since
T is already shown to be completely continuous.

Claim  T has closed graph.

Let xn → x∗, hn ∈ T(xn), and hn → h∗. Then we need to show that h∗ ∈ T(x∗). Associated
with hn ∈ T(xn), there exists vn ∈ SF ,xn such that, for each t ∈ [, ],

hn(t) =


�(α)

∫ t



(
log

t
s

)α– vn(s)
s

ds – (log t)α– 
�(α)

∫ e



(
log

e
s

)α– vn(s)
s

ds.

Thus it suffices to show that there exists v∗ ∈ SF ,x∗ such that, for each t ∈ [, ],

h∗(t) =


�(α)

∫ t



(
log

t
s

)α– v∗(s)
s

ds – (log t)α– 
�(α)

∫ e



(
log

e
s

)α– v∗(s)
s

ds.

Let us consider the linear operator � : L([, ],R) → C([, ],R) given by

f → �(v)(t) =


�(α)

∫ t



(
log

t
s

)α– v(s)
s

ds – (log t)α– 
�(α)

∫ e



(
log

e
s

)α– v(s)
s

ds.

Observe that

∥
∥hn(t) – h∗(t)

∥
∥ =

∥∥
∥∥


�(α)

∫ t



(
log

t
s

)α– (vn(s) – v∗(s))
s

ds

– (log t)α– 
�(α)

∫ e



(
log

e
s

)α– (vn(s) – v∗(s))
s

ds
∥∥
∥∥

→ , as n → ∞.

Thus, it follows by Lemma . that � ◦ SF is a closed graph operator. Further, we have
hn(t) ∈ �(SF ,xn ). Since xn → x∗, therefore, we have

h∗(t) =


�(α)

∫ t



(
log

t
s

)α– v∗(s)
s

ds – (log t)α– 
�(α)

∫ e



(
log

e
s

)α– v∗(s)
s

ds,

for some v∗ ∈ SF ,x∗ .

Claim  We will show that there exists an open set U ⊂ B with y 	= λTy for  < λ <  and
y ∈ ∂U .

Let y ∈ B be such that y ∈ λT(y) for some  < λ < . Then there exists v ∈ SF ,y such that

y(t) = λ

∫ e


G(t, s)v(s)

ds
s

, t ∈ [, e].
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This implies by our assumptions that, for each t ∈ [, e], we have

∣∣y(t)
∣∣ ≤ 

�(α)

∫ t



(
log

t
s

)α– p(s)�(‖ys + us‖[–r,h])
s

ds

+ (log t)α– 
�(α)

∫ e



(
log

e
s

)α– p(s)�(‖ys + us‖[–r,h])
s

ds

≤ ‖p‖�(‖y‖[–r,h] + max{‖x‖[–r,],‖x‖[e,e+h]})
�(α)

∫ e



(
log

e
s

)α– 
s

ds

≤ ‖p‖

�(α + )
�

(‖y‖[–r,e+h] + max
{‖x‖[–r,],‖x‖[e,e+h]

})
.

Then

‖y‖[–r,e+h]
‖p‖
�(α+)�(‖y‖[–r,e+h] + max{‖x‖[–r,],‖x‖[e,e+h]})

≤ .

By (H), there exists K such that ‖y‖[–r,e+h] 	= K. Set

U =
{

y ∈ C
(
[ – r, e + h],R

)
: ‖y‖[–r,e+h] < K + 

}
.

From the choice of U there is no y ∈ ∂U such that y ∈ λT(y) for λ ∈ (, ). As a conse-
quence of the Leray-Schauder alternative for Kakutani maps (Lemma .), we deduce that
T has a fixed point, which implies that the problem ()-() has at least one solution. This
completes the proof. �

Finally, we present an existence result for the problem ()-() with nonconvex valued
right-hand side by using Covitz and Nadler’s fixed point theorem.

Theorem . Suppose that:

(B) F : [, e] × C([–r, h],R) −→ Pcp(R) has the property that F(·, y) : [, e] −→ Pcp(R) is
measurable for each y ∈ C([–r, h],R);

(B) there exists  ∈ C(J ,R), such that

Hd
(
F(t, u), F(t, ū)

) ≤ (t)‖u – ū‖[–r,h] for every u, ū ∈ C
(
[–r, h],R

)
,

and

d
(
, F(, u)

) ≤ (t), for a.e. t ∈ [, e].

If


�(α + )

‖‖ < ,

then the problem ()-() has at least one solution.
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Proof Transform the problem ()-() into a fixed point problem by means of the multi-
valued operator T : B → P(B) introduced in Theorem .. We shall show that T satisfies
the assumptions of Lemma .. The proof will be given in two steps.

Step : T(y) ∈Pcl(B) for each y ∈ B.
Indeed, let (yn)n≥ ∈ T(y) such that yn −→ ỹ in B. Then ỹ ∈ B and there exists gn ∈ SF ,y

such that, for each t ∈ [, e],

yn(t) =
∫ e


G(t, s)gn(s)

ds
s

.

Using (B) together with the fact that F has compact values, we may pass to a subsequence
to see that gn converges weakly to g in L([.],R). Then g ∈ SF ,x and, for each t ∈ [, e], we
have

yn(t) −→ ỹ(t) =
∫ e


G(t, s)g(s)

ds
s

.

So ỹ ∈ T(y).
Step : There exists γ <  (γ := 

�(α+)‖‖) such that

Hd
(
T(y),T(y)

) ≤ γ ‖y – y‖[–r,e+h] for each y, y ∈ B.

Let y, y ∈ B and h ∈ T(y). Then there exists g(t) ∈ F(t, yt + ut) such that

h(t) =
∫ e


G(t, s)g(s)

ds
s

,

for each t ∈ J . From (B) it follows that

Hd
(
F
(
t, yt + ut), F

(
t, yt + ut)) ≤ (t)‖y – y‖[–r,h], t ∈ [, e].

Hence there is w ∈ F(t, yt + ut) such that

∣∣g(t) – w
∣∣ ≤ (t)‖y – y‖[–r,h], t ∈ [, e].

Consider U : [, e] →P(E), given by

U(t) =
{

w ∈ E :
∣
∣g(t) – w

∣
∣ ≤ (t)‖y – y‖[–r,h]

}
.

Since the multi-valued operator V (t) = U(t) ∩ F(t, yt + ut) is measurable (see Proposi-
tion III. in []), there exists a function g(t), which is a measurable selection for V . So,
g(t) ∈ F(t, yt + ut) and

∣
∣g(t) – g(t)

∣
∣ ≤ (t)‖y – y‖[–r,h], for each t ∈ [, e].

Let us define, for each t ∈ [, e],

h(t) =
∫ e


G(t, s)g(s)

ds
s



Agarwal et al. Advances in Difference Equations  (2016) 2016:92 Page 14 of 15

and

∣
∣h(t) – h(t)

∣
∣ ≤

∫ e



∣
∣G(t, s)

∣
∣
∣
∣g(s) – g(s)

∣
∣ds

s

≤
∫ e



∣
∣G(t, s)

∣
∣(s)‖y – y‖[–r,h]

ds
s

≤ ‖‖‖y – y‖[–r,h]

�(α)

∫ e



(
log

e
s

)α– 
s

ds

≤ 
�(α + )

‖‖‖y – y‖[–r,h].

Thus

‖h – h‖[–r,e+h] ≤ 
�(α + )

‖‖‖y – y‖[–r,e+h].

Analogously, interchanging the roles of y and y, it follows that

Hd
(
T(y),T(y)

) ≤ 
�(α + )

‖‖‖y – y‖[–r,e+h].

So, T is a contraction and hence, by Lemma ., T has a fixed point y, which is a solution
to ()-(). �

5 Conclusions
We have obtained several existence results for boundary value problems of Hadamard-
type fractional differential equations and inclusions involving both retarded and advanced
arguments by applying some standard tools of fixed point theory for single-valued and
multi-valued maps. Our results are new and yield several new ones by fixing the parame-
ters r and h appropriately. For example, the results for ordinary Hadamard-type fractional
differential equations/inclusions follow by taking r = h = . Our results reduce to the re-
tarded and advanced argument cases for r > , h =  and r = , h > , respectively. The
mixed (both retarded and advanced) case follows by choosing r >  and h > .
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