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Abstract
We are concerned with a parameter estimation for mean-reversion type stochastic
differential equations (SDEs) driven by Brownian motion. The equations, involving a
small dispersion parameter, are observed at discrete (regularly spaced) time instants.
The least square method is utilized to derive an asymptotically consistent estimator.
We then discuss the rate of convergence of the least square estimator. The new
feature of our study in this paper is that, due to the mean-reversion type drift
coefficient in the SDEs, we have to use the Girsanov transformation to simplify the
equations, which then gives rise to the corresponding convergence of the least
square estimator being with respect to a family of probability measures indexed by
the dispersion parameter, while in the literature the existing results have dealt with
convergence with respect to a given probability measure.
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1 Introduction
Let (�,F , P) be a complete probability space endowed with a usual filtration {Ft}t≥, i.e.,
Fs ⊂ Ft ⊂ F for  ≤ s ≤ t ≤  and F contains all null set of P. We are interested in the
unique solution, denoted by X = (Xt)≤t≤, of the following stochastic differential equa-
tions (SDEs) of mean-reversion type:

dXt =
[
r + α(Xt , t, ε)

]
b(Xt , t) dt + εσ (Xt , t) dBt ,  ≤ t ≤  (.)

with initial value X = x ∈R, where r is a constant (which is supposed to be unknown), ε ∈
(, ] is a parameter describing the smallness of dispersion, α : (x, t, ε) ∈R×[, ]×(, ] �→
α(x, t, ε) ∈ R is twice differentiable with respect to x and differentiable with respect to t,
both b : (x, t) ∈ R × [, ] �→ b(x, t) ∈ R and σ : (x, t) ∈ R × [, ] �→ σ (x, t) ∈ R \ {} are
continuous with respect to t, and (Bt)≤t≤ is a one dimensional {Ft}-Brownian motion
defined on the filtered probability space (�,F ,P , {Ft}≤t≤).

The above mean-reversion type SDE (with ε = ) was used widely in modeling price
dynamics in mathematical studies of finance and economics. One feature of such a kind of
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modeling is that the function α in the drift coefficient satisfies a typical nonlinear parabolic
partial differential equation - the Burgers equation; see, e.g., [] and references therein.

In our present paper, we are interested in the discrete-time system of (.) starting with
the initial X = x. That is, for any fixed n ∈ N and for any given partition  = t < t <
· · · < ti– < ti < · · · < tn = , we define Xti , i = , , . . . , n, via the Euler-Maruyama numerical
scheme

Xtk = x +
k∑

i=

[
r + α(Xti– , ti–, ε)

]
b(Xti– , ti–)�ti + ε

k∑

i=

σ (Xti– , ti–)(Bti – Bti– )

for  ≤ k ≤ n, where �ti = ti – ti–, i = , . . . , n.
Before we proceed further, let us give a brief overview of the topic considered in the

present paper. Historically, the theory of SDEs has been very well developed since the
seminal work of the great Japanese mathematician Kiyosi Itô in the mid s. Since then,
SDEs had profound impacts on many areas in science and technology, cf. e.g. the excellent
textbook [] (and references therein). Nowadays, the theory of SDEs has played an impor-
tant role in modeling uncertain and volatile systems arising in many diverse subjects such
as economics and finance, biology, chemistry, ecology, physics, and so on. Fundamental
issues are to estimate certain parameters (i.e., deterministic quantities) appearing in the
random models by certain observations (or by experimental data). Estimating the drift
parameter of SDEs is one of such important topics. In the past decades, there were many
papers devoted to the drift parameter estimation for SDEs and there are two main meth-
ods; see for instance Prakasa Rao [], Liptser and Shiryaev [], Kutoyants [] for the max-
imum likelihood estimator (MLE) method, and Dorogovcev [], Le Breton [], Kasonga
[] for the least square estimator (LSE) method. It turns out that both the MLE and the
LSE are asymptotically equivalent and the LSE enjoys the strong consistency property un-
der some regularity conditions. Moreover, Prakasa Rao [] gave a study of the asymptotic
distribution. Further, Shimizu and Yoshida [] considered a multidimensional diffusion
process with jumps whose jump term is driven by a compound Poisson process. They let
α(x, θ ) be the drift coefficient and b(x,σ ) be the diffusion coefficient and study estimation
of the parameter α(x, θ ) = (θ ,σ ). Under certain assumptions, the consistency and asymp-
totic normality of an estimator were shown. Shimizu [] considered a similar case and
proposed an estimating function with more complicated situation.

On the other hand, based on continuous time observations or discrete-time observa-
tions, there are correspondingly two kinds of drift parameter estimates. A parameter es-
timation for diffusion processes based on continuous-time observation can be found in,
e.g., Kutoyants [], Kutoyants [], Uchida and Yoshida [], and Yoshida [, ]), in par-
ticular, Uchida and Yoshida [] considered the evaluation problem of statistical models
for diffusion processes driven by a small noise. As for a parameter estimation based on
discrete-time observations, Sørensen [] gave an excellent survey of existing estimation
techniques for stationary and ergodic diffusion processes observed at discrete points in
time. It is more realistic and interesting to consider the parameter estimation for diffusion
processes based on discrete observation, since the actual data may be obtained discretely.
We begin with our study from this point of view.

Recently, the parameter estimation for mean-reversion type SDEs has received a lot of
attention. Long [] gave an investigation of the parameter estimation for discretely ob-
servations on one dimensional Ornstein-Uhlenbeck (O-U) processes driven by small Lévy
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noise. One assumed that the drift function b(x, θ ) = –θx is linear for both x and θ . Mean-
while the driving Lévy process was Lt = aBt + bZt , where a and b are known constants,
{Bt , t ≥ } is a standard Brownian motion and Zt is a α-stable Lévy motion independent
of {Bt , t ≥ }. In this framework, the author established the consistency and asymptotic
normality for the proposed estimators. Long [] investigated the parameter estimation
problem for discrete observations driven by a small Levy noises and further gave a dis-
cussion of the case of the drift function b(x, θ ) = θb(x). Under some regularity conditions,
the author obtained the consistency and rate of convergence of the least squares estima-
tor when the small dispersion parameter ε →  and n → ∞ simultaneously. In a similar
framework, Ma [] extended the results of Long [] to the case where the driving noise
was a general Lévy process. After that, by Hu and Long [] a least square estimator for
Ornstein-Uhlenbeck processes driven by α-stable motions was studied. The main focus
of Hu and Long [] is to study the strong consistency and asymptotic distributions of
the least square estimator for generalized O-U processes. After obtaining a least square
estimator, the authors proved the strong consistency result and obtained further the rate
of convergence of the estimator and an asymptotic distribution. Hu and Long [] ex-
tended the results of [] to the case that the drift function b(x, θ ) = α –θx. When α = ,
the mean-reverting α-stable motion becomes an O-U process. Under certain conditions,
by using a least square method, they showed the consistency property and obtained the
asymptotic distribution.

There are many applications of small noise asymptotic to mathematical finance; see,
e.g., Kunitomo and Takahashi [], Long [], Takahashi [], Takahashi and Yoshida
[], Uchida and Yoshida [], and Yoshida []. We mention particularly Kunitomo and
Takahashi [] who proposed a new methodology for the valuation problem of financial
contingent claims when the underlying asset prices follow a general class of continuous
Itô processes. Furthermore, the authors gave two interesting examples of the valuation
problems of average options for interest rates.

In the present paper, we consider a fairly general class of stochastic processes solving
SDEs of mean-reversion type (.). We aim to investigate the least square estimator for
the true value of r based on the (discrete) sampling data (Xti )

n
i=. Comparing to the exist-

ing studies in the literature, a major difficulty in our case is the appearance of the item
α(Xt , t, ε) in the drift coefficient of (.). The feature of our study is the utilizing of the
Girsanov transformation, which makes it possible to simplify the drift coefficient, there-
fore the equation, under a family of probability measures indexed by the small dispersion
parameter ε ∈ (, ]. As such, our consideration creates a novel point: all involved con-
vergences are with respect to the ε indexed family of probability measures which, to our
knowledge, has not been considered in the literature. For the Girsanov transformation for
SDEs, the reader is referred to Øksendal []. In our case here, we apply the Girsanov trans-
formation to get rid of the term α(Xt , t, ε), which changes the original probability measure
P to a family of (equivalent) probability measures Qε . We then derive explicitly the least
square estimators which also depend on ε and therefore indexed by ε for the simplified
SDE. From this we can prove, under certain conditions, the convergence of the least square
estimators under the family Qε to a limit which turns out to be the true value of the pa-
rameter r. We end up by studying the convergence rate and derive further the asymptotic
distribution under a new equivalent probability measure.
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The paper is organized as follows. In the next section, we give some preliminaries, start-
ing with the discretization of our equation (.) is presented, which will be used in later
derivations and proofs. In Section , we focus on showing the convergence of the esti-
mators with high frequency and small dispersion simultaneously. Section  is devoted to
establishing the rate of the relevant convergence and the associated asymptotic distribu-
tion. To finish, the last section draws a conclusion.

2 Preliminaries and auxiliary results
In this section, we start with an introduction of the SDEs of mean-reversion type and
then we impose some assumptions on our SDE (.) to ensure the existence and unique-
ness of the solution. Furthermore, we introduce the Girsanov transformation to simplify
our equation (.). On the other hand, in order to obtain the consistency and asymptotics
of our LSE r̂n,ε , an explicit form of r̂n,ε is defined. In addition, we would like to present
some notations and preliminaries which will be needed in the latter sections of the pa-
per. Throughout the paper, we use notation ‘→Q’ to denote ‘convergence in probability Q’;
notation ‘→P ’ to denote ‘convergence in probability P’ and notation ‘⇒’ to denote ‘con-
vergence in distribution’.

We assume the coefficients of (.) fulfill the following conditions throughout the paper:
(C.) ∃ a constant L >  such that |b(x, t) – b(y, t)| ≤ L|x – y|, for x, y ∈R, t ∈ [, ];
(C.) ∃ a constant L′′ >  such that, for x, y ∈R, t ∈ [, ] and ε ∈ (, ],

∣∣α(x, t, ε)b(x, t) – α(y, t, ε)b(y, t)
∣∣ ≤ L′′|x – y|;

(C.) ∃ a constant L′ >  such that |σ (x, t) – σ (y, t)| ≤ L′|x – y|, for x, y ∈ R, t ∈ [, ];
(C.) ∃ constants K ′ > , m >  such that σ –(x, t) ≤ K ′( + |x|m), for x ∈R, t ∈ [, ].
The above conditions guarantee (see, e.g., []) the existence of a unique solution of (.)

for a given initial data X = x ∈ R. The celebrated Girsanov transformation (also called
the transformation of the drift) provides a very useful and efficient approach to solve (.).
The transformation says the following.

Let u : R× [, ] →R satisfy the following Novikov condition:

E

[
exp

(



∫ t



∣∣u(Xs, s)
∣∣ ds

)]
< ∞, ∀t ∈ [, ].

Then, by the Girsanov theorem (cf. e.g. Theorem IV in Section . of []),

exp

(∫ t


u(Xs, s) dBs –




∫ t



[
u(Xs, s)

] ds
)

, t ∈ [, ],

is an {Ft}t∈[,]-martingale. Furthermore, for t ∈ [, ], we define

Qt := exp

(∫ t


u(Xs, s) dBs –




∫ t



[
u(Xs, s)

] ds
)

· P

or equivalently, in terms of the Radon-Nikodym derivative,

dQt

dP
= exp

(∫ t


u(s, Xs) dBs –




∫ t



[
u(Xs, s)

] ds
)

.
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Then taking Q in particular, we see that

B̃t := Bt –
∫ t


u(s, Xs) ds,  ≤ t ≤ ,

is an {Ft}t∈[,]-Brownian motion under the probability Q. Moreover, the solution process
Xt of (.) solves the following SDE:

dXt =
{[[

r + α(Xt , t, ε)
]
b(Xt , t) + εσ (Xt , t)u(t, Xt)

]}
dt + σ (Xt , t) dB̃t , t ∈ [, ]. (.)

In order to get rid of the term α(Xt , t, ε) for ε ∈ (, ], we can specify u such that

α(x, t, ε)b(x, t) + εσ (x, t)u(x, t) = ,

and hence

α(Xt , t, ε)b(Xt , t) + εσ (Xt , t)u(Xt , t) = 

and our equation (.) becomes

dXt = rb(Xt , t) dt + εσ (Xt , t) dB̂ε
t . (.)

Thus, we set

uε(x, t) :=
α(x, t, ε)b(x, t)

εσ (x, t)

so that

uε(Xt , t) =
α(Xt , t, ε)b(Xt , t)

εσ (Xt , t)
. (.)

The Novikov condition for this uε is then the following:

E
[

exp

(



∫ t



∣
∣∣∣
α(Xs, s, ε)b(Xs, s)

εσ (Xs, s)

∣
∣∣∣



ds
)]

< ∞, t ∈ [, ], (.)

which is needed to put on the coefficients of the original equation (.). Then we define

Mε
t = exp

(
–

∫ t


uε(Xs, s) dBs –




∫ t


u

ε(Xs, s) ds
)

, t ∈ [, ], (.)

where Mε
t is an {Ft}t∈[,]-martingale. For each ε ∈ (, ], let Qε be a probability measure

on F, satisfying

dQε := Mε
 dP. (.)

Then we define

B̂ε
t :=

∫ t


uε(Xs, s) ds + Bt , (.)
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where B̂ε
t is an {Ft}t∈[,]-Brownian motion with respect to the probability measure Qε .

Then we arrive at equation (.) for Xt , that is,

dXt = rb(Xt , t) dt + εσ (Xt , t) dB̂ε
t , t ∈ [, ],

which, from now, we will focus on. We denote the true value of the parameter r by r and
the least square estimator of r by r̂. As mentioned before we focus on the investigation
of the least square estimator for the true value r based on the (discrete) sampling data
(Xti )

n
i= obtained by the Euler-Maruyama numerical scheme for the Cauchy problem of

equation (.) with initial X = x. For simplicity, we assume that the process Xt is observed
at regularly spaced time points  = t < t < · · · < ti– < ti < · · · < tn =  with {ti = i

n , i =
, , , . . . , n}, where n ∈N is arbitrarily fixed. That is,

Xti = x +
n∑

i=

rb(Xti– , ti–)�ti + ε

n∑

i=

σ (Xti– , ti–)
(
B̂ε

ti
– B̂ε

ti–

)
.

Let us start with the use of the least square method to get a consistent estimator. We first
discretize (.) as follows:

Xti – Xti– = rb(Xti– , ti–)�ti + εσ (Xti– , ti–)�B̂ε
ti

,

where �ti = ti – ti– = 
n ; �B̂ε

ti
= B̂ε

ti
– B̂ε

ti–
is the increment of Brownian motion. Then

Xti – Xti– – rb(Xti– , ti–)�ti

εσ (Xti– , ti–)
= �B̂ε

ti
.

Since �B̂ε
ti

is a normal distribution with zero mean on the new probability space (�,F , Qε),
we obtain the variance of �B̂ε

ti
and denote it by the following contrast function:

ρn,ε(r) :=
n∑

i=

∣
∣∣
∣
Xti – Xti– – rb(Xti– , ti–)�ti

εσ (Xti– , ti–)

∣
∣∣
∣



.

In order to get the least square estimator r̂n,ε , we let

∂ρn,ε(r)
∂r

= ,

from which we get the solution, denoted by r̂n,ε , which is given as

r̂n,ε :=
∑n

i= b(Xti– , ti–)(Xti – Xti– )σ –(Xti– , ti–)
n– ∑n

i= b(Xti– , ti–)σ –(Xti– , ti–)
. (.)

With all these in hand, we now present several auxiliary results which are needed for
our later considerations.

Definition . Let X
t be the solution of the following ordinary differential equation under

the true value of the drift parameter:

dX
t = rb

(
X

t , t
)

dt, X
 = x, (.)

where r be the real value of r.
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The following lemma is a reformulation of Theorem . of [] (see also [] or []),
which is nothing but the Burkholder-Davis-Gundy inequality in our setting.

Lemma . Let g ∈L(R+;R). Define, for  ≤ t ≤ T ,

x(t) =
∫ t


g(s) dBs

and

A(t) =
∫ t



∣
∣g(s)

∣
∣ ds.

Then, for every p > , there exist universal positive constants cp, Cp (depending only on p),
such that

cpE
∣
∣A(t)

∣
∣

p
 ≤ E

(
sup

≤s≤t

∣
∣x(s)

∣
∣p

)
≤ CpE

∣
∣A(t)

∣
∣

p


for all t ≥ . In particular, one may take cp = (p/)p, Cp = (/p)p/, if  < p < ; cp = ,
Cp = , if p = ; cp = (p)–p/, Cp = [pp+/(p – )p–]p/, if p > .

Let us next show the following two lemmas which will be used in Section  and Section .

Lemma . Under conditions (C.), (C.), (C.), we have

∣∣Xt – X
t
∣∣ ≤ εeL|r|t sup

δ∈[,t]

∣
∣∣
∣

∫ δ


σ (Xs, s) dB̂ε

t

∣
∣∣
∣. (.)

Proof We have

X
t = x + r

∫ t


b
(
X

s , s
)

ds. (.)

From (.) we have

Xti – Xti– = r

∫ ti

ti–

b(Xs, s) ds + ε

∫ ti

ti–

σ (Xs, s) dB̂ε
s . (.)

Together with (.) and (.), we obtain

Xt – X
t = r

∫ t



(
b(Xs, s) – b

(
X

s , s
))

ds + ε

∫ t


σ (Xs, s) dB̂ε

s . (.)

By condition (C.), we get

∣∣Xt – X
t
∣∣ ≤ L|r|

∫ t



∣∣Xs – X
s
∣∣ds + ε

∣
∣∣
∣

∫ t


σ (Xs, s) dB̂ε

s

∣
∣∣
∣. (.)

By the Gronwall inequality, we get

∣
∣Xt – X

t
∣
∣ ≤ εeL|r|t sup

δ∈[,t]

∣∣
∣∣

∫ δ


σ (Xs, s) dB̂ε

s

∣∣
∣∣. �
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Lemma . Under conditions (C.), (C.), (C.), we have

sup
≤t≤

∣∣Xt – X
t
∣∣ →Qε  as ε → . (.)

Proof By Lemma .,

sup
t∈[,]

∣
∣Xt – X

t
∣
∣ ≤ εeL|r| sup

δ∈[,t]

∣∣
∣∣

∫ δ


σ (Xs, s) dB̂ε

t

∣∣
∣∣. (.)

Let η > , by Lemma ., the Markov inequality, and condition (C.), we have

Qε

(
εeL|r| sup

δ∈[,t]

∣∣
∣∣

∫ δ


σ (Xs, s) dB̂ε

s

∣∣
∣∣ > η

)

≤ η–eL|r|εEQε

[
sup

δ∈[,t]

∣
∣∣
∣

∫ δ


σ (Xs, s) dB̂ε

s

∣
∣∣
∣

]

≤ 
√

η–eL|r|εEQε

[(∫ δ



∣∣σ (Xs, s)
∣∣ ds

) 

]

. (.)

Since σ (x, t) satisfies the Lipschitz condition and is continuous with respect to t, σ (x, t)
meets the following linear growth condition:

∣∣σ (x, t)
∣∣ ≤ K

(
 + |x|),

where K >  is a constant. Then we have

Qε

(
εeL|r| sup

δ∈[,t]

∣
∣∣
∣

∫ δ


σ (Xs, s) dB̂ε

s

∣
∣∣
∣ > η

)

≤ 
√

η–eL|r|ε
(∫ δ


K

(
 + EQε |Xs|

)
ds

) 


. (.)

By the Hölder inequality, the Itô isometry, and the Gronwall inequality, we get EQε |Xs| ≤
C, where C >  is a constant. Then we have

Qε

(
εeL|r| sup

δ∈[,t]

∣
∣∣∣

∫ δ


σ (Xs, s) dB̂ε

s

∣
∣∣∣ > η

)
≤ 

√
η–eL|r|ε

[
K( + C)δ

] 
 . (.)

The above equation implies that

sup
≤t≤

∣
∣Xt – X

t
∣
∣ →Qε  as ε → . �

3 Consistency of the least square estimator
This section is devoted to prove the consistency of the least square estimator r̂n,ε . In the
following, we first derive an explicit decomposition for r̂n,ε . Based on this, we will show
the strong consistency of the LSE r̂n,ε . Note from (.), that we have

Xti – Xti– = r

∫ ti

ti–

b(Xs, s) ds + ε

∫ ti

ti–

σ (Xs, s) dB̂ε
s . (.)
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Combining the above with (.) then yields the following decomposition:

r̂n,ε =
∑n

i= b(Xti– , ti–)(Xti – Xti– )σ –(Xti– , ti–)
n– ∑n

i= b(Xti– , ti–)σ –(Xti– , ti–)

=
r

∑n
i= b(Xti– , ti–)σ –(Xti– , ti–)

∫ ti
ti–

b(Xs, s) ds
n– ∑n

i= b(Xti– , ti–)σ –(Xti– , ti–)

+
ε
∑n

i= b(Xti– , ti–)σ –(Xti– , ti–)
∫ ti

ti–
σ (Xs, s) dB̂s

n– ∑n
i= b(Xti– , ti–)σ –(Xti– , ti–)

= r +
r

∑n
i= b(Xti– , ti–)σ –(Xti– , ti–)

∫ ti
ti–

(b(Xs, s) – b(Xti– , ti–)) ds
n– ∑n

i= b(Xti– , ti–)σ –(Xti– , ti–)

+
ε
∑n

i= b(Xti– , ti–)σ –(Xti– , ti–)
∫ ti

ti–
σ (Xs, s) dB̂s

n– ∑n
i= b(Xti– , ti–)σ –(Xti– , ti–)

=: r +
φ(n, ε)
φ(n, ε)

+
φ(n, ε)
φ(n, ε)

.

Our first main result is the following theorem.

Theorem . We have r̂n,ε →Qε r, as n → ∞ and ε →  with εn 
 → .

To prove Theorem ., the following lemmas are needed. We shall study the asymptotic
behavior of φ(n, ε), φ(n, ε), and φ(n, ε), respectively.

Lemma . Under conditions (C.)-(C.), we have

φ(n, ε) →Qε

∫ t


σ –(X

t , t
)
b(X

t , t
)

dt

as both n → ∞ and ε → .

Proof We first have

φ(n, ε) = n–
n∑

i=

b(Xti– , ti–)σ –(Xti– , ti–)

= n–
n∑

i=

b(X
ti–

, ti–
)
σ –(X

ti–
, ti–

)

+ n–
n∑

i=

(
b(Xti– , ti–) – b(X

ti–
, ti–

))
σ –(Xti– , ti–)

+ n–
n∑

i=

b(X
ti–

, ti–
)(

σ –(Xti– , ti–) – σ –(X
ti–

, ti–
))

=: φ,(n, ε) + φ,(n, ε) + φ,(n, ε).

For φ,(n, ε), according to the definition of Riemann integral, we obtain, as n → ∞,

φ,(n, ε) →Qε

∫ 


b(X

s , s
)
σ –(X

s , s
)

ds.
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For φ,(n, ε), we have the following derivation:

∣
∣φ,(n, ε)

∣
∣ ≤ n–

n∑

i=

∣
∣b(Xti– , ti–) – b(X

ti–
, ti–

)∣∣σ –(Xti– , ti–)

≤ n–
n∑

i=

K ′( + |Xti– |m
)∣∣b(Xti– , ti–)

– b
(
X

ti–
, ti–

)∣∣∣∣b(Xti– , ti–) + b
(
X

ti–
, ti–

)∣∣

≤ n–
n∑

i=

K ′( + |Xti– |m
)(∣∣b(Xti– , ti–) – b

(
X

ti–
, ti–

)∣∣

+ 
∣∣b

(
X

ti–
, ti–

)∣∣∣∣b(Xti– , ti–) – b
(
X

ti–
, ti–

)∣∣)

≤ n–K ′
n∑

i=

∣∣b(Xti– , ti–) – b
(
X

ti–
, ti–

)∣∣

+ n–K ′
n∑

i=

∣∣b
(
X

ti–
, ti–

)∣∣∣∣b(Xti– , ti–) – b
(
X

ti–
, ti–

)∣∣

+ n–K ′
n∑

i=

|Xti– |m
∣∣b(Xti– , ti–) – b

(
X

ti–
, ti–

)∣∣

+ n–K ′
n∑

i=

∣
∣b

(
X

ti–
, ti–

)∣∣|Xti– |m
∣
∣b(Xti– , ti–) – b

(
X

ti–
, ti–

)∣∣

:= φ
,(n, ε) + φ

,(n, ε) + φ
,(n, ε) + φ

,(n, ε).

By condition (C.), we have

φ
,(n, ε) ≤ n–LK ′

n∑

i=

∣∣Xti– – X
ti–

∣∣ ≤ LK ′
(

sup
≤t≤

∣∣Xt – X
t
∣∣
)

.

By Lemma ., we get φ
,(n, ε) →Qε  as ε → . Next, we have

φ
,(n, ε) ≤ n–LK ′

n∑

i=

∣
∣b

(
X

ti–
, ti–

)∣∣
∣
∣Xti– – X

ti–

∣
∣

≤ LK ′ sup
≤t≤

∣∣Xt – X
t
∣∣
∫ 



∣∣b
(
X

t , t
)∣∣dt.

By Lemma ., we have φ
,(n, ε) →Qε  as both n → ∞ and ε → . For φ

,(n, ε), since

|Xti– |m =
(∣∣Xti– – X

ti–

∣∣ +
∣∣X

ti–

∣∣)m ≤ m(∣∣Xti– – X
ti–

∣∣m +
∣∣X

ti–

∣∣m)
, (.)

where m ≥ . By condition (C.), we have

φ
,(n, ε) ≤ n–K ′Lm

n∑

i=

∣∣Xti– – X
ti–

∣∣m+ + n–K ′Lm
n∑

i=

∣∣X
ti–

∣∣m∣∣Xti– – X
ti–

∣∣.
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By Lemma ., we obtain φ
,(n, ε) →Qε  as n → ∞ and ε → . And by the same argu-

ment, we get φ
,(n, ε) →Qε  as both n → ∞ and ε → . Thus we get φ,(n, ε) →Qε  as

n → ∞. For φ,(n, ε), by conditions (C.), (C.), and (.), we have

∣∣φ,(n, ε)
∣∣ ≤ n–

n∑

i=

∣∣σ –(Xti– , ti–) – σ –(X
ti–

, ti–
)∣∣b(X

ti–
, ti–

)

≤ n–
n∑

i=

σ –(Xti– , ti–)σ –(X
ti–

, ti–
)

× ∣
∣σ (Xti– , ti–) – σ (X

ti–
, ti–

)∣∣b(X
ti–

, ti–
)

≤ n–K ′LK
n∑

i=

(
 + |Xti– |m

)∣∣Xti– – X
ti–

∣∣σ –(X
ti–

, ti–
)
b(X

ti–
, ti–

)

≤ n–K ′LK
n∑

i=

∣
∣Xti– – X

ti–

∣
∣σ –(X

ti–
, ti–

)
b(X

ti–
, ti–

)

+ n–K ′LKm
n∑

i=

∣
∣Xti– – X

ti–

∣
∣m+

σ –(X
ti–

, ti–
)
b(X

ti–
, ti–

)

+ n–K ′LKm
n∑

i=

∣
∣Xti– – X

ti–

∣
∣
∣
∣X

ti–

∣
∣m

σ –(X
ti–

, ti–
)
b(X

ti–
, ti–

)

≤ K ′LK
(

sup
≤t≤

∣∣Xt – X
t
∣∣ + m sup

≤t≤

∣∣Xt – X
t
∣∣m+

)
n–

×
n∑

i=

σ –(X
ti–

, ti–
)
b(X

ti–
, ti–

)

+ K ′LKm sup
≤t≤

∣∣Xt – X
t
∣∣n–

n∑

i=

∣∣X
ti–

∣∣m
σ –(X

ti–
, ti–

)
b(X

ti–
, ti–

)
.

We then get φ,(n, ε) →Qε  as both n → ∞ and ε → . �

Next, we turn to the study of the asymptotic behavior of φ(n, ε).

Lemma . For both n → ∞ and ε → ,

φ(n, ε) →Qε .

Proof From (.), we first show

|Xt – Xti– |

≤ |r|
∫ t

ti–

(∣∣b(Xs, s) – b(Xti– , ti–)
∣
∣ +

∣
∣b(Xti– , ti–)

∣
∣)ds + ε

∣∣
∣∣

∫ t

ti–

σ (Xs, s) dB̂ε
s

∣∣
∣∣

≤ |r|L
∫ t

ti–

|Xs – Xti– |ds + n–|r|
∣
∣b(Xti– , ti–)

∣
∣ + ε sup

ti–≤t≤ti

∣∣
∣∣

∫ t

ti–

σ (Xs, s) dB̂ε
s

∣∣
∣∣.

By Gronwall’s inequality, we obtain

|Xt – Xti– | ≤ erL(t–ti–)
[

n–|r|
∣
∣b(Xti– , ti–)

∣
∣ + ε sup

ti–≤t≤ti

∣∣
∣∣

∫ t

ti–

σ (Xs, s) dB̂ε
s

∣∣
∣∣

]
.
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This then yields

sup
ti–≤t≤ti

|Xt – Xti– | ≤ erLn–
[

n–|r|
∣∣b(Xti– , ti–)

∣∣ + ε sup
ti–≤t≤ti

∣
∣∣
∣

∫ t

ti–

σ (Xs, s) dB̂ε
s

∣
∣∣
∣

]
.

By conditions (C.) and (C.), we have

φ(n, ε) ≤ |r|
n∑

i=

K ′( + |Xti– |m
)∣∣b(Xti– , ti–)

∣∣

×
∣∣
∣∣

∫ ti

ti–

(
b(Xs, s) – b(Xti– , ti–)

)
ds

∣∣
∣∣

≤ K ′L|r|
n∑

i=

(
 + |Xti– |m

)∣∣b(Xti– , ti–)
∣∣
∫ ti

ti–

|Xs – Xti– |ds

≤ K ′L|r|
n∑

i=

(
 + |Xti– |m

)∣∣b(Xti– , ti–)
∣
∣n– sup

ti–≤t≤ti
|Xt – Xti– |

≤ K ′L|r|e
|r |L

n n–
n∑

i=

(
 + |Xti– |m

)∣∣b(Xti– , ti–)
∣
∣

+ K ′L|r|e
|r |L

n n–ε

n∑

i=

(
 + |Xti– |m

)∣∣b(Xti– , ti–)
∣
∣

× sup
ti–≤t≤ti

∣
∣∣
∣

∫ t

ti–

σ (Xs, s) dB̂ε
s

∣
∣∣
∣

=: φ,(n, ε) + φ,(n, ε). (.)

For φ,(n, ε), by condition (C.) and (.), we have

φ,(n, ε) ≤ K ′L|r|e
|r |L

n n–
n∑

i=

(
 + m∣

∣X
ti–

∣
∣m + m∣

∣Xti– – X
ti–

∣
∣m)

× (∣∣b
(
X

ti–
, ti–

)∣∣ + L
∣
∣Xti– – X

ti–

∣
∣)

≤ K ′L|r|e
|r |L

n n–
n∑

i=

∣∣b
(
X

ti–
, ti–

)∣∣( + m∣∣X
ti–

∣∣m)

+ K ′L|r|e
|r |L

n n–
n∑

i=

∣∣b
(
X

ti–
, ti–

)∣∣∣∣Xti– – X
ti–

∣∣m

+ K ′L|r|e
|r |L

n n–
n∑

i=

∣∣Xti– – X
ti–

∣∣( + m∣∣X
ti–

∣∣m)

+ K ′L|r|e
|r |L

n n–
n∑

i=

∣
∣Xti– – X

ti–

∣
∣m+

≤ K ′L|r|e
|r |L

n n–
n∑

i=

∣
∣b

(
X

ti–
, ti–

)∣∣( + m∣
∣X

ti–

∣
∣m)

+ K ′L|r|e
|r |L

n sup
≤t≤

∣∣Xti– – X
ti–

∣∣mn–
n∑

i=

∣∣b
(
X

ti–
, ti–

)∣∣
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+ K ′L|r|e
|r |L

n sup
≤t≤

∣∣Xti– – X
ti–

∣∣n–
n∑

i=

(
 + m∣∣X

ti–

∣∣m)

+ K ′L|r|e
|r |L

n sup
≤t≤

∣
∣Xti– – X

ti–

∣
∣m+n–. (.)

By Lemma ., it is clear to see that φ,(n, ε) →Qε  as both n → ∞ and ε → .
As for φ,(n, ε), we have

φ, ≤ K ′L|r|e
|r |L

n εn–
n∑

i=

(
 + m∣∣X

ti–

∣∣m + m∣∣Xti– – X
ti–

∣∣m)

× (∣∣b
(
X

ti–
, ti–

)∣∣ + L
∣
∣Xti– – X

ti–

∣
∣) sup

ti–≤t≤ti

∣∣
∣∣

∫ ti

ti–

σ (Xs, s) dB̂ε
s

∣∣
∣∣

≤ K ′L|r|e
|r |L

n εn–
n∑

i=

∣∣b
(
X

ti–
, ti–

)∣∣( + m∣∣X
ti–

∣∣m)
sup

ti–≤t≤ti

∣
∣∣∣

∫ ti

ti–

σ (Xs, s) dB̂ε
s

∣
∣∣∣

+ K ′L|r|e
|r |L

n εn–
n∑

i=

∣∣b
(
X

ti–
, ti–

)∣∣∣∣Xti– – X
ti–

∣∣m
sup

ti–≤t≤ti

∣
∣∣
∣

∫ ti

ti–

σ (Xs, s) dB̂ε
s

∣
∣∣
∣

+ K ′L|r|e
|r |L

n εn–
n∑

i=

∣∣Xti– – X
ti–

∣∣( + m∣∣X
ti–

∣∣m)
sup

ti–≤t≤ti

∣
∣∣
∣

∫ ti

ti–

σ (Xs, s) dB̂ε
s

∣
∣∣
∣

+ K ′L|r|e
|r |L

n εn–
n∑

i=

∣∣Xti– – X
ti–

∣∣m+
sup

ti–≤t≤ti

∣∣∣
∣

∫ ti

ti–

σ (Xs, s) dB̂ε
s

∣∣∣
∣

≤ K ′L|r|e
|r |L

n εn–
n∑

i=

∣
∣b

(
X

ti–
, ti–

)∣∣( + m∣
∣X

ti–

∣
∣m)

sup
ti–≤t≤ti

∣∣
∣∣

∫ ti

ti–

σ (Xs, s) dB̂ε
s

∣∣
∣∣

+ K ′L|r|e
|r |L

n εn– sup
≤t≤

∣
∣Xti– – X

ti–

∣
∣m

n∑

i=

∣
∣b

(
X

ti–
, ti–

)∣∣

× sup
ti–≤t≤ti

∣
∣∣∣

∫ ti

ti–

σ (Xs, s) dB̂ε
s

∣
∣∣∣

+ K ′L|r|e
|r |L

n εn– sup
≤t≤

∣∣Xti– – X
ti–

∣∣m
n∑

i=

(
 + m∣∣X

ti–

∣∣m)

× sup
ti–≤t≤ti

∣∣
∣∣

∫ ti

ti–

σ (Xs, s) dB̂ε
s

∣∣
∣∣

+ K ′L|r|e
|r |L

n εn– sup
≤t≤

∣∣Xti– – X
ti–

∣∣m+
n∑

i=

sup
ti–≤t≤ti

∣
∣∣
∣

∫ ti

ti–

σ (Xs, s) dB̂ε
s

∣
∣∣
∣

=: φ
,(n, ε) + φ

,(n, ε) + φ
,(n, ε) + φ

,(n, ε). (.)

For φ
,(n, ε), by the Markov inequality, the Hölder inequality, the Gronwall inequality, and

Lemma ., for any given γ > , we have

Qε

(∣∣φ
,(n, ε)

∣
∣ > γ

) ≤ γ –K ′L|r|e
|r |L

n εn–
n∑

i=

∣
∣b

(
X

ti–
, ti–

)∣∣( + m∣
∣X

ti–

∣
∣m)

× EQε

[
sup

ti–≤t≤ti

∣∣
∣∣

∫ ti

ti–

σ (Xs, s) dB̂ε
s

∣∣
∣∣

]
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≤ γ –K ′L|r|e
|r |L

n εn–
n∑

i=

∣∣b
(
X

ti–
, ti–

)∣∣( + m∣∣X
ti–

∣∣m)

× 
√

EQε

[(∫ ti

ti–

∣∣σ (Xs, s)
∣∣ ds

) 

]

≤ γ –K ′L|r|e
|r |L

n εn–
n∑

i=

∣
∣b

(
X

ti–
, ti–

)∣∣( + m∣
∣X

ti–

∣
∣m)

× 
√


(∫ ti

ti–

EQε

∣∣σ (Xs, s)
∣∣ ds

) 


≤ γ –K ′L|r|e
|r |L

n εn–
n∑

i=

∣
∣b

(
X

ti–
, ti–

)∣∣( + m∣
∣X

ti–

∣
∣m)

× 
√


(∫ ti

ti–

K
(
 + EQε |Xs|

)
ds

) 


≤ γ –K ′L|r|e
|r |L

n εn–
n∑

i=

∣
∣b

(
X

ti–
, ti–

)∣∣( + m∣
∣X

ti–

∣
∣m)

× 
√

K

 ( + C)


 n– 

 .

It then implies that φ
,(n, ε) →Qε  as both n → ∞ and ε → . With similar derivations,

through using Lemma ., we get furthermore φ
,(n, ε), φ

,(n, ε), φ
,(n, ε) →Qε  as both

n → ∞ and ε → . �

Finally, let us turn to the asymptotic behavior of φ(n, ε). We have the followingr result.

Lemma . Under conditions (C.)-(C.), we have φ(n, ε) →Qε  as both n → ∞ and
ε →  with εn/ → .

Proof By conditions (C.) and (C.), and (.), we have

∣∣φ(n, ε)
∣∣ ≤ ε

n∑

i=

K ′( + |Xti– |m
)∣∣b(Xti– , ti–)

∣∣
∣∣∣
∣

∫ ti

ti–

σ (Xs, s) dB̂ε
s

∣∣∣
∣

≤ ε

n∑

i=

K ′( + m∣
∣X

ti–

∣
∣m + m∣

∣Xti– – X
ti–

∣
∣m)

× (∣∣b
(
X

ti–
, ti–

)∣∣ + L
∣
∣Xti– – X

ti–

∣
∣)

∣∣
∣∣

∫ ti

ti–

σ (Xs, s) dB̂ε
s

∣∣
∣∣

≤ εK ′
n∑

i=

(
 + m∣∣X

ti–

∣∣m)∣∣b
(
X

ti–
, ti–

)∣∣
∣∣∣
∣

∫ ti

ti–

σ (Xs, s) dB̂ε
s

∣∣∣
∣

+ εK ′m
n∑

i=

∣
∣Xti– – X

ti–

∣
∣m∣

∣b
(
X

ti–
, ti–

)∣∣
∣∣
∣∣

∫ ti

ti–

σ (Xs, s) dB̂ε
s

∣∣
∣∣

+ εK ′L
n∑

i=

(
 + m∣

∣X
ti–

∣
∣m)∣∣Xti– – X

ti–

∣
∣
∣∣
∣∣

∫ ti

ti–

σ (Xs, s) dB̂ε
s

∣∣
∣∣

+ εK ′mL
n∑

i=

∣∣Xti– – X
ti–

∣∣m+
∣
∣∣∣

∫ ti

ti–

σ (Xs, s) dB̂ε
s

∣
∣∣∣
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≤ εK ′
n∑

i=

(
 + m∣∣X

ti–

∣∣m)∣∣b
(
X

ti–
, ti–

)∣∣
∣
∣∣
∣

∫ ti

ti–

σ (Xs, s) dB̂ε
s

∣
∣∣
∣

+ εK ′m sup
≤t≤

∣∣Xti– – X
ti–

∣∣m
n∑

i=

∣∣b
(
X

ti–
, ti–

)∣∣
∣
∣∣
∣

∫ ti

ti–

σ (Xs, s) dB̂ε
s

∣
∣∣
∣

+ εK ′L sup
≤t≤

∣∣Xti– – X
ti–

∣∣
n∑

i=

(
 + m∣∣X

ti–

∣∣m)
∣∣∣
∣

∫ ti

ti–

σ (Xs, s) dB̂ε
s

∣∣∣
∣

+ εK ′mL sup
≤t≤

∣
∣Xti– – X

ti–

∣
∣m+

n∑

i=

∣∣
∣∣

∫ ti

ti–

σ (Xs, s) dB̂ε
s

∣∣
∣∣

=: φ,(n, ε) + φ,(n, ε) + φ,(n, ε) + φ,(n, ε).

For φ,(n, ε), by the Markov inequality and Lemma ., we have, for any given γ > ,

Qε

(∣∣φ,(n, ε)
∣
∣ > γ

) ≤ γ –K ′ε
n∑

i=

(
 + m∣

∣X
ti–

∣
∣m)∣∣b

(
X

ti–
, ti–

)∣∣

× EQε

[
sup

ti–≤t≤ti

∣∣
∣∣

∫ ti

ti–

σ (Xs, s) dB̂ε
s

∣∣
∣∣

]

≤ γ –K ′ε
n∑

i=

(
 + m∣∣X

ti–

∣∣m)∣∣b
(
X

ti–
, ti–

)∣∣

× 
√

EQε

[(∫ ti

ti–

∣∣σ (Xs, s)
∣∣ ds

) 

]

≤ γ –K ′ε
n∑

i=

(
 + m∣∣X

ti–

∣∣m)∣∣b
(
X

ti–
, ti–

)∣∣

× 
√

K

 ( + C)


 n– 

 .

The above further implies that φ,(n, ε) →Qε  as n → ∞ and εn 
 →  simultaneously.

Here, we remark that the new condition εn 
 →  has been added to have convergence.

In the same manner, we can further obtain φ,(n, ε) →Qε  as n → ∞ and εn 
 → ;

φ,(n, ε) →Qε  as n → ∞ and εn 
 → ; φ,(n, ε) →Qε  as n → ∞ and εn 

 → . �

Now we are in the position to prove Theorem ..

Proof of Theorem . Let n → ∞ and ε →  with εn 
 → . By using Lemma .,

Lemma ., and Lemma ., we have therefore

r̂n,ε = r +
φ(n, r)
φ(n, r)

+
φ(n, r)
φ(n, r)

→Qε r.

This completes the proof. �

4 Asymptotics of the least square estimator
Our aim of this section is to study the asymptotic behavior of the least square estimator.
For the sake of simplicity, we assume that α(x, t, ε) = εα(x, t), so that Qε = Q is independent
of ε. The main result of this section is formulated as follows.
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Theorem . There exist two independent Q-random variables U and U with the stan-
dard normal distribution N(, ) such that

ε–(r̂n,ε – r) ⇒Q
(
∫ 

 |σ (X
s , s)|–[(b(X

s , s)σ (X
s , s))+] ds) 

 U
∫ 

 σ –(X
s , s)b(X

s , s) ds

–
(
∫ 

 |σ (X
s , s)|–[(b(X

s , s)σ (X
s , s))–] ds) 

 U
∫ 

 σ –(X
s , s)b(X

s , s) ds

as n → ∞, ε → , nε → ∞, and εn 
 →  simultaneously.

To show Theorem ., by Theorem ., we could rewrite ε–(r̂n,ε – r) as follows:

ε–(r̂n,ε – r) =
ε–φ(n, ε)
φ(n, ε)

+
ε–φ(n, ε)
φ(n, ε)

=:
�(n, ε)
φ(n, ε)

+
�(n, ε)
φ(n, ε)

.

Theorem . will be proved by verifying the following lemmas, in which we shall discuss
the asymptotic behaviors of �i(n, ε), i = , , respectively.

Lemma . Under conditions (C.)-(C.), we have �(n, ε) →Q  as n → ∞, ε → , and
nε → ∞ simultaneously.

Proof From Lemma ., by (.), we have

∣
∣�(n, ε)

∣
∣ = ε–∣∣φ(n, ε)

∣
∣ ≤ ε–φ,(n, ε) + ε–φ,(n, ε) =: �,(n, ε) + �,(n, ε).

By (.), it is easy to see that �,(n, ε) →Q  as n → ∞, ε → , and nε → ∞. Notice that
we have the new condition nε → ∞ for convergence. Similarly, �,(n, ε) →Q  as both
n → ∞ and ε → . This then completes the proof of Lemma .. �

Next, let us turn to the consideration of the asymptotic behavior of �(n, ε).

Lemma . Under conditions (C.)-(C.), we have

�(n, ε) ⇒Q

(∫ 



∣∣σ
(
X

s , s
)∣∣–[(b

(
X

s , s
)
σ
(
X

s , s
))

+

] ds
) 


U

–
(∫ 



∣
∣σ

(
X

s , s
)∣∣–[(b

(
X

s , s
)
σ
(
X

s , s
))

–

] ds
) 


U

as both n → ∞ and ε →  with εn 
 → .

Proof We have

�(n, ε) =
n∑

i=

σ –(Xti– , ti–)b(Xti– , ti–)
∫ ti

ti–

σ (Xs, s) dB̂s

=
n∑

i=

σ –(X
ti–

, ti–
)
b
(
X

ti–
, ti–

)∫ ti

ti–

σ (Xs, s) dB̂s
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+
n∑

i=

σ –(X
ti–

, ti–
)
b
(
X

ti–
, ti–

)∫ ti

ti–

(
σ (Xs, s) – σ

(
X

s , s
))

dB̂s

+
n∑

i=

σ –(X
ti–

, ti–
)[

b(Xti– , ti–) – b
(
X

ti–
, ti–

)]∫ ti

ti–

σ (Xs, s) dB̂s

+
n∑

i=

[
σ –(Xti– , ti–) – σ –(X

ti–
, ti–

)]
b
(
X

ti–
, ti–

)∫ ti

ti–

σ (Xs, s) dB̂s

+
n∑

i=

[
σ –(Xti– , ti–) – σ –(X

ti–
, ti–

)][
b(Xti– , ti–)

– b
(
X

ti–
, ti–

)]∫ ti

ti–

σ (Xs, s) dB̂s

=: �,(n, ε) + �,(n, ε) + �,(n, ε) + �,(n, ε) + �,(n, ε).

Let us set V (s) (which is deterministic) as follows:

V (s) :=
n∑

i=

σ –(X
ti–

, ti–
)
b
(
X

ti–
, ti–

)
σ
(
X

s , s
)
1(ti–,ti](s).

Let V+(s) and V–(s) be the positive and negative parts of V (s), respectively. Then by The-
orem . of Kallenberg [], there exist two independent Q-Brownian motions B̂′ and B̂′′,
which have the same distribution of B̂, such that

�,(n, ε) =
∫ 


V (s) dB̂s = B̂′ ◦

∫ 


V 

+ (s) ds – B̂′′ ◦
∫ 


V 

– (s) ds.

Note that

V 
+ =

n∑

i=

∣∣σ
(
X

ti–
, ti–

)∣∣–((b
(
X

ti–
, ti–

))
σ
(
X

s , s
))

+1(ti–,ti](s)

and

V 
– =

n∑

i=

∣
∣σ

(
X

ti–
, ti–

)∣∣–((b
(
X

ti–
, ti–

))
σ
(
X

s , s
))

–1(ti–,ti](s).

Then we have

∫ 


V 

+ (s) ds →
∫ 



∣
∣σ

(
X

s , s
)∣∣–(b

(
X

s , s
)
σ
(
X

s , s
))

+ ds

and

∫ 


V 

– (s) ds →
∫ 



∣
∣σ

(
X

s , s
)∣∣–(b

(
X

s , s
)
σ
(
X

s , s
))

– ds

as n → ∞. Then

B̂′ ◦
∫ 


V 

+ (s) ds → B̂′ ◦
∫ 



∣
∣σ

(
X

s , s
)∣∣–[(b

(
X

s , s
)
σ
(
X

s , s
))

+

] ds
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and

B̂′′ ◦
∫ 


V 

– (s) ds → B̂′′ ◦
∫ 



∣∣σ
(
X

s , s
)∣∣–[(b

(
X

s , s
)
σ
(
X

s , s
))

–

] ds.

So we get, as n → ∞,

�,(n, ε) ⇒Q

(∫ 



∣
∣σ

(
X

s , s
)∣∣–[(b

(
X

s , s
)
σ
(
X

s , s
))

+

] ds
) 


U

–
(∫ 



∣∣σ
(
X

s , s
)∣∣–[(b

(
X

s , s
)
σ
(
X

s , s
))

–

] ds
) 


U.

For �,(n, ε), by condition (C.), the Markov inequality, and Lemma ., Lemma .,
for any given γ > , we have

Q
(∣∣�,(n, ε)

∣
∣ > γ

)

≤ γ –EQ

[ n∑

i=

σ –(X
ti–

, ti–
)∣∣b

(
X

ti–
, ti–

)∣∣
∣
∣∣
∣

∫ ti

ti–

(
σ (Xs, s) – σ

(
X

s , s
))

dB̂s

∣
∣∣
∣

]

≤ γ –
n∑

i=

σ –(X
ti–

, ti–
)∣∣b

(
X

ti–
, ti–

)∣∣EQ

[∣∣
∣∣

∫ ti

ti–

(
σ (Xs, s) – σ

(
X

s , s
))

dB̂s

∣∣
∣∣

]

≤ γ –
n∑

i=

σ –(X
ti–

, ti–
)∣∣b

(
X

ti–
, ti–

)∣∣
√

EQ

[(∫ ti

ti–

∣
∣σ (Xs, s) – σ

(
X

s , s
)∣∣ ds

) 

]

≤ γ –L
√


n∑

i=

σ –(X
ti–

, ti–
)∣∣b

(
X

ti–
, ti–

)∣∣EQ

[(∫ ti

ti–

∣
∣Xs – X

s
∣
∣ ds

) 

]

≤ γ –L
√

n– 


n∑

i=

σ –(X
ti–

, ti–
)∣∣b

(
X

ti–
, ti–

)∣∣EQ

[
sup

ti–≤t≤ti

∣
∣Xs – X

s
∣
∣
]

≤ γ –L
√

n– 


n∑

i=

σ –(X
ti–

, ti–
)∣∣b

(
X

ti–
, ti–

)∣∣

× EQ

[
εeL|r|ti sup

ti–≤t≤ti

∣
∣∣
∣

∫ t


σ (Xs, s) dB̂s

∣
∣∣
∣

]

≤ γ –LeL|r|n– 
 ε

n∑

i=

σ –(X
ti–

, ti–
)∣∣b

(
X

ti–
, ti–

)∣∣

× EQ

[(∫ ti



∣
∣σ (Xs, s)

∣
∣ ds

) 

]

, (.)

which tends to zero as both n → ∞ and ε →  with εn 
 → .

For �,(n, ε), we have

�,(n, ε) =
n∑

i=

σ –(X
ti–

, ti–
)[

b(Xti– , ti–) – b
(
X

ti–
, ti–

)]∫ ti

ti–

σ (Xs, s) dB̂s

=
n∑

i=

σ –(X
ti–

, ti–
)[

b(Xti– , ti–) – b
(
X

ti–
, ti–

)]∫ ti

ti–

σ
(
X

s , s
)

dB̂s
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+
n∑

i=

σ –(X
ti–

, ti–
)[

b(Xti– , ti–) – b
(
X

ti–
, ti–

)]

×
∫ ti

ti–

(
σ (Xs, s) – σ

(
X

s , s
))

dB̂s

=: �
,(n, ε) + �

,(n, ε).

For �
,(n, ε), by condition (C.), we have

�
,(n, ε) ≤

∣∣∣
∣∣

n∑

i=

σ –(X
ti–

, ti–
)[

b(Xti– , ti–) – b
(
X

ti–
, ti–

)]∫ ti

ti–

σ
(
X

s , s
)

dB̂s

∣∣∣
∣∣

≤ L
n∑

i=

σ –(X
ti–

, ti–
)∣∣Xti– – X

ti–

∣∣
∣
∣∣
∣

∫ ti

ti–

σ
(
X

s , s
)

dB̂s

∣
∣∣
∣

≤ L
n∑

i=

σ –(X
ti–

, ti–
)
εeL|r|ti–

∣∣
∣∣

∫ ti–


σ (Xs, s) dB̂s

∣∣
∣∣

∣∣
∣∣

∫ ti

ti–

σ
(
X

s , s
)

dB̂s

∣∣
∣∣.

By the Markov inequality and Lemma ., for any given γ > , we get

Q
(∣∣�,(n, ε)

∣∣ > γ
)

≤ γ –Lε

n∑

i=

σ –(X
ti–

, ti–
)
eL|r|ti– EQ

∣
∣∣
∣

∫ ti–


σ (Xs, s) dB̂s

∣
∣∣
∣EQ

∣
∣∣
∣

∫ ti

ti–

σ
(
X

s , s
)

dB̂s

∣
∣∣
∣

≤ γ –Lε

n∑

i=

σ –(X
ti–

, ti–
)
eL|r|ti– EQ

[(∫ ti–



∣∣σ (Xs, s)
∣∣ ds

) 

]

×
[(∫ ti

ti–

∣
∣σ

(
X

s , s
)∣∣ ds

) 

]

≤ eL|r|n– 
 K( + C)γ –Lε

n∑

i=

σ –(X
ti–

, ti–
)
t



i–

= eL|r|εn

 K( + C)γ –Ln–

n∑

i=

σ –(X
ti–

, ti–
)
t



i–,

which tends to zero as n → ∞ and εn 
 → .

For �
,(n, ε), by condition (C.), Lemma ., and the same arguments as used in (.),

we find

�
,(n, ε) ≤

∣∣∣
∣∣

n∑

i=

σ –(X
ti–

, ti–
)[

b(Xti– , ti–) – b
(
X

ti–
, ti–

)]

×
∫ ti

ti–

(
σ (Xs, s) – σ

(
X

s , s
))

dB̂s

∣∣
∣∣
∣

≤ L
n∑

i=

σ –(X
ti–

, ti–
)∣∣Xti– – X

ti–

∣∣
∣
∣∣∣

∫ ti

ti–

(
σ (Xs, s) – σ

(
X

s , s
))

dB̂s

∣
∣∣∣

≤ L sup
≤t≤

∣∣Xt – X
t
∣∣σ –(X

ti–
, ti–

)
∣
∣∣
∣

∫ ti

ti–

(
σ (Xs, s) – σ

(
X

s , s
))

dB̂s

∣
∣∣
∣,
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which converges to zero as both n → ∞ and ε →  with εn 
 → . Hence,

�,(n, ε) →Q 

as n → ∞, ε → , and εn 
 → .

For �,(n, ε), by conditions (C.)-(C.), and (.), we have

∣∣�,(n, ε)
∣∣ ≤

n∑

i=

∣∣σ –(Xti– , ti–) – σ –(X
ti–

, ti–
)∣∣∣∣b

(
X

ti–
, ti–

)∣∣
∣
∣∣∣

∫ ti

ti–

σ (Xs, s) dB̂s

∣
∣∣∣

≤
n∑

i=

σ –(Xti– , ti–)σ –(X
ti–

, ti–
)∣∣σ (Xti– , ti–) – σ (X

ti–
, ti–

)∣∣

× ∣∣b
(
X

ti–
, ti–

)∣∣
∣
∣∣
∣

∫ ti

ti–

σ (Xs, s) dB̂s

∣
∣∣
∣

≤
n∑

i=

K ′( + |Xti– |m
)
σ –(X

ti–
, ti–

)
K

∣∣σ (Xti– , ti–) – σ
(
X

ti–
, ti–

)∣∣

× ∣∣b
(
X

ti–
, ti–

)∣∣
∣
∣∣
∣

∫ ti

ti–

σ (Xs, s) dB̂s

∣
∣∣
∣

≤ KK ′L
n∑

i=

σ –(X
ti–

, ti–
)∣∣b

(
X

ti–
, ti–

)∣∣

× ∣∣Xti– – X
ti–

∣∣
∣
∣∣
∣

∫ ti

ti–

σ (Xs, s) dB̂s

∣
∣∣
∣

+ KK ′Lm
n∑

i=

σ –(X
ti–

, ti–
)∣∣b

(
X

ti–
, ti–

)∣∣

× ∣∣Xti– – X
ti–

∣∣m+
∣
∣∣
∣

∫ ti

ti–

σ (Xs, s) dB̂s

∣
∣∣
∣

+ KK ′Lm
n∑

i=

σ –(X
ti–

, ti–
)∣∣b

(
X

ti–
, ti–

)∣∣

× ∣∣X
ti–

∣∣m∣∣Xti– – X
ti–

∣∣
∣
∣∣
∣

∫ ti

ti–

σ (Xs, s) dB̂s

∣
∣∣
∣

=: �
,(n, ε) + �

,(n, ε) + �
,(n, ε).

From the method of the convergence of �,(n, ε), we get �
,(n, ε) →Q  and �

,(n,
ε) →Q  as n → ∞, ε → , and εn 

 → .
For �

,(n, ε), we have

�
,(n, ε) ≤ sup

≤t≤

∣
∣Xti– – X

ti–

∣
∣mKK ′Lm

n∑

i=

σ –(X
ti–

, ti–
)

× ∣
∣b

(
X

ti–
, ti–

)∣∣
∣
∣Xti– – X

ti–

∣
∣
∣∣
∣∣

∫ ti

ti–

σ (Xs, s) dB̂s

∣∣
∣∣,

which converges to zero in probability, since m ≥ , sup≤t≤ |Xti– – X
ti–

|m converges to
zero in probability as ε → . Hence, �,(n, ε) →Q  as n → ∞, ε → , and εn 

 → .
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For �,(n, ε), for some G >  we have

∣∣�,(n, ε)
∣∣ ≤

n∑

i=

∣∣σ –(Xti– , ti–) – σ –(X
ti–

, ti–
)∣∣

× ∣∣b(Xti– , ti–) – b
(
X

ti–
, ti–

)∣∣
∣
∣∣
∣

∫ ti

ti–

σ (Xs, s) dB̂s

∣
∣∣
∣

≤
n∑

i=

σ –(Xti– , ti–)σ –(X
ti–

, ti–
)∣∣σ (Xti– , ti–) – σ (X

ti–
, ti–

)∣∣

× ∣∣b(Xti– , ti–) – b
(
X

ti–
, ti–

)∣∣
∣
∣∣
∣

∫ ti

ti–

σ (Xs, s) dB̂s

∣
∣∣
∣

≤ G
n∑

i=

σ –(X
ti–

, ti–
)(

 + |Xti– |m
)∣∣Xti– – X

ti–

∣
∣

∣∣
∣∣

∫ ti

ti–

σ (Xs, s) dB̂s

∣∣
∣∣

≤ sup
≤t≤

∣∣Xti– – X
ti–

∣∣G
n∑

i=

σ –(X
ti–

, ti–
)(

 + |Xti– |m
)

× ∣∣Xti– – X
ti–

∣∣
∣
∣∣
∣

∫ ti

ti–

σ (Xs, s) dB̂s

∣
∣∣
∣,

which converges to zero in probability Q, since sup≤t≤ |Xti– – X
ti–

| →Q  as ε →  by
Lemma ., and

G
n∑

i=

σ –(X
ti–

, ti–
)(

 + |Xti– |m
)∣∣Xti– – X

ti–

∣∣
∣
∣∣∣

∫ ti

ti–

σ (Xs, s) dBs

∣
∣∣∣ →Q 

as n → ∞, ε → , and εn 
 →  by the same arguments for the convergence of �,(n, ε).

�

Finally, we are ready to prove Theorem ..

Proof of Theorem . By using Lemma ., Lemma ., and Lemma ., we have

ε–(r̂n,ε – r) =
�(n, ε)
φ(n, ε)

+
�(n, ε)
φ(n, ε)

⇒Q
(
∫ 

 |σ (X
s , s)|–[(b(X

s , s)σ (X
s , s))+] ds) 

 U
∫ 

 σ –(X
s , s)b(X

s , s) ds

–
(
∫ 

 |σ (X
s , s)|–[(b(X

s , s)σ (X
s , s))–] ds) 

 U
∫ 

 σ –(X
s , s)b(X

s , s) ds

as n → ∞, nε → ∞, εn 
 → , and ε → . This completes the proof. �

5 Conclusion
In the paper, we discuss parameter estimation problem for the mean-reversion stochastic
differential equations driven by Brownian motion. As mentioned in the introduction, the
SDEs of mean-reversion type involve a complex term α(Xt , t, ε) in the drift coefficient,
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which makes a big difficult to apply the existing methods directly. What we have done
here is to utilize the celebrated Girsanov transformation (i.e., the drift transformation) to
simplify the drift coefficient, which then changes the originally given probability measure
P to a family of equivalent probability measures {Qε}ε>. With this in hand, we are able to
derive an explicit least square estimator and we can further prove the convergence from
the least square estimator to the true value with respect to the family {Qε}ε> and we can
show the asymptotic distribution of the least square estimator. The convergence discussed
in this paper is with respect to a family of (equivalent) probability measures, which seems
new as all the convergences appearing in the literature are only with respect to a single
(i.e., the originally given) probability measure.
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